
III

Symmetries and anomalies

Application of the concept of symmetry leads to some of the most powerful tech-
niques in particle physics. The most familiar example is the use of gauge symmetry
to generate the lagrangian of the Standard Model. Symmetry methods are also valu-
able in extracting and organizing the physical predictions of the Standard Model.
Very often when dealing with hadronic physics, perturbation theory is not applic-
able to the calculation of quantities of physical interest. One turns in these cases
to symmetries and approximate symmetries. It is impressive how successful these
methods have been. Moreover, even if one could solve the theory exactly, symme-
try considerations would still be needed to organize the results and to make them
comprehensible. The identification of symmetries and near symmetries has been
considered in Chap. I. This chapter is devoted to their further study, both in general
and as applied to the Standard Model, with the intent of providing the foundation
for later applications.

III–1 Symmetries of the Standard Model

The treatment of symmetry in Sects. I–4, I–6 was carried out primarily in a general
context. In practice, however, we are most interested in the symmetries relevant
to the Standard Model. Let us briefly list these, reserving for some a much more
detailed study in later sections.

Gauge symmetries: As discussed in Chap. II, these are the SU(3)c × SU(2)L ×
U(1)Y gauge invariances. It is interesting to compare their differing realizations.
SU(3)c is unbroken but evidently confined, whereas SU(2)L × U(1)Y undergoes
spontaneous symmetry breaking, induced by the Higgs fields, leaving an unbroken
U(1)em gauge invariance.

Fermion-number symmetries: There exist global vector symmetries correspond-
ing to both lepton and quark number. These are of the form
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III–1 Symmetries of the Standard Model 77

ψα → e−iQαθψα (1.1)

for fields of each chirality. The index α refers to either the set of all leptons or the
set of all quarks, and the conserved charges Qα are just the total number of quarks
minus antiquarks and the total number of leptons minus antileptons.1 Conservation
of baryon number B is violated due to an anomaly in the electroweak sector, but
B − L remains exact.

Global vectorial symmetries of QCD: If the quarks were all massless, there
would be a very high degree of symmetry associated with QCD. Even if m �= 0,
symmetries are possible if two or more quark masses are equal. Three of the quarks
(c, b, t) are heavy compared to the confinement scale QCD and widely spaced in
mass, so they cannot be accommodated into a global symmetry scheme.2 However,
the u, d, and s quarks are light enough that their associated symmetries are useful.
The best of these is the isospin invariance, which consists of field transformations

ψ =
(
u

d

)
→ ψ ′ = exp(−iτ · θ)ψ (1.2)

where {τ i} (i = 1, 2, 3) are SU(2) Pauli matrices and {θ i} are the components of
an arbitrary constant vector. Associated with the SU(2)-flavor invariance are the
three Noether currents

J (i)μ = ψ̄γμ
τ i

2
ψ. (1.3)

Isospin symmetry is broken by the up–down mass difference,

Lmass = −mu +md

2
(ūu+ d̄d)− mu −md

2
(ūu− d̄d) (1.4)

and by electromagnetic and weak interactions. Inclusion of the strange quark
extends isospin to SU(3)-flavor transformations

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = exp(−iθ · λ)ψ, (1.5)

where {λa} (a = 1, 2, . . . , 8) are the SU(3)Gell-Mann matrices. The SU(3)-flavor
symmetry is broken significantly by the strange quark mass, and to a lesser extent
by other effects. Predictions of isospin symmetry work at the 1% level, whereas
SU(3) predictions hold only to about 30%. It is occasionally convenient to employ

1 In Chap. VI, we return to the study of lepton-number violation through possible Majorana mass terms
2 See, however, the discussion of the dynamical heavy-quark symmetries in Chap. XII–3
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78 Symmetries and anomalies

a particular SU(2) subgroup of SU(3), called U -spin, which corresponds to the
transformations (

d

s

)
→ exp(−iτ · θ)

(
d

s

)
. (1.6)

U spin is also a symmetry of the electromagnetic interaction, since its generators
commute with the electric-charge operator. The U -spin symmetry is broken by the
large d-quark, s-quark mass difference.

Approximate chiral symmetries of QCD: The vectorial symmetries are valid if
quark masses are equal. If the masses vanish, there are additional chiral sym-
metries, because in this limit the left-handed and right-handed components of the
fields are decoupled (cf. Sect. I–3),

LQCD

∣∣∣∣
m=0

= −1

4
Fa
μνF

aμν + ψ̄L/DψL + ψ̄R/DψR, (1.7)

i.e., the left-handed and right-handed fields have separate invariances. For massless
up-and-down chiral quarks, the symmetry operations are

ψL → exp(−iθL · τ )ψL ≡ LψL, ψR → exp(−iθR · τ )ψR ≡ RψR (1.8)

where ψL,R are chiral projections of the ψ doublet in Eq. (1.2). These can also be
expressed as vector and axial-vector isospin transformations,

ψ → exp(−iθV · τ )ψ, ψ → exp(−iθA · τγ5)ψ (1.9)

with θV = (θL + θR)/2, and θA = (θL − θR)/2. This invariance is variously
referred to as chiral-SU(2), SU(2)L × SU(2)R, or SU(2)V × SU(2)A. In QCD, it
is broken by quark mass terms,

Lmass = −muūu−mdd̄d = −mu(ūLuR + ūRuL)−md(d̄LdR + d̄RdL). (1.10)

Thus, if mu=md �= 0, separate left-handed and right-handed invariances no longer
exist, but rather only the vector isospin symmetry. The generalization to three mass-
less quarks defines chiral SU(3) (or SU(3)L × SU(3)R) and is a straightforward
extension of the above ideas.

Discrete symmetries: Since the Standard Model is a hermitian and Lorentz-
invariant local quantum field theory, it is invariant under the combined set of
transformations CPT. Both QCD (given the absence of the θ-term) and QED con-
serve P , C, and T separately. By contrast, the electroweak interactions have max-
imal violation of P and C in the charged-current sector. If a nonzero phase resides
in the quark-mixing matrix, there will exist a breaking of CP, or equivalently of T ,
invariance. Otherwise the weak interactions are invariant under the product CP.
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III–2 Path integrals and symmetries 79

In addition to the above exact or approximate symmetries of the Standard Model,
there are some important ‘non-symmetries’ of QCD. By these we mean invariances
of the underlying lagrangian, which might naively be expected to appear as sym-
metries of Nature but which, for a variety of reasons, do not. These include the
following.

Axial U(1): The QCD lagrangian would have an axial U(1) invariance of the
form

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = e−iθγ5ψ, (1.11)

if the u, d, s quarks were massless. However, this turns out not to be even an
approximately valid symmetry, as it has an anomaly. We shall return to this point
in Sect. III–3.

Scale transformations: If quarks were massless, the QCD lagrangian would con-
tain no dimensional parameters. The lagrangian would therefore be invariant under
the scale transformations

ψ(x)→ λ3/2ψ(λx), Aaμ(x)→ λAaμ(λx), (1.12)

where ψ and Aaμ are respectively the quark and gluon fields. This invariance is also
destroyed by anomalies (see Sect. III–4).

‘Flavor symmetry’: Because the gluon couplings are independent of the quark
flavor, one often finds reference in the literature to a flavor symmetry of QCD.
Unless the specific application is reducible to one of the above true symmetries,
one should not be misled into thinking that such a symmetry exists. For example,
flavor symmetry is often used in this context to relate properties of the pseudoscalar
mesons η(549) and η′(960) (or analogous particles in other nonets). However, the
result is rarely a symmetry prediction. Rather, this approach typically pertains to
specific assumptions about the way quarks behave, and is dressed up by incorrectly
being called a symmetry. In group theoretic language, this may arise by assuming
that QCD has a U(3) symmetry rather than just that of SU(3).

