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Summary

Selective logging in tropical forests may lead to deforestation and forest degradation, so accurate
mapping of it will assist in forest restoration, among other ecological applications. This study
aimed to track canopy tree loss due to illegal logging of the important hardwood tree Ocotea
usambarensis in a closed-canopy submontane tropical forest by evaluating the mapping poten-
tial of the very-high-resolution WorldView-3 multispectral dataset using random forest (RF)
and support vector machine (SVM) with radial basis function kernel classifiers. The results
show average overall accuracies of 92.3 ± 2.6% and 94.0 ± 2.1% for the RF and SVM models,
respectively. Average kappa coefficients were 0.88 ± 0.03 for RF and 0.90 ± 0.02 for SVM. The
user’s and producer’s accuracies for both classifiers were in the range of 84–100%. This study
further indicates that vegetation indices derived from bands 5 and 6 helped detect canopy gaps
in the study area. Both variable importance measurement in the RF algorithm and pairwise
feature selection proved useful in identifying the most pertinent variables in the classification
of canopy gaps. These findings could allow forest managers to improve methods of detecting
canopy gaps at larger scales using remote sensing data and relatively little additional fieldwork.

Introduction

Tropical rainforests cover c. 7% of the globe, and they contain more than 53 000 tree species
compared to c. 124 in temperate Europe (Slik et al. 2015). Vital environmental processes such
as the water cycle, soil conservation, carbon sequestration and habitat protection are regulated
by tropical tree species. Kenya’s rainforest cover, mostly montane forests, is fragmented into
patches that are being degraded (NEMA 2010). The Mount Kenya Forest Reserve (MKFR) sus-
tains a variety of biodiversity and affords vital ecosystem services, as well as being a major for-
ested water catchment area in Kenya (NEMA 2010). Intense growth of the human population
around the MKFR and increasing poverty levels have led to forest degradation there due to ille-
gal logging of important timber trees, especially Ocotea usambarensis, which is a hardwood tree
with excellent decay and insect resistance. In 2000–2001, O. usambarensis was the most highly
priced timber in Kenya. The State of the Environment report by the National Environment
Management Authority (NEMA) listed O. usambarensis as endangered (NEMA 2010).
Normally, Ocotea trees mature over 60–70 years and are relatively large with spreading crowns
and stem diameters in the range 3.75–9.50 m. The tree has low seed viability and poor regen-
eration, produces seeds only every 10 years and seed germination is sporadic.

Tracking of selective logging (SL) in tropical forests is important due to its effects on biodiversity
and other forest attributes, including ecosystem services, the microclimate and carbon pools
(Dalagnol et al. 2019). Landscape-level spatial assessments of canopy gaps have primarily used
ground-based methods, and, due to the amount of effort and expense needed to acquire the mea-
surements, the areas covered by these surveys are small and not contiguous spatially. Remote sensing
(RS) is a more cost-effective and less laborious method for modelling canopy gaps than using
ground-based methods (Malahlela et al. 2014). However, SL can be challenging to detect and quan-
tify because of its partial disturbance of the forest canopy and small scale of impact (Dalagnol et al.
2019). Three main types of very-high-resolution (VHR) earth observation data have been used to
detect canopy gaps due to SL in tropical forests (i.e., optical, LiDAR (light detection and ranging) and
radar (radio detection and ranging)). LiDAR technology has made the detection of small canopy
gaps possible; for example, Asner et al. (2013) explored canopy height models from a single
LiDAR data acquisition, while Andersen et al. (2014) used simple differencing of LiDAR canopy
height models to detect disappearing tree crowns with exceptional accuracy. Ellis et al. (2016) used
LiDAR data from a single acquisition to detect SL by estimating aboveground biomass, while Rex
et al. (2020) used LiDAR data acquired before and after logging to estimate the change in
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aboveground biomass due to logging. However, LiDAR covers rela-
tively small spatial extents and data acquisition costs are high.
Therefore, researchersmay opt to integrate data fromdifferent RS sys-
tems; for example, Dalagnol et al. (2019) combined airborne LiDAR
and VHR satellite data to quantitatively assess and validate canopy
gaps. Automated mapping using time-series approaches applied to
calibrated synthetic aperture radar (SAR) data have been successful
in detecting SL (Baldauf & Köhl 2009). Hethcoat et al. (2021) assessed
the effectiveness of SAR data for monitoring tropical SL, but SAR-
based biomass estimates have lower precision at the same resolution
than optical data. Traditional aerial photography was successfully
used for mapping canopy gaps before the introduction of high-reso-
lution optical data (Malahlela et al. 2014); however, aerial photogra-
phy data acquisition is cost-intensive, although technological
advances have revitalized the use of aerial photography through
unmanned aerial vehicles (UAVs). Spaias et al. (2016) used a hyper-
spectral camera on a UAV to detect and quantify small-scale canopy
gaps in a tropical forest, although the amount of spatial and spectral
data gained made the data processing computationally demanding,
especially where cloud-computing resources were lacking. Ota et al.
(2019) used digital aerial photographs acquired before and after log-
ging to estimate the change in aboveground biomass linked to SL,
while Kamarulzaman et al. (2022) usedUAVdata to detect forest can-
opy gaps attributed to SL. However, digital aerial photographs
acquired using UAVs cover relatively small spatial extents.

