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The local streamline topology classification method of Chong et al. (Phys. Fluids A: Fluid
Dyn., vol. 2, no. 5, 1990, pp. 765–777) is adapted and extended to describe the geometry
of infinitesimal vortex lines. Direct numerical simulation (DNS) data of forced isotropic
turbulence reveals that the joint probability density function (p.d.f.) of the second (qω) and
third (rω) normalized invariants of the vorticity gradient tensor asymptotes to a self-similar
bell shape for Reλ > 200. The same p.d.f. shape is also seen at the late stages of breakdown
of a Taylor–Green vortex suggesting the universality of the bell-shaped p.d.f. form in
turbulent flows. Additionally, vortex reconnection from different initial configurations is
examined. The local topology and geometry of the reconnection bridge is shown to be
nearly identical in all cases considered in this work. Overall, topological characterization
of the vorticity field provides a useful analytical basis for examining vorticity dynamics in
turbulence and other fluid flows.
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1. Introduction

The origins of the fields of vortex dynamics and topology are intricately intertwined
(Moffatt 2008). Von Helmholtz (1858) developed equations describing vorticity field
evolution in idealized fluid flow and proposed the notion of vortex lines. His seminal
work in German was translated into English with some enhancements by Tait (1867). The
concept of vortex lines served as inspiration to Kelvin (1867, 1869) who hypothesized the
‘vortex theory of atoms’. According to this theory, matter is constituted of interconnected
and knotted vortex filaments. The theory of atoms motivated a series of papers by Tait
(1877, 1884, 1885) to characterize and classify knotted filaments. Although the vortex
theory of atoms has long been disavowed, Tait’s investigation of knots served as the
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foundation for the discipline of topology (Epple 1998). Moffatt (1969) conducted extensive
investigations of knottedness of vortex lines and developed the relation between knot
topology and energy spectrum (Moffatt 1990). In more recent times, Scheeler et al. (2017)
provided a complete measurement of helicity (linkage of vortex lines) in real fluid flows
by tracking the linking, twisting and writhing of vortex lines. The measurements indicated
that helicity can remain conserved or evolve towards a constant even in the presence of
viscosity.

Vortex dynamics plays a crucial role in many fluid flow phenomena (Saffman 1992).
Indeed, Küchemann (1965) suggested that vortices are the ‘sinews and muscles’ of fluid
motion. The structure and evolution of vortex lines and sheets provide valuable insight
into aerodynamic lift, wake dynamics and chaotic character of fluid flows. Vortices also
play a central role in hurricanes, tornadoes and astrophysical flows. Large-scale coherent
vortices provide structure (Küchemann 1965) and drive many complex turbulent flows
such as wakes and mixing layers. At smaller scales, vortex-stretching provides the central
energy cascade mechanism in turbulence. Scalar mixing is also critically dependent on
vortices for large-scale stirring (entrainment) and diffusive enhancement at small scales.

The vortex reconnection process is crucial in turbulent cascade (Yao & Hussain 2020),
noise generation in jets (Zaman & Hussain 1980) and fine-scale mixing in turbulence
(Hussain 1986; Hussain & Duraisamy 2011). Vortex inter-linkage at oblique angles is
also commonly observed in propeller tip vortex interactions (Johnston & Sullivan 1990)
and flow over pitching wings (Freymuth 1989). The problem of vortex reconnection in
configurations, such as interaction of anti-parallel vortex tubes (Melander & Hussain 1988;
Yao & Hussain 2020), orthogonally offset tubes (Boratav, Pelz & Zabusky 1992), collision
of vortex rings (Kida, Takaoka & Hussain 1991) and tilted hyperbolic filaments (Kimura
& Moffatt 2018), have been examined in the literature.

While large-scale features of vortices, such as the topology of field vortex lines, vortex
surfaces and coherent vortex structures, have been extensively investigated in the past
(Jeong & Hussain 1995; Yang & Pullin 2011; Scheeler et al. 2017; Mcgavin & Pontin
2018; Yao & Hussain 2020), local topology and geometry of vortex lines require further
attention.