III–2 Path integrals and symmetries

The transition from classical physics to quantum physics is in many ways most
transparent in the path-integral formalism. In this chapter we use these techniques
to provide a quantum description of symmetries, complementing the treatment at
the classical level of Sects. I–4, I–6. A brief pedagogical introduction to those
path-integral techniques which are important for the Standard Model is provided
in App. A.
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The generating functional

In order to implement a quantum description of currents and current matrix ele-
ments, one studies the generating functional, Z, of the theory. For a generic field
ϕ, we have

Z[j ] = eiW [j ] =
∫
[dϕ] exp i

∫
d4x (L(ϕ, ∂ϕ)− jϕ), (2.1)

where j (x) is an arbitrary classical source field whose presence allows us to probe
the theory by studying its response to the source. The symbol [dϕ] indicates that
at each point of spacetime one integrates over all possible values of the field ϕ(x).
All the matrix elements needed to describe physical processes in the theory can be
obtained from lnZ[j ] by functional derivations, i.e.,

〈
0
∣∣T (ϕ(xk) . . . ϕ(xp))∣∣ 0〉 = (i)n

δn lnZ[j ]
δj (xk) . . . δj (xp)

∣∣∣∣
j=0

, (2.2)

where n is the number of fields in the matrix element. If there is more than one
field, i.e., the set {ϕi}, a separate source is introduced for each field.

If one wants to study a given current Jμ (not to be confused with the source j )
associated with some classical symmetry, one simply adds an extra classical source
field vμ, which is coupled to that current,

Z[j, vμ] =
∫
[dϕ] exp i

∫
d4x

(
L− jϕ − vμJμ

)
. (2.3)

In this case all matrix elements involving Jμ can be obtained by functional deriva-
tion with respect to vμ,

J̄ μ(x) = i
δ lnZ

δvμ(x)

∣∣∣∣
vμ=0

, (2.4)

where the bar in J̄ μ indicates that it is a functional describing matrix elements of
the current Jμ. Specific matrix elements are obtained by further derivatives, as in

〈0 |T (Jμ(x)ϕ(x1)ϕ(x2))| 0〉 = (i)2
δ2

δj (x1)δj (x2)
J̄ μ(x)

∣∣∣∣
j=0

. (2.5)

This device allows one to discuss all possible matrix elements of the current Jμ.
As an example, consider the vector and axial-vector currents of QED. We define

Z[vμ, aμ] ≡
∫
[dψ][dψ̄][dAμ]ei

∫
d4x(LQED−vμψ̄γ μψ−aμψ̄γ μγ5ψ). (2.6)
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A three-current (connected) matrix element is obtained then as

Tμαβ(x, y, z)conn ≡
〈
0
∣∣T (ψ̄(x)γμγ5ψ(x) ψ̄(y)γαψ(y) ψ̄(z)γβψ(z)

)∣∣ 0〉
= (i)3

[
δ2

δvα(y)δvβ(z)

δ

δaμ(x)
lnZ

]
vμ=0
aμ=0

= (i)2
δ2

δvα(y)δvβ(z)
J̄5μ(x) (2.7)

where the axial-vector quantity J̄5μ is defined in analogy with Eq. (2.4).

Noether’s theorem and path integrals

Returning to the general case, let us consider an infinitesimal transformation of a
set of fields {ϕi} (cf. Eq. (I–3.1))

ϕi → ϕ′i = ϕi + ε(x)fi(ϕ) (2.8)

such that the current under discussion is

Jμ(x) = ∂L′
∂(∂με)

. (2.9)

If this is a symmetry transformation, one has up to a total derivative,

L′ = L
(
ϕ′, ∂ϕ′

) = L (ϕ, ∂ϕ)+ Jμ∂με. (2.10)

If ε(x) is a constant, the lagrangian is invariant under the transformation. This is the
statement of the classical symmetry condition. In order to study the consequences
of this situation, we rewrite our previous definition of the current matrix elements

J̄ μ(x) = i
δ

δvμ(x)
lnZ[vν] (2.11)

in integral form by noting

δ lnZ[vμ] = lnZ[vμ + δvμ] − lnZ[vμ] ≡ −i
∫
d4x J̄ μ(x)δvμ(x), (2.12)

which is just the inverse of Eq. (2.11). Now choosing the particular form for δvμ,

δvμ(x) = −∂με(x), (2.13)

we have

δε lnZ[vμ] ≡ lnZ[vμ − ∂με] − lnZ[vμ]
= i

∫
d4x J̄ μ(x)∂με(x) = −i

∫
d4x ε(x)∂μJ̄

μ(x). (2.14)
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82 Symmetries and anomalies

With this procedure we can isolate a divergence condition for J̄ μ. If Z[vμ−∂με] =
Z[vμ], then ∂μJ̄ μ(x) = 0. To check this, consider

Z[vμ − ∂με] =
∫
[dϕi] exp i

∫
d4x

(
L(ϕi, ∂ϕi)− (vμ − ∂με)Jμ

)
. (2.15)

If we can change integration variables so that∫
[dϕi] =

∫
[dϕ′i] (2.16)

with ϕ′i given by Eq. (2.8), then we obtain

Z[vμ − ∂με] =
∫
[dϕ′i] exp i

∫
d4x

(
L(ϕ′i , ∂ϕ′i )+ vμJμ

) = Z[vμ], (2.17)

and therefore

∂μJ̄
μ(x) = 0. (2.18)

This change of variables seems reasonable and in most cases is perfectly legitimate.
After all, the symbol [dϕi(x)]means that we integrate over all values of the field ϕi
separately at each point in spacetime. Shifting the origin of integration at point x by
a constant, ϕi(x) ≡ ϕ′i (x)−ε(x)fi , and then integrating over all values of ϕ′i should
amount to the original integration. Given this shift, we have obtained in Eq. (2.18)
by Noether’s theorem a quantum conservation law involving matrix elements. The
expression ∂μJ̄ μ(x) = 0 means that all matrix elements of Jμ, obtained via further
functional derivatives (as in Eq. (2.5)), satisfy a divergenceless condition, i.e., of
the current Jμ is conserved in all matrix elements.

It was Fujikawa who first pointed out the consequences if the change of vari-
ables, Eq. (2.16), is not a valid operation in a path integral [Fu 79]. Certainly,
many procedures involving path integrals need to be examined carefully in order
to see if they are well defined. We shall explicitly study some examples in which
the change of variable is nontrivial and can be calculated. In such cases one finds
∂μJ̄

μ(x) �= 0, which implies that the classical symmetry is not a quantum symme-
try. In these situations it is said that there exists an anomaly.

III–3 The U(1) axial anomaly

For massless quarks mu = md = ms = 0, the QCD lagrangian contains an invari-
ance LQCD → LQCD under the global U(1) axial transformations

ψ =
⎛⎝ud
s

⎞⎠→ ψ ′ = e−iθγ5ψ. (3.1)
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III–3 The U(1) axial anomaly 83

In this limit, which we shall adopt until near the end of this chapter, Noether’s
theorem can be applied to identify the classically conserved axial current,

J
(0)
5μ = ūγμγ5u+ d̄γμγ5d + s̄γμγ5s, ∂μJ

(0)
5μ = 0, (3.2)

where the superscript on J (0)5μ denotes an SU(3) singlet current. We shall see that
this is not an approximate symmetry of the full quantum theory because the current
divergence has an anomaly. This can be demonstrated in various ways. For a direct
‘hands-on’ demonstration, the early discussion [Ad 69, BeJ 67, Ad 70] of Adler
and of Bell and Jackiw, which we recount below, has still not been improved upon.
However, for a deeper understanding, Fujikawa’s path-integral treatment [Fu 79],
also described below, seems to us to be the most illuminating. The effect of an
anomaly is simply stated, although one must go through some subtle calculations
to be convinced that the effect is inescapable. An anomaly is said to occur when a
symmetry of the classical action is not a true symmetry of the full quantum theory.
The Noether current is no longer divergenceless, but receives a contribution arising
from quantum corrections. It is this contribution which is often loosely referred
to as the anomaly. The Ward identities which relate matrix elements no longer
hold, but rather are replaced by a set of anomalous Ward identities, which take into
account the correct current divergence.