Machine learning (ML) for the classification of RS data has been
applied in mapping SL with increasing success. Dalagnol et al. (2019)
used a random forest (RF) model to detect tree loss with an average
precision of 64%. Hethcoat et al. (2019) reported a detection rate of
logged pixels of c. 90% using RF. Kamarulzaman et al. (2022) com-
pared conventional and ML classifiers. The support vector machine
(SVM) and artificial neural network (ANN) classifiers attained higher
overall accuracy of 85%. Using ordinary least squares regression and
ML approaches (RF, k-nearest neighbour, SVM and ANN), Rex et al.
(2020) monitored the change in aboveground biomass due to SL.
Hethcoat et al. (2020, 2021) developed RF models and used logging
records to detect SL. Therefore, RF, SVM and ANN approaches,
which have superior image handling capabilities, have been mostly
used in this area.

The development of VHR multispectral sensors such as
WorldView-2 is critical for discriminating between tree canopies
and vegetated gaps (Malahlela et al. 2014), because some of the
inherent features of hyperspectral data, such as carotenoids and
chlorophyll-sensitive bands, are preserved inWorldView-2/3 mul-
tispectral data (Mutanga et al. 2012). Visual interpretation of VHR
multidate satellite imagery represents a promising way to detect
canopy gaps with fairly low uncertainty (Dalagnol et al. 2019).
Nonetheless, spatially accurate tree-scale validation data are not
readily available, so automated approaches using VHR satellite
data to accurately map canopy gaps over large and remote areas
are not readily available (Dalagnol et al. 2019). The primary focus
of this study is exploring the potential of WorldView-3 imagery to
develop a SL monitoring system capable of detecting canopy gaps
over large spatial extents in a closed-canopy submontane tropical
forest using RF and SVM models.

Materials and methods

Study area

This study was conducted in a c. 264ha area in the MKFR (Fig. 1),
which covers c. 213 083 ha and encircles the 7150-haMount Kenya

National Park (MKNP), which begins at 3100m and extends to the
highest point, the Batiaan Peak, at 5199 m (Lange & Bussmann
1998). The phonolites from main volcanic events c. 2 million years
ago form the bedrock of the study area, but the inorganic body of
the soils originates from a later coverage of volcanic ashes and
pyroclastic rocks (Lange & Bussmann 1998). The mountain lies
on the equator (latitude 0°10´S, longitude 37°20´E) and forms
one of the most pristine mountain ecosystems globally and a
remarkable landscapes due to its peaks with rugged glacier-clad
summits and diverse forests. The precipitation pattern consists
of long rains from March to May and short rains from October
to December (Supplementary Fig. S1, available online). Themoun-
tain shows a marked vegetational gradient dictated by altitude and
rainfall amount. The lower tree line of the forest belt is due to agri-
cultural and pastoral activities. Ocotea usambarensis, which never
constitutes pure stands and prefers humid Nitisols and Acrisols,
forms the evergreen submontane forests on the southern, south-
eastern and eastern slopes of Mount Kenya between 1500 and
2500 m altitude (Lange & Bussmann 1998).