The focus of the current work is to develop a mathematical framework to characterize
the local topology and geometry of infinitesimal vortex line elements, along the lines of the
infinitesimal material-element description (Batchelor 1952; Orszag 1970; Girimaji & Pope
1990; Monin & Yaglom 2013) and local streamline topology (Chong, Perry & Cantwell
1990; Martín et al. 1998; Elsinga & Marusic 2010; Das & Girimaji 2020). Infinitesimal
vortex line elements are building blocks of field vortex lines and their study will lead
to a deeper understanding of the vorticity field. A recent study by Boschung et al. (2014)
presents a mathematical framework to investigate the local vortex line topology in terms of
the curvature of a surface element normal to the local vorticity vector. Such a description
only provides information about the local divergence or convergence and rotation of the
vortex lines. The present work enhances the characterization to include three-dimensional
(3-D) topologies of local vortex elements in terms of the invariants of vorticity gradient
tensor, following the methodology of Chong et al. (1990) and Das & Girimaji (2020).
Additionally, the current approach has the following advantages: (a) the framework can be
used for identification of large-scale coherent vortex structures that occur in turbulent flows
(Sharma, Das & Girimaji 2019), and (b) the vortex line shape characterization provides a
higher order geometric description of the local streamline structure, using the Biot–Savart
law. A detailed comparison of the present approach with the method of Boschung et al.
(2014) is presented in Appendix A for the reader’s information.
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The objective of this work is to examine the local vortex line topology and geometry in
turbulence. Toward the stated objective, we undertake various tasks as follows.

(i) Adaptation and extension of the streamline local topology classification framework
(Chong et al. 1990) to describe the structure of infinitesimal vortex line elements.
The adaptation requires performing the critical point analysis in a rotating reference
frame. Additionally, we demonstrate that vorticity being a pseudovector does not
affect this analysis.

(ii) Classification of the infinitesimal vortex line geometry (which is distinct from
topology) is performed following the approach of Das & Girimaji (2020).

(iii) Investigation of the universal features of probability density function (p.d.f.) of
the vorticity gradient invariants and vortex-line topology distribution in turbulence.
The two types of flows considered are (a) statistically stationary forced isotropic
turbulence at various Reynolds numbers; and (b) breakdown of a Taylor–Green
vortex.

(iv) Characterization of the local vortex line topology during different stages of the
vortex reconnection process initiated from different configurations. The initial
configurations considered are (a) antiparallel (Melander & Hussain 1988) and (b)
orthogonal (Boratav et al. 1992) vortex tubes.

2. Vorticity gradient tensor and local vortex line geometry

Perry & Chong (1987) and Chong et al. (1990) characterized the topological properties
of local streamlines in terms of the velocity gradient tensor (A ≡ ∇u, where u is the
field velocity) using critical point analysis. Our goal in this section is to derive a similar
framework relating the vorticity gradient tensor (Φ) to the local vortex line geometry.

2.1. Vorticity gradient tensor and its invariants
The vorticity gradient tensor Φ is defined as

Φij ≡ ∂ωi

∂xj
where ω = ∇ × u, (2.1)

where ω is the vorticity vector. Vorticity is a pseudovector (Arfken, Weber & Harris 2013).
Similarly, it can be demonstrated that the vorticity gradient tensor is also a pseudotensor
(Arfken et al. 2013).

The three invariants of Φ are given by

Pω = −Φii = 0, Qω = −1
2ΦijΦji, Rω = −1

3ΦijΦjkΦki. (2.2a–c)

Vorticity, curl of a vector, is divergence free by construction. Therefore, the second and
third invariants (Qω, Rω) determine the local geometric shape/topology of infinitesimal
vortex lines, as will be shown in §§ 2.3–2.5.

Next, we will derive the governing equations for the vorticity gradient tensor and its
invariants. The governing equation for vorticity (ωi) is given by Pope (2001):

Dωi

Dt
= Sikωk + ν

∂2ωi

∂xk∂xk
, (2.3)

where S is the strain-rate tensor (symmetric part of velocity gradient tensor, A). The
evolution equation for Φij is obtained by differentiating (2.3) with respect to the spatial
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coordinates xj.
DΦij

Dt
= −ΦikAkj + ∂Sik

∂xj
ωk + SikΦkj + ν

∂Φij

∂xk∂xk
. (2.4)

The 1st term on the right-hand side of (2.4) is the nonlinear production of the vorticity
gradient, the 2nd and 3rd terms represent the effect of vortex stretching on vorticity
gradients, and the final term is the viscous diffusion. The influence of pressure manifests
indirectly through the strain rate and its gradient. Further, the inviscid vorticity gradient
equation is unclosed due to the presence of the strain rate and its gradients. Thus, a
restricted Euler equation (REE) analysis (Cantwell 1992) is not possible for this equation.
Nevertheless, an analysis of the second and third invariants is of much value.