There are two applications of the axial anomaly which have proved to be of
particular importance to the Standard Model. One is in connection with the SU(3)
singlet axial current described above. Here the anomaly will end up telling us that
the current is not conserved in the chiral limit, but rather that

∂μJ
(0)
μ5 =

3αs
4π

Fa
μνF̃

aμν

(
F̃ a
μν ≡

1

2
εμναβF a

αβ

)
. (3.3)

This will serve to keep the ninth pseudoscalar meson, the η′, from being a pseudo-
Goldstone boson.

The other application is in the decay π0 → γ γ , which is historically the process
wherein the anomaly was discovered. The quantity of interest here is an isovector
axial current J (3)5μ which transforms as the third component of an SU(3)-flavor
octet,

J
(3)
5μ = ūγμγ5u− d̄γμγ5d. (3.4)

Without the anomaly, one would expect that the current J (3)5μ would be conserved
in the chiral SU(2) limit even in the presence of electromagnetism. This follows
from the apparently correct procedure
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∂μJ
(3)
5μ = ū

[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
u

− d̄
[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
d = 0.

(3.5)

However, explicit calculation shows that the current has an anomaly, such that

∂μJ
(3)
5μ = 2i

(
muūγ5u−mdd̄γ5d

)+ αNc

6π
FμνF̃

μν, (3.6)

where Fμν is the electromagnetic field strength. This will be important in predicting
the π0 → γ γ and η0 → γ γ rates and serves as a test for the number of quark
colors.

Diagrammatic analysis

To review the work of Adler and of Bell and Jackiw, we first consider the Ward
identities for the coupling of the U(1) axial current to two gluons. We define

T abμαβ(k, q) ≡ i

∫
d4x d4y eik·xeiq·y

〈
0
∣∣∣T (J (0)5μ (x)J

a
α (y)J

b
β (0)

)∣∣∣ 0〉 , (3.7)

where J aα is a flavor-singlet (color-octet) vector current coupled to gluons

J aα =
∑

q=u,d,s
qγα

λa

2
q. (3.8)

It is important to understand that the SU(3) matrices pertain here to the color
degree of freedom and should not be confused with analogous matrices which
operate in flavor space. The amplitude T abμαβ is related to the vacuum-to-digluon
matrix element by

〈Ga(λ1, q) G
b(λ2,−k − q)

∣∣J (0)5μ

∣∣0〉 = ig2
3ε

†α
1 ε

†β
2 T abμαβ(k, q). (3.9)

There are two Ward identities, representing the conservation of axial and vector
currents. The vector Ward identity, corresponding to color current conservation,
∂αJ aα = 0, is

qαT abμαβ(k, q) = 0. (3.10)

The axial Ward identity is derived in a similar fashion using the assumed conser-
vation of the U(1) axial current in the massless limit,

∂μJ
(0)
5μ (x) = 0, (3.11)

to yield

kμT abμαβ(k, q) = 0. (3.12)
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p p

p + k p+k
q

q

α

αβ

β

p + k +q

−k−q

−k−q

p − qμ μ

Fig. III–1 Triangle diagrams associated with the axial anomaly.

In order to reveal the anomalous behavior of this coupling, we calculate the
vertex in lowest-order perturbation theory via the triangle diagrams of Fig. III–1.
With the momenta as labeled in the figures, this produces the amplitude

T abμαβ = −3
∫

d4p

(2π)4

[
Tr

(
γμγ5

1

p/ + k/
γβ
λb

2

1

p/ − q/
γα
λa

2

1

p/

)
+ Tr

(
γμγ5

1

p/ + k/
γα
λa

2

1

p/ + k/ + q/
γβ
λb

2

1

p/

)]
, (3.13)

where the prefactor of 3 arises from the three massless quarks, each of which con-
tributes equally.

Observe that these integrals are linearly divergent, and so may not be well defined.
In particular, there exists an ambiguity corresponding to the different possible ways
to label the loop momentum. An example will prove instructive, so we consider the
integral

Iγ =
∫
d4p

[
pγ

p4
− (p − 
)γ
(p − 
)4

]
. (3.14)

This is evaluated by transforming to Euclidean space, where p0 = ip4 and p2 =
−p2

4 − p2 ≡ −p2
E . In order to perform the integration, one may note that for a

general function, F(p), whose four-dimensional integral is linearly divergent (i.e.,
one with p3F(p) �= 0, but p3F ′(p) = p3F ′′(p) = . . . = 0 for p→∞), one finds
by Taylor expanding and using Gauss’ theorem that

∫
d4pE [F(p)− F(p − 
)] =

∫
d4pE

[

μ∂μF (p)− 1

2

μ
ν∂μ∂νF (p)+ · · ·

]
= 
μ

∫
d3Sμ

[
F(p)− 1

2

ν∂νF (p)+ · · ·

]
p→∞

= 
μ
∫
d3Sμ F(p)

∣∣∣∣
p→∞

(3.15)
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where d3Sμ indicates integration over a three-dimensional surface at p → ∞.3

Applying this result to the case at hand, we obtain a surface integral

Iγ = i

∫
d4pE

(
pγ

p4
− (p − 
)γ
(p − 
)4

)
= i
μ

∫
d3Sμ

pγ

p4
= i
μ

∫
d3S

pμ

p

pγ

p4
.

(3.16)

Note that from euclidean covariance we can replace pμpγ by δμγ p
2/4, to yield

Iγ = i

γ

4

∫
d3S

1

p3
= i

π2
γ

2
, (3.17)

where the last step uses the surface area of a three-dimensional surface in four-
dimensional euclidean space, S4 = 2π2R3.

In the case of T abμαβ , consider the effect of shifting the integration variable of the
first term in Eq. (3.13) from p to p + b1q + b2(−k − q). In order to maintain
the Bose symmetry of T abμαβ (i.e., symmetry under the interchange α ↔ β at the
same time as q ↔ (−k − q)) we must shift the second integration from p to
p + b1(−k − q)+ b2q. Use of Eqs. (3.14)–(3.17) then yields the change in T abμαβ

�T abμαβ =
6iδab

(2π)4
εμαβγ [I γ (b1q + b2(−q − k))− I γ (b1(−q − k)+ b2q)]

= − 3δab

16π2
(b1 − b2)εμαβγ (2q + k)γ , (3.18)

induced by the shift of the original integration variable pμ. This is an indication
that there may be trouble in the calculation of this diagram, but it is not yet proof
of any violation of the Ward identities.

Let us now check the Ward identities. In both cases, use can be made of identities
similar to qα = pα − (pα − qα) in order to change the result into a difference of
integrals. We find for the vector Ward identity

qαT abμαβ(k, q)

= −3δab

2

∫
d4p

(2π)4
Tr

[
γμγ5

1

p/ + k/
γβ

1

p/ − q/
− γμγ5

1

p/ + q/ + k/
γβ

1

p/

]
= −6iδabεμβρσ

∫
d4p

(2π)4

[
(p + k)ρ(p − q)σ
(p + k)2(p − q)2 −

(p + k + q)ρpσ
(p + k + q)2p2

]
, (3.19)

3 Note that this is just the four-dimensional generalization of the one-dimensional formula∫ ∞
−∞

dx [f (x + y)− f (x)] =
∫ ∞
−∞

dx

[
yf ′(x)+ 1

2
y2f ′′(x)+ · · ·

]
= y [f (∞)− f (−∞)] ,

valid for f (±∞) �= 0 but f ′(±∞) = f ′′(±∞) = . . . = 0.
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while for the axial-vector case,

kμT abμαβ(k, q) =
3δab

2

∫
d4p

(2π)4
Tr

[
γ5γβ

1

p/ − q/
γα

1

p/
+ γ5

1

p/ + k/
γβ

1

p/ − q/
γα

+ γ5γα
1

p/ + k/ + q/
γβ

1

p/
+ γ5

1

p/ + k/
γα

1

p/ + k/ + q/
γβ

]
= −6iδabεαβρσ

∫
d4p

(2π)4

[
(p + k + q)ρpσ
(p + k + q)2p2

− (p + k)ρ(p − q)σ
(p + k)2(p − q)2

+ (p + k)ρ(p + k + q)σ
(p + k)2(p + k + q)2 −

(p − q)ρpσ
(p − q)2p2

]
. (3.20)

It is easy to see that if one could freely shift the integration variable, each expres-
sion would separately vanish. However, direct calculation using Eqs. (3.14)–(3.17)
yields

qαT abμαβ(k, q) = −
3δab

16π2
εμβρσ k

ρqσ and kμT abμαβ(k, q) =
3δab

8π2
εαβρσ k

ρqσ .