Acquisition and pre-processing of satellite data

WorldView-3 data were acquired on 15 September 2019 for
detecting canopy gaps in selectively logged sites. WorldView-2
imagery acquired on 30 January 2014 and Google Earth were used
for historical comparison. In order to cancel out the haze compo-
nent caused by additive scattering from the RS data, the dark object
subtraction method was applied (Chavez 1988). TheWorldView-2
satellite captures panchromatic images (450–800 nm) with a spa-
tial resolution of 0.46 m and multispectral images with eight vis-
ible–near-infrared (VNIR) bands (400–1040 nm) at 1.84m
resolution, while WorldView-3 acquires panchromatic images
with a spatial resolution of 0.30m,multispectral imagery with eight
VNIR bands at 1.2 m and eight shortwave-infrared (SWIR) bands
(1195–2365 nm) at 3.7m spatial resolution. Additionally, there are
12 clouds, aerosols, vapours, ice and snow (CAVIS) bands with a
spatial resolution of 30 m. Only WorldView-3 VNIR bands were
used because SWIR bands covering the study area exhibited exten-
sive cloud cover. The satellite data were pansharpened to obtain
new bands with a spectral resolution of the multispectral bands
and a spatial resolution of the panchromatic band.

Acquisition of field data

Ground truth points were collected in February 2020 using a hand-
held Global Positioning System (eTrex® 20 GPS Receiver; Garmin,
Olathe, KS, USA) and a pansharpened WorldView-3 image
(pixel = 0.30 m). Seventy vegetated gaps formed after illegal
logging of Ocotea trees were located in the field (Fig. 1). In the
WorldView-3 imagery, the canopy gaps were either partially/fully
illuminated or not illuminated at all (Fig. S2b & c). Since the
human-made canopy gaps shared similar reflectance characteris-
tics with natural canopy gaps, GPS coordinates of 301 vegetated
gaps and 301 shaded gaps were collected, including the 70 canopy
gaps formed after illegal logging of Ocotea trees. A vegetated gap is
a forest canopy gap with low vegetation inside it, which is the initial
stage of vegetation recovery from forest disturbance. Coordinates
of the approximate locations of gap centres were recorded and then
overlaid on the pansharpened WorldView-3 image. Using a
geographic information system (GIS; ArcGIS® v. 10.3; ESRI,
Redlands, CA, USA), points were set on the vegetated and shaded
canopy gap pixels on the WorldView-3 imagery, and by following
the edges of the pixels, the points were made into polygons.
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Locations of closed forest canopy could be identified using the
WorldView-3 imagery; thus, a total of 301 polygons were
extracted. Canopy gaps formed after the logging of Ocotea trees
had their dimensions collected in the field, such as their dripline
measurements, maximum length and compass orientation,
together with the maximum width perpendicular to the length.
Using the GIS, a map of canopy gaps was generated from ground
survey data. The accuracy of canopy gap delineation using RS was
assessed by comparing them with the dimensions collected from
the field. The ground reference data were then randomly split into
train and test datasets of 70% and 30%, respectively.

Feature extraction and selection

In minimizing the effects of data saturation when mapping canopy
gaps in dense forests, methods such as vegetation indices (VIs),
image transform algorithms, texture measures and spectral mix-
ture analysis have been utilized previously (Malahlela et al.
2014, Dalagnol et al. 2019). Table 1 presents 55 features (23 means,
23 standard deviations (SDs), 8 ratios and 1 brightness feature)
extracted from pansharpened WorldView-3 imagery, and these
features are subsequently referred to as variables in the analyses.
The VIs were chosen from those sensitive to greenness and plant
senescence (Malahlela et al. 2014). To accurately extract shaded
gaps, the shadow detection index (SDI) of Shahi et al. (2014)
was used in the modelling. Shade is associated with canopy gaps
as nearby trees appear on the edges of gaps (Dalagnol et al.
2019). In reducing the redundancy and intercorrelation among
the list of potential features, a subset of the best-performing fea-
tures was extracted from the initial 55 features before classification;
for these, approximate optimal thresholds were determined from
the reference data using histograms and then adjusted to determine
thresholds that resulted in the highest matching accuracy com-
pared to the reference data.

