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THE GENERALISED fPROJECTION OPERATOR
WITH AN APPLICATION

KE-QING WU AND NAN-JING HUANG

In this paper, we introduce a new concept of generalised f-projection operator which
extends the generalised projection operator mx : B* — K, where B is a reflexive
Banach space with dual space B* and K is a nonempty, closed and convex subset
of B. Some properties of the generalised f-projection operator are given. As an
application, we study the existence of solution for a class of variational inequalities
in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

Let B be a Banach space with dual space B*. As usual, (p,z), denotes the duality
pairing of B* and B, where ¢ € B* and z € B. If B is a Hilbert space, (y, z) denotes an
inner product on B. Let K be a nonempty, closed and convex subset of B. The metric
projection operator Px : B* — K has been used in many areas such as optimisation
theory, fixed point theory, nonlinear programming, game theory, variational inequality,
and complementarity problems, et cetera (see, for example, [10, 11, 12, 13, 14, 16, 17,
20} and the references therein).

In 1994, Alber [1] introduced the generalised projections mx : B* — K and Mg :
B — K from Hilbert spaces to uniformly convex and uniformly smooth Banach spaces
and studied their properties in detail. In [2], Alber presented some applications of the
generalised projections to approximate solving variational inequalities and Von-Neumann
intersection problem in Banach spaces. Recently, Li {17] extended the definition of the
generalised projection operator mx : B* — K, where B is a reflexive Banach space
with dual space B* and K is a nonempty, closed and convex subset of B and studied
some properties of the generalised projection operator with applications to solving the
variational inequality in Banach spaces. Some related works, we refer to 3, 4, 5, 6, 7,
8, 9] and the references therein.
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Motivated and inspired by the above works, in this paper, we introduce and study
a new class of generalised f-projection operator in Banach spaces, which extends the
definition of the generalised projection operators introduced by Alber (1] and Li [17].
Some properties of the generalised f-projection operator are given. As an application,
we study the existence of solution to a class of variational inequalities.

Let B be a Banach space with dual space B*. The normalised duality mapping
J : B — 2B is defined by

J(2) = {i(z) € B : (@), ) = i@ - Iall = lali* = i ()|*},

where (-, -) denotes the duality pairing of B* and B. Without confusion, one understands
that ||j(z)| is the B*-norm and ||z|| is the B-norm. Many properties of the normalised
duality mapping J can be found in Takahashi [18] or Vainberg [19]. We list some
properties below for easy reference:

(i) J is a monotone and bounded operator in arbitrary Banach spaces;

(ii) J is a strictly monotone operator in strictly convex Banach spaces;
(iii) J is a continuous operator in smooth Banach spaces;
(iv) J is a uniformly continuous operator on each bounded set in uniformly

smooth Banach spaces;
(v) Jis the identity operator in Hilbert spaces, that is, J = Iy;

(vi) J(z) = 8(||zl|?/2), where 8(||z|[>/2) denotes subdifferential of ||z||?/2
at z.

Let G : B* x B — RU {+0o0} be a functional defined as follows:

G(p ) = lloll* — e, 2) + ll=l* + £(2),

where ¢ € B*, z € B and f: B — RU {+oo} is proper, convex, lower semi-continuous,
and bounded from below. It is easy to see that

Glp,2) = (llll - llzll)* + f(2).

From the definitions of G and f, it is easy to see that the G has the following
properties:
(vii) G{p,z) is convex and continuous with respect to ¢ when z is fixed;

(vii) G(p,z) is convex and lower-semi-continuous with respect to z when ¢ is
fixed;

@) (el - lI=ll)* + £(=) < Glp,2) < (llell + l=ll)* + £ ().

LEMMA 1.1. ([15, p. 94].) Let X be a Banach space. The following conditions
are equivalent.

(1) X is strictly convex;
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(2) Ifz,y€ X and ||z +yll = |lzll + |lyll, then z =0 or y = 0 or y = ax for
some a > 0.

DEFINITION 1.1: Let B be a Banach space with dual space B*. Let K be a
nonempty, closed and convex subset of B. We say that w{( : B* = 2K is a generalised
f-projection operator if

(1.1) mho={ue K:G(p,u) = iglt;G(cp, ¥)} Vpe B
v

REMARK 1.1. If f(z) = O for all z € B, then the generalised f-projection operator
reduces to the generalised projection operator defined by Alber [1] and Li {17].

2. PROPERTIES OF THE GENERALISED f-PROJECTION 7l

The following theorem shows that the operator 7% is well defined for reflexive Banach

spaces.

THEOREM 2.1. If B is a reflexive Banach space with dual space B* and K is a
nonempty closed convex subset of B, then W{((p # @ for all p € B*.