(3.21)

If, on the other hand, the original integration variable were shifted as in Eq. (3.18)
one would obtain

qαT abμαβ(k, q) = −
3δab

16π2
(1+ b1 − b2) εμβρσ k

ρqσ ,

kμT abμαβ(k, q) =
3δab

8π2
(1− b1 + b2) εαβρσ k

ρqσ .

(3.22)

Thus, either one of the original Ward identities may be regained by a particular
choice of b1 − b2, but both expressions cannot vanish simultaneously.

Our discussion of the manipulations of Feynman diagrams should not obscure
the main physical fact illustrated above, i.e., despite the claim of Noether’s theo-
rem that there are two sets of conserved currents (vector SU(3) of color and axial-
vector U(1)), one-loop calculations indicate that only one can in fact be conserved.
On physical grounds, we know that in Nature the vector current is conserved, as
its charge corresponds to QCD color charge. Thus, it must be the axial current
which is not conserved. This phenomenon is at first sight quite surprising and it
deserves the name ‘anomaly’ by which it has come to be called. Noether’s theo-
rem has misled us, and it is only by direct calculation of the quantum corrections
that the true symmetry structure of the theory has been exposed. Note that the sit-
uation is not the same as spontaneous symmetry breaking, where the symmetry
is hidden by dynamical effects. There the currents remain conserved, as demon-
strated in Sect. I–6. Here, current conservation has been violated. In particular,
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the calculation described above (with b1 − b2 = 1) is consistent through use of
Eq. (3.9) with the operator relation of Eq. (3.3),

∂μJ
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν. (3.23)

Both sides of this equation have the same two-gluon matrix elements. It is clear
from this that the apparent U(1) symmetry predicted by Noether’s theorem is not
a symmetry of the quantum theory after all.

Path-integral analysis

In a path-integral treatment [Fu 79], the symmetry of the theory can be tested by
considering the generating functional, as described in Sect. III–2. In particular, if
we consider a functional of the gluon field Abμ and an axial current source aμ,

Z
[
aμ,A

c
λ

] = ∫ [dψ][dψ̄] exp i
∫
d4x

(
LQCD(ψ, ψ̄, A

c
λ)− aμJ (0)μ5

)
(3.24)

then the steps leading to Eq. (2.14) produce

−i
∫
d4x β(x)∂μJ̄

(0)
5μ (x) = lnZ

[
aμ − ∂μβ,Abμ

]− lnZ
[
aμ,A

b
μ

]
, (3.25)

where J̄ (0)5μ (x) denotes the matrix elements of the current J (0)5 ,

J̄
(0)
5μ (x) = i

δ

δaμ(x)
lnZ

[
aν, A

b
λ

] ∣∣
aν=0. (3.26)

In particular, the two-gluon matrix described above is given by

T abμαβ(x, y, z) = (i)2

[
δ2

δAαa (y)δA
β

b (z)
J̄
(0)
5μ (x)

] ∣∣∣∣
Ac
λ
=0

aν=0

. (3.27)

In order to solve for ∂μJ̄ (0)5μ , we note that the ∂μβ term can be absorbed into a
redefinition of the fermion fields. This can be seen from the identity (for infinitesi-
mal β),

ψ̄i/∂ψ + ∂μβ ψ̄γ μγ5ψ = ψ̄ (1− iβγ5) i/∂ (1− iβγ5) ψ. (3.28)

The following quantities are invariant under this transformation:

ψ̄/Aaλaψ = ψ̄(1− iβγ5)/A
aλa(1− iβγ5)ψ,

Jμ = ψ̄γμψ = ψ̄(1− iβγ5)γμ(1− iβγ5)ψ.
(3.29)
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Mass terms would not be invariant, but we are presently working in the massless
limit. Therefore, if we define

ψ ′ = (1− iβγ5)ψ = e−iβγ5ψ +O(β2),

ψ̄ ′ = ψ̄(1− iβγ5) = ψ̄e−iβγ5 +O(β2),
(3.30)

we see that the lagrangian can be written in terms of ψ ′,

LQCD(ψ, ψ̄, A
a
μ)+ ∂μβ J (0)5μ = LQCD(ψ

′, ψ̄ ′, Aaμ). (3.31)

Furthermore, we would like to change from ψ to ψ ′ in the path integration. To be
general, we allow for the possibility of a jacobian J accompanying this change of
variables, viz., ∫

[dψ][dψ̄] ≡
∫
[dψ ′][dψ̄ ′]J . (3.32)

If, as will be shown later, the jacobian J is independent of ψ and ψ̄ , it can be taken
to the outside of the path integral, resulting in

Z
[
aμ − ∂μβ,Aaμ

] = ∫ [dψ ′][dψ̄ ′]J ei ∫ d4x(LQCD(ψ
′,ψ̄ ′,Aaμ)−aμJμ5 )

= J Z
[
aμ,A

a
μ

]
.

(3.33)

Thus, the test for the symmetry, Eq. (3.25), depends entirely on J ,

lnJ = −i
∫
d4x β(x)∂μJ̄

(0)
5μ (x). (3.34)

The lesson learned is that if the lagrangian and the path-integral measure are invari-
ant under theU(1) transformation, then there exists aU(1) symmetry in the theory,
with ∂μJ̄ (0)5μ = 0. However, if the lagrangian is invariant, as it is in this case, but the
path integral is not (i.e. J �= 1), then the U(1) transformation is not a symmetry
of the theory, i.e., ∂μJ (0)5μ �= 0.

We shall show below that the jacobian, when properly regularized, has the form

J = exp (−2i trβγ5) = exp

[
−i
∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν

]
, (3.35)

so that the current divergence has the form given in Eq. (3.3),

∂μJ̄
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν.

Functional differentiation using Eq. (3.27) yields the same result for qμT abμαβ as
obtained in ordinary perturbation theory. The nontrivial transformation of the
path-integral measure has prevented the axial U(1) transformation from being a
symmetry of the theory. We now turn to the calculation of the jacobian.
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The jacobian in fact diverges, and a regularization is needed in order to make
it finite. In Fujikawa’s original calculation the regularizer was introduced early
into the procedure, allowing each step to be well defined. We will be slightly less
rigorous by introducing the regularizer somewhat later. In order to calculate the
jacobian we need to review the properties of integration over Grassmann numbers
(which are described in more detail in App. A–5). The anticommuting nature of the
variables requires that any function constructed from them terminates after linear
order in each variable. Thus, a function of two Grassman numbers z1, z2 (z1z2 =
−z2z1, z

2
i = 0) becomes

f (z1, z2) = f0 + f1z1 + f2z2 + f12z1z2, (3.36)

where f0, f1, f2, f12 are real numbers. The primary property of an integral to be
transferred to Grassmann numbers is completeness, i.e.,∫

dz f (z) =
∫
dz f (z+ z′), (3.37)

where z′ is a constant Grassmann number. Expanding both sides we have∫
dz (f0 + f1z) =

∫
dz
(
f0 + f1z+ f1z

′) (3.38)

For this to be true, the condition ∫
dz = 0 (3.39)

is required. Now consider a change of variables

z1 = c11z
′
1 + c12z

′
2, z2 = c21z

′
1 + c22z

′
2, (3.40)

involving a matrix of coefficients C. The jacobian is defined by∫
dz1 dz2 f (z) = J

∫
dz′1 dz

′
2 f (Cz

′). (3.41)

Application of Eq. (3.36) leads to the consideration of only the f12 term,

f12

∫
dz1 dz2 z1z2 = J f12

∫
dz′1 dz

′
2 (c11z

′
1 + c12z

′
2)(c21z

′
1 + c22z

′
2)

= J f12(c11c22 − c12c21)

∫
dz′1 dz

′
2 z
′
1z
′
2, (3.42)

and hence the identification of the jacobian,

J = [det C]−1 . (3.43)
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Although derived in the simple 2×2 case, Eq. (3.43) generalizes to arbitrary dimen-
sion. Note that, due to the Grassmann nature of the variables, this result is the
inverse of what would be expected with normal commuting variables.