Spectral separability

Spectral separabilitymeasures the distance between two signatures,
and the separability between any combinations of variables can be
used in the classification. Only the subset from the best-performing
features was used in the analysis. The digitized vegetated gaps,
shaded gaps and forest canopy samples (Fig. S3) were assigned
spectral information using the mean pixel values within their poly-
gons and then used to generate respective signature files. The trans-
formed divergence (TD) index and Jeffries–Matusita (J–M)
distance separability measures were used. Divergence (D) is calcu-
lated from the mean and variance–covariance matrices of the data
representing feature classes (Kavzoglu & Mather 2000):
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The TD is introduced to reduce the impact of well-separated
classes that may raise the average divergence value and make
the divergence measure misleading (Kavzoglu & Mather 2000):

TDij ¼ c 1� e
�Dij
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; (2)

where tr[·] is the trace of a matrix, which is the sum total of the
diagonal elements of the matrix, and Σi and Σj are the variance–
covariance matrices of classes i and j; μi and μj are the correspond-
ing mean vectors; c is a constant value defining the range of TD
values.

The J–Mdistance between distributions of two classesωi andωj

has been defined as follows (Richards & Jia 1999):
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where μi and μj are themean reflectances of species i and j,Σi andΣj

correspond to their covariancematrices, with |Σi| and |Σj| being the
determinants of Σi and Σj, respectively, ln is the natural logarithm
function and T is the transposition function. The J–M distance
improves the Bhattacharya distance by normalizing it to between
0 and 2.

Pairwise feature comparison

A correlation matrix was computed from the reference samples
(Table 2). Similarity scores were calculated between each pair of
variables to determine whether or not two variables were co-refer-
ent. Pairwise comparisons are in form of a matrix: C = [ckp]n × n,
where ckp is the pairwise comparison rating for kth and pth criteria.
The matrix C is reciprocal; that is, cpk = c�1

kp , and all of its diagonal
elements are unity; that is, ckp= 1, for k = p (Malczewski 2016).

Fig. 1. Maps of the study area in the Mount Kenya Forest Reserve showing the loca-
tions of selectively logged Ocotea trees (dots).
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RF and SVM models

The results in this study were obtained by training the RF and SVM
models in R software (R Core Team, Vienna, Austria). In RF, to
differentiate between predefined categories, decision trees recur-
sively partition the source set into subsets with bagged samples
by univariate splits at internal nodes (Breiman 2001). Before run-
ning the model, the number of decision trees (ntree) and the num-
ber of predictor variables (mtry) randomly selected at each node
are defined. The RF model aggregates predictions from all decision
trees, then the majority vote of all trees assigns a final class for
unknown features (Breiman 2001). Using the grid search method,
the mean decrease in accuracy (MDA) was used to extract a subset
of the best-performing variables (Breiman 2001). The MDA shows
how much accuracy the model losses by excluding each variable;
therefore, the higher the MDA value, the more important the var-
iable in the model.

The SVM assigns a class from one of the two possible labels
when test data are introduced after the training phase (Vapnik
2000). The SVM separates the original data while maximizing
the margin between classes and minimizing the misclassification
error (Vapnik 2000). An advantage of ML classifiers such as
SVM is that they are suited for extreme case binary classification.
For any two distinguishable classes with k samples represented by
(x1, y1), : : : , (xk, yk), where x ∈ Rn is an n-dimensional space and y
is a class label with values of þ1 or −1, SVM will look for an opti-
mal hyperplane defined by w = (w1, : : : , wn) and b, such that
(Huang et al. 2008):

yi ¼ w � xi þ b½ �1i ¼ 1; . . . ; k (5)

The hyperplane can be located by minimizing the norm ofw or the
following function under the above inequality constraint (Huang
et al. 2008):

F wð Þ ¼ 0:5 w � wð Þ (6)

Using kernel functions, SVM applies non-linear decision bounda-
ries and introduces a cost parameter C and gamma parameter γ to
quantify the penalty of misclassification errors and to give the cur-
vature weight of the decision boundary, respectively. The robust
radial basis function was selected as it has fewer parameter values
to predefine. A parameter search must be done to select the best C
and γ for a certain classification problem. Therefore, the γ param-
eter needs to be predefined (Huang et al. 2008):

K i; xj
� � ¼ e�� xi� xjð Þ2 (7)

The cost parameter C also needs to be predetermined for the can-
opy gap-mapping problem. A cross-validation quantitative analy-
sis of pairs of values for theC and γ parameters was carried out. The
combination of parameters with the lowest error was chosen to
train the algorithm. Both RF and SVM classifiers were trained
using 70% of the ground reference data, and for robust classifica-
tion results the ten-fold cross-validation method was repeated
ten times.