To obtain the equation of the second invariant (Qω) of Φ, first the equation for the inner
product of Φij is derived:

D
Dt

(ΦijΦjn) = −[ΦikAkjΦjn + ΦijAjkΦkn] +
[
Φij

∂Sjk

∂xn
+ ∂Sik

∂xj
Φjn

]
ωk

+ [ΦijSjkΦkn + SikΦkjΦjn] − 2ν
∂Φij

∂xk

∂Φjn

∂xk

+ ν
∂2

∂xk∂xk
(ΦijΦjn). (2.5)

The equation for Qω can be derived by taking the trace of (2.5):

DQω

Dt
= Φij

[
AjkΦki − ∂

∂xi
(Sjkωk)

]
+ ν

[
∂Φij

∂xk

∂Φij

∂xk
+ ∂2Qω

∂xk∂xk

]
. (2.6)

To obtain the equation of the third invariant (Rω) of Φ, first, the equation for triple product
of Φij is derived:

D
Dt

(ΦijΦjnΦnl) = −[ΦikAkjΦjnΦnl + ΦijAjkΦknΦnl + ΦijΦjnΦnkAkl]

+
[
Φij

∂Sjk

∂xn
Φnl + ∂Sik

∂xj
ΦjnΦnl + ΦijΦjn

∂Snk

∂xl

]
ωk

+ [ΦijSjkΦknΦnl + SikΦkjΦjnΦnl]

− 2ν

[
∂

∂xk
(ΦijΦjn)

∂Φnl

∂xk
+ ∂Φij

∂xk

∂Φjn

∂xk
Φnl

]

+ ν
∂2

∂xk∂xk
(ΦijΦjnΦnl). (2.7)

The equation for Rω can be derived by taking the trace of (2.7):

DRω

Dt
= Φij

[
AjkΦkn − ∂

∂xn
(Sjkωk)

]
Φni

+ 2ν

3

[
∂

∂xk
(ΦijΦjn)

∂Φni

∂xk
+ ∂Φij

∂xk

∂Φjn

∂xk
Φni

]
+ ν

∂2Rω

∂xk∂xk
. (2.8)
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Using Cayley–Hamilton theorem,

ΦijΦjkΦkn + QωΦijΦjn + Rωδin = 0. (2.9)

Equation (2.8) can be further simplified to attain the evolution equation of Rω:

DRω

Dt
= QωΦijWij − Φij

∂Sjk

∂xn
ωkΦni

+ 2ν

3

[
∂

∂xk
(ΦijΦjn)

∂Φni

∂xk
+ ∂Φij

∂xk

∂Φjn

∂xk
Φni

]
+ ν

∂2Rω

∂xk∂xk
. (2.10)

As mentioned earlier, the evolution of Qω and Rω depend on Φij, Aij as well as their
spatial derivatives, thus making it difficult to model the dynamics of Qω and Rω using
REE-type analysis. Instead, we will examine the Qω, Rω behaviour using direct numerical
simulations (DNS).

2.2. Framework for critical point analysis
Analogous to streamlines, a vortex line is defined as a curve that is locally tangential to
the vorticity vector (ω) at any point in the flow. Mathematically, the local tangent vector
dX at any point is related to the vorticity vector as follows:

dX × ω = 0 where dX = dX1 î + dX2 ĵ + dX3k̂, (2.11)

which implies

ω3dX2 − ω2dX3 = 0, ω2dX1 − ω1dX2 = 0, ω3dX1 − ω1dX3 = 0. (2.12a–c)

Equation (2.12a–c) can be expressed as the following set of differential equations
dependent on an arbitrary parameter s:

dX2/ds
dX3/ds

= ω2

ω3
; dX1/ds

dX2/ds
= ω1

ω2
; dX3/ds

dX1/ds
= ω3

ω1
. (2.13a–c)

Equivalently, (2.13a–c) can be written as

dX
ds

= ω. (2.14)

Solution trajectories obtained by integrating (2.14) for a frozen vorticity field represent the
field vortex lines. This requires knowledge of the entire flow field.

On the other hand, the local vortex line structure in the immediate neighbourhood of
some reference point (x0) can be examined by applying the critical point analysis. Towards
this end we first introduce the relative vorticity vector ω̃(x; x0) at any point in the field
surrounding x0:

ω̃(x; x0) = ω(x) − ω(x0). (2.15)

We define ‘relative vortex lines’ as curves wherein the relative vorticity vector is tangent
to every point (x) in the curve. Much like vortex lines, relative vortex lines can be obtained
by integrating the following differential equation for a frozen vorticity field:

dx
ds

= ω̃(x; x0). (2.16)

It can be shown that relative vortex lines are vortex lines as observed from a frame rotating
with half the reference angular velocity ω(x0). We present the formal analysis of the
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relation between vortex lines and relative vortex lines in Appendix B. It is important to
note that the vorticity equation is invariant to a uniform reference-frame rotation unlike
the Navier–Stokes equation. Thus, the local vortex line topology in a uniformly rotating
coordinate frame is similar to that of an inertial frame, whereas the streamline topology in
the two frames might not be similar.