PROOF: For any given ¢ € B* and z € B, we have

(el = zll)* + £(z) < Glp,2) < (el + ll=ll)® + £ (2).
Since f is bounded from below, it follows that, for any given ¢ € B*, lg,f; G(p,y) is finite
y

and so there exist a sequence {z,} € K such that
lim G(p,zq) = ylg,f(G(tp,y)
Let 1gif( G(p,y) = a. Then for any given € > 0, there exists N > 0 such that
v
|G((P,.’En) - a‘| <Eg
for all n > N. Thus,
(hell = llzall)* + f(@n) — @ <.

Since f(z) is bounded from below, there exists L € R such that
(2:2) (lell = llzall)* + L - a <.
On the other hand,

=i = inf 2 _ 2

a= inf Glo,y) = inf {0l = 2(p, 20} + llzall* + F(za)}
> inf L ,, all?
inf {llell® - 2(¢, 2a) + llal®} + L

. 2
> inf (el = llzal)* + L

y
L.

N

(2.3)

\"
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From (2.2) and (2.3), we know that {z,} is bounded. Since B is reflexive, there exist
a subsequence of {z,}, which after relabelling we again denote by {z,}, and a point
zo € K such that {z,} converges weakly to z. For each given ¢, since G(yp, z) is convex
and lower-semi-continuocus with respect to z, we know that G(yp, z) is weakly lower-semi-
continuous with respect to z. Thus, we have

G(p, o) < liminf G(p, z,) = lim G(p,z,) = inf Gle,v)

and so zg € 7rf(<p. Therefore, wfdp # 0. This completes the proof. 0

THEOREM 2.2. If B is a reflexive Banach space with dual space B* and K is a
nonempty, closed and convex subset of B, then the following properties hold:

(fi) For any given ¢ € B*, wf(zp is a nonempty, closed, bounded, and convex
subset of K;

(f2) n{( is monotone, that is, for any ¢,,yp2 € B*, 7, € 7rf(<p1 and 1, € w{(cpz,
(T1— 22,001 ~ p2) 2 0,
(fs) If B is smooth, then for any given ¢ € B*, z € w,f(gp if and only if

2(p—J(@), z - y) + fy) - f(z) 20

forally € K;

(fs) IfK is a closed convex cone and f : K — RU{+o0} is positively homoge-
neous, that is, f(tz) = tf(z) for allt > 0 and z € K, then for any ¢ € B*
and 1.,z € 71'{(<p, we have x; # pz, for all y € (0, +00) with u# 1;

(fs) IfK is a closed convex cone, f : K — RU{+o0} is positively homogeneous
and B is strictly convex, then the operator w{( : B* = K is single-valued.

PROOF: (f)) For any point ¢ € B*, Theorem 2.1 implies that w{(<p is nonempty.
Since f is bounded from below and G(p, z) > (|l¢|l - ||z||)2 + f(z), it is easy to see that
n{{<p is bounded. Next we prove that w{(go is closed. Suppose {z,} € Thy and z, = 7o
as n — 0o. By property (viii) of the functional G, we have

G(, 20) < iminf G(p, z0) = lim G(p, za) = inf G(p,y).

Thus, zo € w{(ga and so wf(cp is closed. Finally, we prove that w{(q) is convex. Suppose
Ty,%2 € 7r{(<p and 0 < t € 1. From property (viii) of the functional G, we have

G(p, tzy + (1 — t)xz2) < tG(p,21) + (1 — t)G(p, 22)
= t;g,§ Glp,y)+(1-1) inf G(p,y)
= inf Glp,v)
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and so tx; + (1 —t)zp € w{(¢. This implies that wf(cp is convex.

{f2) For any ¢;,92 € B*, 7, € nf{tpl and z, € 1rf(<pg, from definition w{(, we have
24)  lleill® = 21, z1) + [l + f(z1) < lall® = 201, z2) + [|za||® + f(22)
and
(25)  llpall® = 2(p2,22) + |72l + f(22) < llpall* = 202, 21) + [l21ll® + f(z0).

It follows from (2.4) and (2.5) that 7% is monotone.
(f3) We first prove that z € 1r{((,o implies that

Ap-J(@),z~y)+f) - f(z) 20, VyeK.
In fact, for any y € K and t € (0, 1}, it follows from the definition of wf(cp that
G(p,z) < G(p,z +t(y — 7).
Thus,
lell? = 2(p, ) + 2l + f(2) < llell? - 2¢p, z + t(y — z))
+ ||z +ty = D)||* + f(z + t(y — )

and so

<z +ty-2)’ + f(z +tly - )
<z +ty - 2)||* + (1 = ) f(z) + £ ().