Measures of model performance

The performance of the RF and SVM models was evaluated using
30% of the ground truth data. Confusion matrices with overall
accuracy, kappa coefficient and producer’s and user’s accuracies
were computed and averaged over ten repetitions. Overall accuracy
is computed by summing the number of pixels correctly classified
divided by the total number of pixels, while producer’s accuracy is
the percentage of particular classes on the ground that are indi-
cated as such on the classified map (Mutanga et al. 2012). The
user’s accuracy shows the probability that a pixel indicated as a spe-
cific feature is classified as such on the classification map (Mutanga
et al. 2012). The kappa coefficient is the difference between the
observed accuracy and the agreement that would have been

Table 1. List of features used for detecting canopy gaps in the Mount Kenya Forest Reserve: 23 means (of the 15 vegetation indices and 8 visible–near-infrared bands),
23 standard deviations (of the 15 vegetation indices and 8 visible–near-infrared bands), 8 ratios (of the 8 visible–near-infrared bands) and 1 brightness feature (average
of the means of bands 1–8).

Feature Equation/description Reference

Bright Brightness, average of means of bands 1–8 –
Band 1–8 Means of pansharpened WorldView-3 bands 1–8 –
SD 1–8 Standard deviations of WorldView-3 bands 1–8 –
Ratio 1–8 ith band mean divided by sum of band 1–8 means –
Red-edge position index (REPI) Maximum first derivative: 680–750 nm Horler et al. (1983)
Chlorophyll absorption ratio index (CARI) [(ρ 700 − ρ 672) − 0.2 × (ρ 700 − ρ 553)] Kim (1994)
Structurally insensitive pigment index (SIPI) �802� �465ð Þ=ð�802þ �681) Peñuelas et al. (1995)
Normalized pigment chlorophyll index (NPCI) �660� �425ð Þ=ð�660þ �425) Peñuelas et al. (1995)
Red-edge normalized difference vegetation
index (RENDVI)

�753� �700ð Þ=ð�753þ �700) Gitelson et al. (1996)

Photochemical reflectance index (PRI) (ρ 534 − ρ 572)/(ρ 534 þ ρ 572) Gamon et al. (1997)
Pigment-sensitive normalized difference
(PSND)

�802� �676ð Þ=ð�800þ �676) Blackburn (1998)

Plant senescence reflectance index (PSRI) �681� �502ð Þ=�753 Merzlyak et al. (1999)
Simple ratio red/green (SRred/green) RED/GREEN (mean reflectance of red bands (600–699 nm) and green bands

(500–599 nm), respectively)
Gamon and Surfus
(1999)

Modified chlorophyll absorption ratio index
(MCARI)

�700� �672ð Þ � 0:2� �700� �553ð Þ½ � � �700=�672ð Þ Daughtry et al. (2000)

Anthocyanin reflectance index (ARI) 1=553ð Þ � 1=�700ð Þ Gitelson et al. (2001)
Visible atmospherically resistant index (VARI) �557� �643ð Þ= �557þ �643� �465ð Þ Gitelson et al. (2002a,

2002b)
Carotenoid reflectance index 1 (CRI-1) 1=�511ð Þ � 1=�553ð Þ Gitelson et al. (2002b)
Carotenoid reflectance index 2 (CRI-2) 1=�511ð Þ � 1=�700ð Þ Gitelson et al. (2002b)
Shadow detection index (SDI) �865� �480ð Þ= �865þ �480ð Þ½ � � �835ð Þ Shahi et al. (2014)
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expected by chance. The McNemar test was used to compare and
indicate the statistical significance of any differences between the
two classifiers (Foody & Mathur 2004).

Results

Explanatory power of the variables extracted from the
WorldView-3 bands

The most important variables as depicted by the highest values
were the brightness feature, the means of the WorldView-3
VNIR bands, the chlorophyll absorption ratio index (CARI),
the modified chlorophyll absorption ratio index (MCARI), the
carotenoid reflectance index 2 (CRI-2), the normalized pigment
chlorophyll index (NPCI), the plant senescence reflectance index
(PSRI), the red-edge position index (REPI), the SDI and the SD of
the anthocyanin reflectance index (ARI; Fig. 2).

Optimization of the RF and SVM models

The iteration closest to the model mean produced default mtry
and ntree values of 14 and 500, respectively, with an out-of-bag
error rate of 0.074 (Fig. S4). Using the same approach, the
SVM model produced 0.1 and 10 for gamma and cost, respec-
tively, yielding a cross-validation error of 0.060.