Turning now to the path integral, we temporarily consider ψ(x) as a finite num-
ber of Grassmann variables corresponding to four Dirac indices at each point of
spacetime (i.e., imagine that the spacetime label is discrete and finite). At each
point, the transformation is from ψ → ψ ′

ψ(x) = eiβ(x)γ5ψ ′(x), ψ̄(x) = ψ̄ ′(x) eiβ(x)γ5, (3.44)

so that the overall jacobian has the form

J = [det
(
eiβγ5

)]−1 [
det
(
eiβγ5

)]−1
(3.45)

with one factor from each of the ψ and ψ̄ variables. The determinant runs over the
4 × 4 Dirac indices, the three flavors, colors, and also the spacetime indices. This
is a rather formal object, but can be made more explicit by using

det C = e tr ln C, (3.46)

valid for finite matrices, to write

J = e−2i trβγ5 . (3.47)

The symbol tr denotes a trace acting over spacetime indices plus Dirac indices,
flavors, and colors,

trβγ5 = Tr ′
∫
d4x 〈x|βγ5|x〉 , (3.48)

with Tr ′ indicating the Dirac, color, and flavor trace. This will become clearer
through direct calculation below.

The jacobian still is not regulated. Fujikawa suggested the removal of
high-energy eigenmodes of the Dirac field in a gauge-invariant way. Consider, for
example, the simple extension

J = lim
M→∞ exp

[
−2i tr

(
βγ5 e

−(/D/M)2
)]
, (3.49)

where /D is the QCD covariant derivative. The insertion of a complete set of eigen-
functions of /D exponentially removes those with large eigenvalues. There has been
an extensive literature demonstrating that other regularization methods produce the
same results as Fujikawa’s, provided that the regulator preserves the vector gauge
invariance.
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In order to complete the calculation we employ the following identity:

/D /D = 1

2
{γμ, γν}DμDν + 1

2
[γμ, γν]DμDν

= DμD
μ + 1

4
[γμ, γν]

[
Dμ,Dν

]
= DμD

μ + g3λ
a

4
σμνF a

μν.

(3.50)

In this case the expression 〈
x| exp−(/D/M)2|x〉 (3.51)

has the same form as given in Eqs. (B–1.1), (B–1.9), (B–1.17–18) with the identi-
fications

dμ = Dμ, σ = g3

4
σμνλaF a

μν, τ = 1

M2
. (3.52)

Applying the calculation done there to our present situation yields

J = lim
M→∞

e−2i
∫
d4x Tr (β(x)γ5H(x,M

−2))

= lim
M→∞ e

1
8π2

∫
d4x Tr (β(x)γ5[M4a0+M2a1+a2+O(M−2)]).

(3.53)

The notation is defined in App. B–1. The first two traces vanish, leaving only the
factor with two σμν matrices in a2. From the result

Tr (γ5σ
μνσαβ) = −Tr γ5γ

μγ νγ αγ β = −4iεμναβ, (3.54)

it is easy to calculate

J = exp

(
1

16π2

∫
d4x β(x)Tr′

(
γ5
g2

3λ
aλb

16
σμνF a

μνσ
αβF b

αβ

))
= exp

( −1

16π2

∫
d4x β(x) 3 · 2δab · 4 iεμναβ g

2
3

16
Fa
μνF

b
αβ

)
= exp

(
−i
∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν

) (3.55)

where the trace Tr ′ has produced factors for three flavors, color, and the Dirac
trace.

Although the calculation of the jacobian has been somewhat involved, we have
succeeded in making sense out of what seemed to be a rather abstract object. The
fact that it is not unity is an indication that the U(1) transformation is not a sym-
metry of the theory. Applying Eq. (3.34) we see that

lnJ = −i
∫
d4x β(x)∂μJ̄

(0)
5μ (x) = −i

∫
d4x β(x)

3αs
4π

Fa
μνF̃

aμν, (3.56)
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or once again

∂μJ̄
(0)
5μ =

3αs
4π

Fa
μνF̃

aμν. (3.57)

The choice of a regulator which preserves the vector SU(3) gauge symmetry is
important. Whereas in the Feynman diagram approach, we had the apparent free-
dom to shift the integration variable to preserve either the vector or axial-vector
symmetries, the corresponding freedom in the path-integral case is in the choice of
regularization.

If quark masses are included, the operator relation becomes

∂μJ
(0)
5μ (x) = 2i(muūγ5u+mdd̄γ5d +mss̄γ5s)+ 3αs

4π
Fa
μνF̃

aμν. (3.58)

Masses do not modify the coefficient of the anomaly, basically because it arises
from the ultraviolet divergent parts of the theory, which are insensitive to masses.

One does not have to go through these lengthy calculations for each new appli-
cation of the anomaly. The anomalous coupling for currents

V (b)
μ = ψ̄γμT

(b)
v ψ, A(b)μ = ψ̄γμγ5T

(b)
a ψ, (3.59)

where T (b)v , T (b)a are matrices in the space of quark flavors, is of the form

∂μA(b)μ = Dbcd

16π2
εμναβF c

μνF
d
αβ +mass terms, (3.60a)

Dbcd ≡ Nc

2
Tr
(
T (b)a

{
T (c)v , T (d)v

})
, (3.60b)

where Nc is the number of colors. In particular, for the electromagnetic coupling
to the isovector axial current we have

J
(3)
5μ = ūγμγ5u− d̄γμγ5d,

Dbcd = e2Nc Tr τ3Q
2 = Nc

3
e2,

(3.61)

leading to the result already quoted in Eq. (3.6).
The full content of the anomaly was given by Bardeen [Ba 69]. Consider a

fermion with η internal degrees of freedom (flavor or color) coupled to vector and
axial-vector currents vμ, aμ,

L = ψ (i/∂ − /v − /aγ5) ψ. (3.62)

These currents are in an η × η representation

vμ = v0
μI + vkμλk, aμ = a0

μI + akμλk. (3.63)
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Thus, the axial current is J (k)5μ = ψγμγ5λ
kψ , and the anomaly equation becomes

∂μJ
(k)
5μ =

1

4π2
εμναβ Tr

[
λk
(

1

4
vμνvαβ + 1

12
aμνaαβ

−2i

3
aμaνvαβ − 2i

3
vμνaαaβ − 2i

3
aμvναaβ − 8

3
aμaνaαaβ

)]
,

vμν = ∂μvν − ∂νvμ + i[vμ, vν] + i[aμ, aν],
aμν = ∂μaν − ∂νaμ + i[vμ, aν] − i[vν, aμ]. (3.64)

This may also be expressed in terms of the left-handed and right-handed field
tensors 
μν and rμν by using the identities,


μν ≡ ∂μ
ν − ∂ν
μ + i[
μ, 
ν] = vμν + aμν,
rμν ≡ ∂μrν − ∂νrμ + i[rμ, rν] = vμν − aμν,
1

4
vμνvαβ + 1

12
aμνaαβ = 1

12

(

μν


μν + rμνrμν
)+ 1

24

(

μνr

μν + rμν
μν
)
. (3.65)

In the language of Feynman diagrams, one encounters the anomaly contributions
not only in the triangle diagram, but also in square and pentagon diagrams (e.g.
from the aμaνaαaβ term). Our previous result, Eq. (3.57), is obtained for aμ= 0,
vμ = g3A

k
μλ

k/2, with three flavors and three colors of quarks.
We have seen that symmetries of the classical lagrangian are not always sym-

metries of the full quantum theory. This is the general situation when there are
anomalies. These appear in perturbation theory and are associated with divergent
Feynman diagrams. This sometimes gives the mistaken impression that the dynam-
ics has ‘broken’ the symmetry, and hence one might expect a massless particle
through the application of Goldstone’s theorem. In the path-integral framework the
impression is different. There the symmetry never exists in the first place, as the
calculation performed above is simply the path-integral test for a symmetry, gener-
alizing Noether’s theorem. Hence there is in general no expectation for a Goldstone
boson.