2oty — 2)) + lIzll* + f(2)
It follows that
(2.6) Ao, t(y - 2)) + llzl? < [|o + tly — 2)||* + (£ (v) - f(2))-
Now from the properties of the normalised duality mapping, we have
(3@ +ty - 2)),~ty~2)) < el - Llle +tly - )"
By (2.6), we get
2@+t - )y —5) > f(2) - f) + Aoy - 2)).

Since B is smooth, we know that J is demi-continuous. Letting ¢ — 0 in the above
inequality, we have

AJ(=@) -9 y—z)+ f(y) ~ f(z) 2 0.
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Conversely, suppose
2(J(z) —p,y—z)+ fly) — f(z) 20 forall y€ K.
Then
lyll? = llzll* > 2(J (=), y - z) > 2p,y — 2) + f(z) - f(y)

which implies that G(p,z) € G(p,y) forall y € K, that is, z € ﬂ{((p.

(fs) Assume z,,z; € Trf(<p and x; = puz, for some real number x4 > 0 with u # 1.
Then G(p,z1) = G(p, z2) and so

2p, 22 — 31) = ||z2|’ + f(z2) = l71||* - f(21).
Replacing z; by pz, in above equality, we have

2(1 - w){p, z2) = (1 - p?)|z2|* + (1 - p) f(22)-
Since p # 1, we obtain
(2.7) 2p, 72) = (1 + p)||za||” + f(z2)-

Let
T3 = (T2 + 11)/2 = (1 + p)/2)z2.

It follows from (f1) that z3 € 74 and so G(y, z2) = G(e, z3). Similarly, we can get
1
(2.8) 2p,72) = (1+ 50+ )zl + f(z2).

Now (2.7) and (2.8) imply that 1+ = 1+(1+4)/2 and so u = 1, which is a contradiction
to u # 1. Thus, (f4) is true.

(fs) Suppose there exists ¢ € B* such that mx¢ is not a singleton. Then for any
Z1,Tg € wf(cp and z, # z,, we have G(p, z1) = G(¢, 72). This implies

(2.9) 2(p, 72 — 21) = |l2al| + f(22) ~ l|z1|1* - f(z1)-

By property (f1), for any t € [0, 1], we know that z, + t(z; — z,) € mgy. Since G(p, 71
+ t(x2 - zl)) = G(‘p’ 2:l)a

(2.10) 2t(p, 2 — 1) = ||I1 + t(z, - 551)”2 + f(zx + t(z2 ~ 1‘1)) - “331”2 - f(z1).
Combining (2.9) and (2.10), we have

t(llz2l® + f(z2) = llzall? = £(21))
= ||z + tzz — 2)||” + £ (21 + tzz — 1)) ~ |72 = F(z1)

< [las + tlez = )||* +2( (22 = £(21))) ~ Il
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This implies that
(2.11) tllzall? + (1 = O)llz1l? < ||z1 + tzs — )|
and so

llz1 + tzz = 20)||” < (tllzll + (1 = t)l|za])?

||zal|? + 26(1 = 1) |zl lzal] + (1 = 2|z,
tlzall? + (1 &)||za]?
”:1:1 + t{z2 — :1:1)“2.

VAN

Thus,
theall + (L = Bzl = |21 + t(z2 — 7).
Taking t = 1/2 in the above equation, we get

llz2ll + llzoll = llz1 + z2]l.

From (2.11), we know that if z; = 0, then z, = 0. Hence z; # 0 and z, # 0. Since B

is strictly convex, according to Lemma 1.1, there exists some a > 0 such that z, = az,,

which contradicts (fs). This completes the proof. 1]
From (f3), it is easy to prove the following result.

THEOREM 2.3. Let A be an arbitrary operator acting from the reflexive and
smooth Banach space B to B*, and £ € B*. Then the point z* € K C B is a solu-
tion of the variational inequality

(Az—&y—z)+ f(y) - f(z) 20, VyeK
if and only if z* is a solution of the following inclusion

z € th(J(2) - 34z - ).

3. APPLICATIONS

As an application of our results, in this section, we shall study the existence of
solutions to the following variational inequality problem: Find z* € K such that

(3.1) (Az",y —z) + f(y) — f(z") 20, VyeK,

where K is a nonempty, closed and convex subset of the Banach space B, and A : K — B*
and f : K & RU {+00} are two mappings.
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DEFINITION 3.1: (KKM mapping) Let K be a nonempty subset of a linear space
X. A set-valued mapping G : K — 2X issaid to be a KKM mapping if for any finite
subset {y1,¥2, -+ ,¥n} of K, we have

CO{yl, Y2, ’yﬂ} - U G(yt)’
i=1

where co{y1,¥2, - ,yn} denotes the convex hull of {y1, 2, - ,yn}

LEMMA 3.1. (FanKKM Theorem ({20].) Let K be a nonempty convex subset of
a Hausdorff topological vector space X and let G : K — 2* be a KKM mapping with
closed values. If there exists a point yo € K such that G{yo) is a compact subset of K,

then () G(y) #0.

yEK

THEOREM 3.1. Let K be a nonempty, closed and convex subset of a reflexive and
smooth Banach space B with dual space B*. Let A: K — B* be a continuous mapping
and f : K — RU {+oo} be proper, convex, lower semi-continuous, and bounded from
below. Let there exist an element yo € K such that

62 {sek:2(z=jany—z)+ el + ) < ool + F0) )

is a compact subset of K. Then the variational inequality (3.1) has a solution.