Spectral separability

The mean spectral reflectance curves of the training data were
extracted from pixels of the 17 best-performing variables and plot-
ted with their SDs (Fig. S5). Some of the variables, such as the
means of bands 1–5, the NPCI, the PSRI and the SD of the
ARI exhibited considerable spectral overlaps across the three
classes. Only the means of bands 7 and 8 and the SDI helped sep-
arate the three classes beyond 1 SD of uncertainty. The brightness
feature and the means of band 6, the CARI and the MCARI show
considerable overlaps between forest canopy and vegetated gaps.
The spectral separability (Table S1) between the forest canopy and
vegetated gaps was low in both TD index and J–M distance by the
means of the WorldView-3 VNIR bands, but the VIs indicate that
the forest canopy and vegetated gaps were clearly separable. The
RF model also evaluated the ability of each variable to detect veg-
etated gaps, shaded gaps and tree crowns, and the mean of band 4
was critical in the identification of the three classes compared to
the other variables (Fig. S6). The mean of band 5 was crucial in
detecting vegetated gaps, as were the means of the CARI, the
CRI-2, the MCARI, the PSRI, the REPI and bands 1, 3 and 6.
The mean of band 5 also helped detect shaded gaps. The means
of the brightness feature, bands 2 and 7, the SDI, the NPCI and
the SD of the ARI helped to detect the forest canopy.

Pairwise feature comparison

Generally, the means of the WorldView-3 VNIR bands were
highly correlated, providing redundant information (Table 2).
The same applied for the means of the VIs, such as the NPCI,
the CARI, the MCARI, the CRI-2 and the PSRI. The highest neg-
ative correlations were between the means of the REPI and the
CRI-2, the MCARI, the NPCI and the PSRI. High negative corre-
lations were also recorded between the mean of the SDI and those
of the CARI and the MCARI. The lowest positive correlation,
0.001, was between the MCARI and bands 1 and 2. The means
of the SDI and the MCARI were perfectly positively correlated,
while the means of the REPI and the CARI were perfectlyTa
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negatively correlated. A high correlation was found between the SD
of the ARI and the means of the MCARI and the SDI.

Logging feature detectability

In the WorldView-2 and Google Earth imagery covering the study
area, 66Ocotea trees could be identified, and with high confidence;
their respective canopy gaps created after these trees were logged
were identified in the WorldView-3 imagery. High confidence
for gap identification meant a marked change in image pixels.
Figure S7 shows the means of the CARI, the REPI and the
MCARI extracted from WorldView-2 and WorldView-3. The
circles in Fig. S7 compare the VI values before and after the SL
events.

Model performance

The average overall accuracies for the RF and SVM models were
similar (i.e., 92.3 ± 2.6% and 94.0 ± 2.1%, respectively; Table 3).
The average kappa coefficients were 0.88 ± 0.03 for the RF model
and 0.90 ± 0.02 for the SVM model. The user’s accuracy ranges
were 82–100% for the RF model and 86–100% for the SVMmodel.
The producer’s accuracy ranges were 83–100% for the RF model
and 86–100% for the SVMmodel. Generally, the shaded gaps class
showed the highest user’s and producer’s accuracies, primarily
because the other two classes represent vegetation. Therefore,
the non-vegetation class was spectrally distinguished from the veg-
etation classes. In general, forest canopy had lower user’s and pro-
ducer’s accuracies, and this could be attributed to the range of
reflectance characteristics of tree crowns in the WorldView-3
imagery.

Classification maps

In the post-processing stage, it was necessary to transform the clas-
sification maps so that they had only two classes, namely canopy
gaps and forest canopy. As such, the shaded and vegetated gap
classes were merged into one ‘canopy gaps’ class. In general, the
classified maps indicated that SL of Ocotea trees caused mostly
small-scale but spatially widespread disturbances in the MKFR
(Fig. 3). The McNemar test returned a Z value of 0.88; thus, there
were no significant differences (Z≥ 1.96) at the 95% confidence
level amongst the confusion matrices of the two classifiers.