Can anomalies cause problems? When the anomaly occurs in a global symme-
try, such as the above U(1) example, the answer is, ‘no’. They just need to be
taken properly into account, e.g., as in Eq. (3.61). Given the specific form of the
anomaly operator relation, there exist ‘anomalous Ward identities’ which contain
terms attributable to the anomaly [Cr 78]. These anomalies can even be associated
with a variety of specific phenomena. For example, in Sect. VII–6 we shall see how
the decay π0 → γ γ is attributed to the axial anomaly.

The presence of anomalies in gauge theories is far more serious because they
destroy the gauge invariance of the theory and wreak havoc with renormalizability.
Thus, one attempts to employ only those gauge theories which have no anomalies.
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In some cases this can be arranged by ensuring, through the group or particle con-
tent of the theory, that the coefficient Dbcd of Eq. (3.60b) vanishes. For example,
in the Standard Model it must be checked that this occurs for all combinations of
the SU(3)c × SU(2)L × U(1)Y generators. These were already compiled in Eqs.
(II–3.5a–c) and were seen to lead to the quantized fermion charge values observed
in Nature.

III–4 Classical scale invariance and the trace anomaly

If the fermion masses were zero in either QED or QCD, these theories would con-
tain no dimensional parameters in the lagrangian, and they would exhibit a classical
scale invariance. The associated quark and gluon scale transformations would be
ψ(x) → λ3/2ψ(λx) and Aaμ(x) → λAaμ(λx) for arbitrary λ. We saw in Sect. I–4
that this leads to a traceless energy-momentum tensor, with conserved dilation
current Jμscale,

J
μ

scale = xνθ
μν, ∂μJ

μ

scale = θνν = 0, (4.1)

where θμν is the energy-momentum tensor. Such a situation would have drastic
consequences on the theory, since all single particle states would be massless.
This can be seen as follows. For any hadron H , the matrix element of the energy-
momentum tensor at zero-momentum transfer is

〈H(k) |θμν |H(k)〉 = 2kμkν, (4.2)

where the normalization of states is chosen in accordance with the conventions
defined in App. C–3. A vanishing trace would imply zero mass, i.e.,〈

H(k)
∣∣θμμ∣∣H(k)〉 = 0 = 2M2

H . (4.3)

This is most obviously a problem in QCD where the quark masses are small com-
pared to most composite particle masses.4 We would not expect the proton mass to
vanish if the quark masses were set equal to zero yet the scale-invariance argument
implies that it must.

A resolution is suggested by the method which is used to renormalize the
theory. In practice, renormalization prescriptions introduce dimensional scales into
the theory. Most commonly, there is the momentum scale at which one specifies
the running coupling constant to have a particular value, e.g., αs(91 GeV) � 0.12.
This in turn defines a scale  which enters the formula for the running coupling
constant, Eq. (II–2.74). Thus, to fully specify QCD one needs to specify not only
the lagrangian, but also a scale parameter, and the full quantum theory is not scale

4 As can be justified, we neglect here the existence of very heavy quarks, c, b, and t .
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invariant. Although this argument does not, at first sight, seem to nullify the reason-
ing based on Noether’s theorem, it turns out that the trace of the energy-momentum
tensor has an anomaly [Cr 72, ChE 72, CoDJ 77], and the specification of a scale
and the coefficient of the anomaly are in fact related.

In the following, let us start directly with the path-integral treatment [Fu 81],
again in the framework of QCD, concentrating on the effect of a single quark. We
can introduce an external source coupled to θμμ into the generating functional

Z[h,Aaμ] =
∫
dψ dψ̄ei

∫
d4x[LQCD(ψ,A

a
μ)+h(x)θμμ], (4.4)

where

θμν = i

2
ψ̄γ μ

↔
Dνψ. (4.5)

As in the case of the chiral anomaly, we can use this as a starting point to explore
the nature of the trace θμμ. The key is that if one makes the change of variables

ψ(x) = e−α(x)/2ψ ′(x), (4.6)

one obtains for infinitesimal α∫
d4x

[
LQCD

(
ψ,Aaμ(x)

)+ α(x)θμμ]
=
∫
d4x

[
LQCD

(
ψ ′, Aaμ

)+ α(x)mψ̄ ′ψ ′ + iψ̄ ′γμψ ′∂μα] . (4.7)

The last term vanishes after an integration by parts. The focus of our calculation
can thus be shifted to a jacobian J by a change of variable,

Z
[
h+ α,Aaμ

] = ∫ dψ dψ̄ ei
∫
d4x[LQCD(ψ,Aaμ)+(h+α)θμμ]

=
∫
dψ dψ̄ ei

∫
d4x[LQCD(ψ ′,Aaμ)+hθμμ+αmψ̄ ′ψ ′]

=
∫
dψ ′ dψ̄ ′ J ei

∫
d4x[LQCD(ψ ′,Aaμ)+hθμμ+αmψ̄ ′ψ ′].

(4.8)

Thus, we obtain the identity

i

∫
d4x θμμα(x) = lnJ + i

∫
d4x mψ̄ψ α(x). (4.9)

The form of the jacobian which follows from the work done in Sect. III–3 is

J = [det
(
e−α/2

)]−2 = lim
M→∞ e

Tr ′
∫
d4x 〈x|α exp−(D//M)2|x〉, (4.10)

where we have adopted the same regulator as used previously.
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The final result is easily obtained from the general heat-kernel calculation of
App. B–1, again using the identities of Eqs. (B–1.17), (B–1.18). After some algebra
this becomes

Tr ′
〈
x
∣∣exp −(/D/M)2

∣∣ x〉
= iM4

16π2
Tr ′
[

1− g2
3λ

aλb

32M4
σμνσαβF a

μνF
b
αβ +

[Dμ,Dν][Dμ,Dν]
12M4

+ · · ·
]

= 3iM4

4π2
+ ig2

3

48π2
Fa
μνF

μν
a + · · · . (4.11)

Here we have found both a term which is a divergent constant, and one which
involves two-gluon field strengths. The divergent constant corresponds to the infi-
nite zero-point energy of the vacuum. This can be seen by noting that if the zero-
point energy is defined by the vacuum matrix element

〈0|H(x)|0〉 = E0

V
= 〈0 ∣∣θ00(x)

∣∣ 0〉 , (4.12)

then Lorentz covariance requires a nonzero trace

〈0 |θμν(x)| 0〉 = E0

V
gμν =⇒ 〈

0
∣∣θμμ(x)∣∣ 0〉 = 4

E0

V
. (4.13)

Thus, a constant in the vacuum matrix element of the trace is just four times the
zero-point energy density. It is standard practice to subtract off this zero-point
energy, and we shall do so by dropping the constant term. This is similar to the
procedure of normal ordering the energy-momentum tensor.

If we now combine these results using Eq. (4.9), we obtain

i

∫
d4x θμμα(x) = i

∫
d4x

[
g2

3

48π2
Fa
μνF

aμν +mψ̄ψ
]
α(x), (4.14)

which is equivalent to the operator relation

θμμ =
αs

12π
Fa
μνF

aμν +mψ̄ψ. (4.15)

One may also derive the trace anomaly via the calculation of Feynman dia-
grams, the triangle diagrams of Fig. III–1, but with the axial current replaced
by the energy-momentum tensor. The trace anomaly is different from the chiral
anomaly in that it receives contributions also from gluons. In the Feynman diagram
approach, this arises from the replacement of quark lines by gluons, while in the
path-integral context it occurs when one considers scale transformations of the
gluon field. A full calculation yields

θμμ =
βQCD

2g3
Fa
μνF

aμν +muuu+mddd +msss + · · · , (4.16)

https://doi.org/10.1017/9781009291033.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.004


98 Symmetries and anomalies

where βQCD is the beta function of QCD (cf. Eq. (II–2.57b)). The result of our
previous calculation, Eq. (4.15), corresponds to the lowest order contribution of a
single quark to the beta function.