PROOF: From Theorem 2.3, we only need to prove that the following inclusion has
a solution,

1
f -
T € 7rK(J(z) 2Az).
Define a set-valued mapping W : K — 2K as follows:
1 1
W(y) = {z €EK: G(.I:c - §Ax,z) < G(Ja:— §Ax,y)}.

Clearly, for each given y € K, W(y) is nonempty. Next we prove that W (y) is closed for
each given y € K. Suppose {z,} € W(y) and =, — =, as n — oo. Then,

G(Ja:,, - %Amn,xn) < G(J-'L'n - %Aﬁimy)
and so

1 2 olyp L 2
~2( Iz = 5 AT, Tn) + 2l + F(2a) € ~2(Jz0 — 5 Az0,y) + I + ).

Since J and A are continuous and f is lower-semi-continuous,

1 1
—2(Jzo — 3A30,30) + 7ol + f(z0) < ~2(Jzo — SAz0,y) + lyl* + £ (v)
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Hence,
G(J:co - %Axo,zo) < G(Jzo - %Aﬁto,y),

which implies that o € W (y).
Next we prove that the map W : K — 2K is a KKM mapping in K. In fact, suppose
n n

YLY2 o Un € Kand 0 < Ay, Ag, -+ - Ay < 1 with 3° A = 1. Let v = 3~ \y;. By property
(viii) of G, we have i=1 i=1

1 _ 1 =~
G(Jv — 5Av,v) = G(Jv - 54v, ;)\.y,)

n
1
< ;A,;G(J’U - §Av,y¢).
This implies that
1 1
G(Jv - EAv,v) < &%G("v - §Av,y,~).
Hence there exists at least one number j = 1,2,--- ,n, such that
1 1
G(Jv - EA‘U,’U) < G(Jv - §Av,y,-),

that is, v € W(y;). Thus, W is a KKM mapping.
If z € W{wo), then G(Jz — (1/2)Az,z) < G(Jz — (1/2)Az, ). From the definition
of G, we have

1, 2 1 .
”J:r - -2-A1:” - 2<Ja: - §Az,z> + |lz|I* + f(z)
1 2 1

< 1 _ _1 2

< |72 - 54z| - 2( 7z - Sz, 0} + lwoll* + £lzo).
Simplifying the above inequality, we have

1
2(Jz ~ 5 Az, 50— 2) + [l2ll* + £(2) < llyoll® + £ (vo)-
We get that
1 2
Wi(w) = {z € K : 2(Jz - 5Az,y0 = ) + Jall* + £(2) < llvoll + f(z0) {-

By condition (3.2), we know that W{y,) is compact. It follows from Lemma 3.1 that
() W(y) # 0 and so there exits at least one z* € (| W(y), that is,

yeEK yeEK

G(Jz‘ - %Ax‘,x') < G(J:c‘ - %Az‘,y), Vy e K.
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From the definition of the generalised f-projection operator w{(, we have
- ! . 1 .
"€ 7rK(Jz - §Az )

This completes the proof. ' 0

THEOREM 3.2. Let B be a reflexive and smooth Banach space with dual space
B* and K be a nonempty, closed and convex subset that contains the origin 6 of B. Let
A: K — B* be a continuous mapping and f : K - RU {+00} be proper, convex, lower
semi-continuous, and bounded from below. If the set

(3.3) {z € K : (Az,z) + f(z) < |Iz|* + F(0)}

is compact, then variational inequality (3.1) has a solution.

PRrOOF: Taking yo = 6 in condition (3.2) and noticing that (Jz,z) = ||z||?, it follows
from condition (3.3) that all conditions of Theorem 3.1 hold. Thus Theorem 3.1 implies
that the conclusion of Theorem 3.2 hold. This completes the proof. 0

From Theorem 3.2, it is easy to have the following result.

THEOREM 3.3. Let B be a reflexive and smooth Banach space with dual space
B* and K be a nonempty, closed and convex cone of B. Let A: K — B* be a continuous
mapping and f : K — RU{+oc0} be proper, convex, lower semi-continuous and bounded
from below. If

{:z: € K: (Az,z) + f(z) < l|lz|* + f(6)}

is compact, then variational inequality (3.1) has a solution.
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