Discussion

Using VHR multispectral satellite data, field data and ML algo-
rithms showed great potential for monitoring SL in this tropical
forest. Generally, the index means outperformed the SD and ratio
variables in terms of the detection of canopy gaps because spectral
variability in areas of canopy gaps was only due to shadows from
surrounding trees and/or low vegetation. Dalagnol et al. (2019)
reported that the most important variables for tree loss detection
were the SDs of the reflectance VNIR bands (especially the red
band) and the shadow fraction. Therefore, marked increases in
spectral variability in tree loss areas were due to shadows cast by
nearby trees, the non-photosynthetic vegetation and exposed soil.
InMalahlela et al. (2014), the observed improved results were asso-
ciated with the use of the red-edge band of the WorldView-2 sen-
sor. The current study has identified VIs derived from bands 5 and
6 as crucial in the detection of canopy gaps due to SL. They are
therefore transferrable to other tropical, closed-canopy ecosystems
with different species compositions where ground-truth data are
not available. The WorldView-3 satellite also has a SWIR sensor,
which provides rich data for precisely identifying and characteriz-
ing forest landscape features, further enhancing WorldView-3’s
capacity to monitor canopy gaps.

Although variable selection makes modelling simpler and faster
to fit and predict, theMDA in the RFmodel is unable to detect false
correlations; therefore, it may be biased because larger values are
normally exaggerated and vice versa. Hur et al. (2017) developed
an approach to overcome this based on using the Shapley value
method on RF regression, but more experiments need to be con-
ducted with other data types in order to confirm this.

Only correlation values >0.70 were significant (Table 2), thus
providing redundant information, although ML algorithms can
effectively handle this collinearity. In a negative correlation, one
variable has the opposite effect compared to that of the other;
therefore, the higher the absolute correlation coefficient, the more
the variables might be critical during classification.

These results are an indication of the good agreement between
the classification of logging ofOcotea trees and field data. However,
error matrices only estimate the classification accuracy depending
on the samples collected from the field; therefore, only biased con-
clusions can be drawn from such data (Foody & Mathur 2004).
Future research will explore other metrics of model performance,
such as balanced accuracy, bias score, precision, recall and F-score.

Fig. 2. The relative importance of the variables derived from WorldView-3 visible–near-infrared bands in discriminating vegetated and shaded gaps and forest canopy as mea-
sured by random forest classifiers using the mean decrease in accuracy. (See Table 1 for acronym definitions.)
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The logging of Ocotea trees has led to canopy gaps that have
stimulated the regrowth of secondary forest dominated by fast-
growing species, mostly Macaranga kilimandscharica and
Neoboutonia macrocalyx.

Mapping canopy gaps in tropical forests using optical RS remains a
challenge because of persistent cloud cover, further compounded by
unreliable cloud and cloud shadow detection algorithms. Other data
sources such as SAR, which can capture images of Earth’s surface
regardless of smoke, darkness or cloud cover, should be explored.
Trees that had dropped their leaves or lianas on top of tree crowns
that experience sudden diebackmaywrongly be interpreted as canopy
gaps. Therefore, the application of time series methods that use sea-
sonal models should be explored. The method used in this study
might not be applicable in sparser forests because the only notable
changes detected here were the disappearances of the shadows of
the logged trees. In addition, a tree can be felled in the direction of
an existing gap, meaning that the existing gap may undergo only
an insignificant increase in size. Researchers should aim to develop
accurate methods to detect such canopy gaps.

Nevertheless, data integration, which is heavily dependent on
the compatibility of multi-source RS data, specifically the consis-
tency in spatial, spectral, temporal and radiometric resolutions,
accompanied by more sophisticated data fusion techniques, is
key to the measurement and mapping of forest attributes
(Jackson & Adam 2020). Furthermore, LiDARmay serve as a sam-
pling technique when trying to scale up the impacts of SL events to
larger regions. In its absence, other sources of publicly available
training data can be used. The development of advanced auto-
mated methods for processing LiDAR data would lower data-
processing costs, allowing for data acquisition over extensive areas
(Jackson &Adam 2020). Further studies should make use of UAVs
to cover larger areas at reduced costs, with caution taken regarding
the current challenges posed by UAVs. Furthermore, airborne/
spaceborne hyperspectral imagery covering extensive geographical
areas may be obtained for such research through the use of hyper-
spectral imaging satellites, which are to be launched in the next few
years (e.g., NASA’s Surface Biology and Geology (SBG) mission
and the Carbon Mapper constellation of satellites).

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/S0376892922000339.
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