A feeling of why the beta function enters can be obtained from an extremely
simple, but heuristic, derivation of the trace anomaly. Let us rescale the gluon field
to A

a

μ ≡ g3A
a
μ, such that the massless action becomes

L = − 1

4g2
3

F̄ a
μνF̄

aμν + iψγ μD̄μψ. (4.17)

The coupling constant g3 now enters only as an overall factor in the first term.
However in renormalizing the coupling constant, we need to introduce a renormal-
ization scale. If we interpret this coupling as a running parameter, the action is no
longer invariant under scale transformations. Instead, taking λ = 1+ δλ, we find

δS

δλ
=
∫
d4x

∂

∂λ

(
− 1

4g2
3(λ)

)
F̄ a
μνF̄

aμν =
∫
d4x

βQCD(g3)

2g3
Fa
μνF

aμν, (4.18)

where we have changed back to the standard normalization of Aaμ in the final term.
By Noether’s theorem, the scale current is no longer conserved, and Eq. (4.16)
is reproduced. The need to specify a scale in defining the coupling constant has
removed the scale invariance of the theory.

The trace anomaly occupies a significant place in the phenomenology of hadrons
because it is the signal for the generation of hadronic masses. Returning to the
discussion of masses which began this section, we see that the mass of a state is
expressible as a matrix element of the energy-momentum trace. For example, we
find for the nucleon state that

mNū(p)u(p) = 〈N(p)|θμμ|N(p)〉
= 〈N(p)|βQCD

2g3
Fa
μνF

aμν +mss̄s +muūu+mdd̄d|N(p)〉. (4.19)

The terms containing the light quark masses mu,md are expected to be small, and
indeed the ‘σ -term’ determined in πN scattering (cf. Sect. III–3) implies that they
contribute about only 45 MeV. This leaves the bulk of the nucleon’s mass to the
gluon and s-quark terms in Eq. (4.19), of which the Fa

μνF
aμν part is expected to be

dominant. Although this presents a conceptual problem for the naive quark model
interpretation of the proton as a composite of three light quarks, it is nevertheless
a central result of QCD.

III–5 Chiral anomalies and vacuum structure

There is a fascinating connection between the axial anomaly described previously
in this chapter and the vacuum of QCD. This has important phenomenological
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consequences for both the η′ mass and the strong CP problem. Here we present an
introductory account of this topic [Pe 89].

The θ vacuum

One is used to considering the effect on gluon fields of ‘small’ gauge transforma-
tions, i.e., those which are connected to the identity operator in a continuous man-
ner. There also exist ‘large’ gauge transformations which change the color gauge
fields in a more drastic fashion. For example the gauge transformation [JaR 76]
generated by

1(x) ≡ x2 − d2

x2 + d2
+ 2idτ · x

x2 + d2
, (5.1)

where d is an arbitrary parameter and τ is an SU(2) Pauli matrix in any SU(2)
subgroup of SU(3), transforms the null potential A(x) = 0 into

A(1)
j (x) = −

i

g3

(∇j1(x)
)
−1

1 (x)

= − 2d

g3
(
x2 + d2

)2 [τ j (d2 − x2)+ 2xj (τ · x)− 2d(x× τ )j
]
. (5.2)

Here, we are using the matrix notation

Aμ ≡ Aaμ
λa

2
. (5.3)

This potential lies in an SU(2) subgroup of the full color SU(3) group, and is
‘large’ in the sense that it cannot be brought continuously into the identity. The
τ · x factor couples the internal color indices to the spatial position such that a path
in coordinate space implies a corresponding path in the SU(2) color subspace.
All gauge potentials Aμ carry a conserved topological charge called the winding
number,

n = ig3
3

24π2

∫
d3x Tr

(
Ai(x)Aj (x)Ak(x)

)
εijk. (5.4)

As can be demonstrated by direct substitution, the gauge field of Eq. (5.2) corre-
sponds to the value n = 1. Fields with any integer value of the winding number n
can be obtained by repeated applications of 1(x), viz.,

n(x) = [1(x)]n . (5.5)

All gauge potentials can be classified into disjoint sectors labeled by their winding
number.
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100 Symmetries and anomalies

The existence of these distinct classes has interesting consequences. For exam-
ple, consider a configuration of the gluon field that starts off at t = −∞ as the zero
potential A(x) = 0, has some interpolating A(x, t) for intermediate times, and ends
up at t = +∞ lying in the gauge-equivalent configuration A(x) = A(1)(x).5 Then
the following integral can be shown to be nonvanishing:

g2
3

32π2

∫
d4x F a

μνF̃
aμν (F̃ aμν ≡ 1

2
εμναβF a

αβ). (5.6)

This is surprising because the integrand is a total divergence. As noted previously
in Eq. (II–2.23), FF̃ can be written as

Fa
μνF̃

aμν = ∂μK
μ, Kμ = εμνλσ [AaνF a

λσ +
1

3
g3fabcA

a
νA

b
λA

c
σ ], (5.7)

and thus the integral can be written as a surface integral at t = ±∞. For the field
configuration under consideration, this reduces to the winding-number integral

g2
3

32π2

∫
d4x F a

μνF̃
aμν = g2

3

32π2

∫
d4x ∂μK

μ

= g2
3

32π2

∫
d3x K0

∣∣∣∣t=∞
t=−∞

= g3
3

24π2
i

∫
d3x εijk Tr

(
A(1)
i (x)A

(1)
j (x)A

(1)
k (x)

)
= 1. (5.8)

More generally, the integral of FF̃ gives the change in the winding number

g2
3

32π2

∫
d4x F a

μνF̃
aμν = g2

3

32π2

∫
d3x K0

∣∣∣∣t=∞
t=−∞

= n+ − n− (5.9)

between asymptotic gauge-field configurations.
Thus, the vacuum state vector will be characterized by configurations of gluon

fields, which fall into classes labeled by the winding number. Moreover, there will
exist a corespondence between the gauge transformations {n} and unitary oper-
ators {Un}, which transform the state vectors. For example, a vacuum state domi-
nated by field configurations in the zero winding class (‘near’ to Aμ = 0) would be
transformed by U1 into configurations with a dominance of n = 1 configurations,
or more generally,

U1|n〉 = |n+ 1〉. (5.10)

5 Such configurations are known to exist [Co 85].
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This implies that a gauge-invariant vacuum state requires contributions from all
classes, such as the coherent superposition

|θ〉 =
∑
n

e−inθ |n〉, (5.11)

where θ is an arbitrary parameter. It follows from Eq. (5.10) that this θ-vacuum is
gauge-invariant up to an overall phase

U1|θ〉 = eiθ |θ〉. (5.12)

The QCD vacuum must contain contributions from all topological classes.

The θ term

Given this nontrivial vacuum structure, one requires three ingredients to completely
specify QCD: (1) the QCD lagrangian, (2) the coupling constant (i.e. QCD), and
(3) the vacuum label θ . How can we account for the different vacua corresponding
to different choices of θ? In a path-integral representation, the θ = 0 vacuum would
imply generic transition elements of the form

out〈θ = 0|X|θ = 0〉in =
∫
[dAμ][dψ] [dψ̄] XeiSQCD =

∑
n,m

out〈m|X|n〉in.

(5.13)

The presence of a nonzero θ leads to an extra phase,

out〈θ |X|θ〉in =
∑
n,m

ei(m−n)θ out〈m|X|n〉in. (5.14)

However, this phase can be accounted for in the path integral by the addition of a
new term to SQCD. In particular we have, through the use of Eq. (5.9),

out〈θ |X|θ〉in =
∫
[dAμ][dψ][dψ̄] X e

iSQCD+i g2
3

32π2 θ
∫
d4x FaμνF̃

aμν

=
∑
n,m

ei(m−n)θ out〈m|X|n〉in,
(5.15)

where X is some operator. We see that the quantity (m− n) given by the winding-
number difference of the fields contributing to the path integral is equivalent to a
new exponential factor containing Fa

μνF̃
aμν . Thus, a correct procedure for doing

calculations involving θ vacua is to follow the ordinary path-integral methods but
with a QCD lagrangian containing the new term

LQCD = L(θ=0)
QCD + θ g2

3

32π2
Fa
μνF̃

aμν. (5.16)
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The parameter θ is to be considered a coupling constant. Since the operator FF̃ is
P -odd and T -odd, a nonzero θ can induce measurable T violation. In Sect. IX–4,
we shall show how to connect θ to physical observables. There is an important dis-
tinction between the various θ vacua of QCD and the many possible vacuum states
of a spontaneously broken symmetry such as the Higgs sector of the electroweak
theory. In the latter case, the various possible vacuum expectation values of the
Higgs field label different states within the same theory. In contrast, each value of
θ corresponds to a different theory, just as each value of QCD would label a dif-
ferent theory. Specifying θ and QCD then specifies the content of the version of
QCD used by Nature.

Connection with chiral rotations

There is a connection between the axial anomaly and the presence of a θ vacuum
[’tH 76a,b]. It involves the matrix element of FF̃ as follows. Consider the limit of
Nf massless quarks. The U(1) axial current

J
(0)
5μ =

Nf∑
j=1

ψ̄jγμγ5ψj (5.17)

is not conserved due to the anomaly,

∂μJ
(0)
5μ =

Nfαs

4π
Fa
μνF̃

aμν. (5.18)

However, because of the fact that FF̃ is a total divergence, one can define a new
conserved current

J̃5μ = J
(0)
5μ −

Nfαs

4π
Kμ. (5.19)

While J̃5μ does form a conserved charge,

Q̃5 =
∫
d3x J̃5,0(x), (5.20)

neither Q̃5 nor J̃5μ is gauge-invariant. In fact, under the gauge transformation 1

of Eq. (5.1), it follows from Eq. (5.8) that the operator Q̃5 changes by a c-number
integer

U1Q̃5U
−1
1 = Q̃5 − 2Nf . (5.21)

This tells us that in the world of massless quarks, the different θ-vacua are related
by a chiral U(1) transformation,

U1 e
iαQ̃5 |θ〉 = U1e

iαQ̃5U−1
1 U1|θ〉 = ei(θ−2Nf α)eiαQ̃5 |θ〉, (5.22)
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or, from Eq. (5.12),

eiαQ̃5 |θ〉 = |θ − 2Nfα〉, (5.23)

where α is a constant. Therefore, in the limit of massless quarks, when Q̃5 is a
conserved quantity, all of the θ vacua are equivalent and one can transform away the
θ dependence by a chiral U(1) transformation. The same is not true if quarks have
mass, as the mass terms in LQCD are not invariant under a chiral transformation.
We shall return to this topic in Sect. IX–4.

To summarize, one finds that the existence of topologically nontrivial gauge
transformations, and of field configurations which make transitions between the
different topological sectors of the theory, leads to the existence of nonvanishing
effects from a new term in the QCD action. Chiral rotations can change the value
of θ , allowing it to be rotated away if any of the quarks are massless. However,
for massive quarks, the net effect is a measurable CP-violating term in the QCD
lagrangian.

III–6 Baryon- and lepton-number violation in the Standard Model

An even more dramatic effect arises from an anomaly in the current for the total
baryon plus lepton number (B + L). Baryon number appears to be a conserved
quantity when Noether’s theorem is applied to the lagrangian of the Standard
Model, as is total lepton number.6 The invariances are

q → eiϕBq, 
→ eiϕL
 (6.1)

for all quarks q and leptons 
. The corresponding currents involve the sum over all
quarks and leptons

J
μ

B =
1

3
(ūγ μu+ d̄γ μd + · · · )

J
μ

L = ēγ μe + ν̄eLγ μνeL + · · · ,
(6.2)

where the normalization of the baryon current is chosen to give a baryon a charge
of +1.

The baryon current is vectorial, and naively might not be expected to have an
anomaly. However, the coupling of the quarks to the SU(2)L and U(1)Y gauge
bosons violates parity, so that there are VVA triangle diagrams involving the
baryon current with two gauge currents. For example, the triangle diagram

6 If there are neutrino Majorana masses, lepton number will be violated. However, this is independent of the
anomaly effect discussed in this section. Majorana masses will be discussed in Chap. VI.
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involving the baryon current with the U(1)Y hypercharge current has a VVA tri-
angle involving the quantum number sum

Tr(B(YL + YR)(YL − YR)) = −2 (6.3)

where B = 1/3 for quarks and B = 0 for leptons. These diagrams then yield an
anomaly. Because the axial current of this triangle is a gauge current, any gauge-
invariant regularization of the triangle diagram will place the anomaly in global
baryon-number current even though it is vectorial (see the discussion surrounding
Eq. (3.22)). Similar anomalies occur in the lepton number current.7 The anomalies
cancel if we take the difference of the baryon and lepton currents, with the resulting
anomaly equations

∂μ(J
μ

B − JμL ) = 0

∂μ(J
μ

B + JμL ) =
3

32π2

(
g2

2F
i
μνF̃

μν

i − g2
1BμνB̃

μν
)
.

(6.4)

Here we see that, because of the anomaly, baryon number is in fact not conserved
in the Standard Model, although B − L is.

However, the baryon-number violation due to the anomaly is unmeasurably small
at low temperature. Any transition that would change baryon number is non-
perturbative in nature, as it is not seen in the usual perturbative Feynman rules.
In weakly coupled field theory, such nonperturbative phenomena are suppressed in
rate by a factor [’tH 76b]

[e−8π2/g2
2 ]2 ∼ 10−160, (6.5)

so that such transitions are unobservable.
At high temperatures the situation is different [KuRS 85]. The classical solu-

tion mediating a transition which changes baryon number, a sphaleron [KlM 84],
is known in the limit θw → 0 and the corrections due to a nonzero θw can be
estimated. The solution has an energy around Esph ∼ 10 TeV, taking into account
the measured Higgs-boson mass. At high temperature, thermal effects can cause
transitions with a Boltzmann factor e−Esph/T , and at very high temperatures all
suppressions disappear and the rate per unit volume scales with the temperature
�/V ∼ T 4.

This has an important consequence – at equilibrium in the early Universe an
initial excess of baryons can disappear. More precisely, the equilibrium value of
B + L is zero at high temperature. However, B − L is still conserved, so that an
initial excess of B − L will be preserved.

7 Because possible right-handed neutrinos have no gauge couplings, their presence would not modify the
anomaly.
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It is natural to ask if a sufficiently large baryon asymmetry in the Universe can
be generated by out-of-equilibrium processes near the electroweak phase transi-
tion, using only Standard Model interactions. The answer appears to be negative
[GaHOP 94], as the necessary CP violation within the Standard Model is too small
and the phase transition is not strong enough. New interactions near the weak scale
could provide the needed extra physics. Alternatively, the residual baryon asymme-
try may arise from a net B − L generated in the Universe before the electroweak
epoch. Within the context of the Standard Model interactions, the simplest such
possibility is leptogenesis involving heavy right-handed neutrinos with Majorana
masses. This mechanism will be discussed in Sect. VI–6.

Problems

(1) Currents and anomalies
(a) Verify that all currents coupled to gauge bosons in the Standard Model are

anomaly free.
(b) Find the relative strength of the anomaly coupling of the baryon number

current to the SU(2)L and U(1)R gauge bosons.
(2) Trace anomaly in QED

In d dimensions, the trace of the energy-momentum tensor does not vanish
classically, except at d = 4. For example, in massless QED the energy-
momentum tensor,

θμν = −Fμ
λ F

λν + 1

4
gμνF λσFλσ + i

2
ψ̄γ μ

↔
Dνψ,

has trace θμμ = d−4
4 FλσFλσ . In the renormalization of the operator FλσFλσ ,

one encounters a renormalization constant which diverges as d → 4. Use this
feature to calculate the QED trace anomaly using dimensional regularization.
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