The relative vorticity field in the immediate neighbourhood of a reference point (x0) can
be approximated by the first-order term of a Taylor series expansion about the reference
point. It has been shown in previous works (Kaplan 1958; Perry & Fairlie 1975) that a
first-order approximation is sufficient to conduct phase space analysis in the immediate
neighbourhood of a critical point. Therefore, from (2.16), we have

dxi

ds
≈ ∂ω̃i

∂xj
xj. (2.17)

At the reference point x0, the right-hand side of (2.17) is zero, i.e. x0 is a critical point.
The gradient of relative vorticity in terms of the vorticity gradient tensor Φ is given by

∂ω̃i

∂xj
= ∂

∂xj
(ωi(x) − ωi(x0)) = Φij. (2.18)

From (2.17) and (2.18), the equations for relative vortex lines can be written as

dxi

ds
= Φijxj. (2.19)

The form of (2.19) is identical to the local streamline (x′) equation given by Chong et al.
(1990):

dx′
i

dt
= Aijx′

j. (2.20)

Topological classification of streamlines: Chong et al. (1990) used (2.20) to classify
the topology of local streamlines based on the phase space analysis given by Kaplan
(1958). Thus, analogous to the characterization of local streamline topology in terms of the
velocity gradient tensor, the topology of local vortex lines can be characterized on the basis
of the vorticity gradient tensor. Chong et al. (1990) demonstrated that the invariants of the
velocity gradient tensor are sufficient to classify the local streamline topology. Specifically,
in incompressible flows (wherein ∂ui/∂xi = 0), the second (Q) and third (R) invariants of
A exclusively classify the topology of local streamlines.

2.3. Topological classification of vortex lines
Along the lines of streamline topology, (2.19) can be used to classify the local vortex line
topology in terms of the invariants of the vorticity gradient tensor Φ. As defined in § 2.1,
Pω = 0 due to vorticity being divergence free by construction. Thus, the vorticity gradient
tensor is trace free much like the velocity gradient tensor in incompressible flows. This key
result allows us to draw analogues between the analysis of the invariants of the velocity
gradient tensor in incompressible flows and those of the vorticity gradient tensor.

It is important to note that unlike R, Rω is not invariant under frame reflection (Lai et al.
2009), as Φij is a pseudotensor. However, since frame reflection is not employed in the
methodology of Chong et al. (1990) or Kaplan (1958), we consider Rω to be invariant
for the purposes of topological classification. The vorticity gradient tensor is trace free for
both incompressible and compressible flows. Therefore, in contrast to streamline topology,

924 A13-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.613
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SFS

S-N/S/S U-N/S/S

Qω

Rω

D
ω  = 0D ω

 = 0

UFC

Figure 1. Canonical vortex line shapes in the invariant space of Φij.

the two invariants Qω and Rω completely characterize the local vortex line topology for
compressible flows as well.

Vortex lines are classified into four distinct topologies based on the local values of Qω

and Rω, and the canonical shape for each topology is displayed in figure 1. Discriminant
Dω plays a key role:

Dω = Q3
ω + 27

4 R2
ω. (2.21)

Below the discriminant line (Dω < 0), all three eigenvalues are real and two of the
eigenvector planes contain saddle points while one contains a stable/unstable node,
which results in saddle–node combinations (Perry & Chong 1987). In the saddle–node
combination region, the stability of the node is determined by Rω. For Rω < 0,
the vortex lines converge in the nodal plane and this topology is referred to as
stable-node/saddle/saddle (S-N/S/S). Similarly, the Rω > 0 region represents diverging
vortex lines in the nodal plane and this vortex line topology is therefore called
unstable-node/saddle/saddle (U-N/S/S). Above the discriminant line (Dω > 0), Φ has two
complex conjugate and one real eigenvalues. This region represents vortex lines that spiral
around the only real eigenvector, which forms a stable/unstable focus. When Rω < 0,
vortex lines spiral towards the centre and out of the focal plane, and the vortex line
topology is termed as stable focus stretching (SFS). Similarly in the region Rω > 0, vortex
lines spiral away from the centre into the focal plane and the topology is termed as unstable
focus compression (UFC). The vortex line topologies above the discriminant lines, i.e. SFS
and UFC, are spiraling in nature and are hereby referred to as focal topologies. On the other
hand, vortex line topologies below the discriminant lines, i.e. UN/S/S and SN/S/S, do not
spiral about a focus and are therefore termed as non-focal topologies.

It has been shown in a recent study (Das & Girimaji 2020) that the topological
description of streamlines in the invariant plane of the velocity gradient tensor (Q–R) does
not uniquely specify the streamline shape, i.e. each point in the Q–R plane can represent
multiple streamline shapes of the same topology classification that are not geometrically
similar. Similarly, the topological framework for vortex lines described above does not
specify the vortex line shapes uniquely. Additionally, the tensor components Φij can be
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arbitrarily large and its invariants can increase unboundedly. Thus, it is expedient to
construct a compact invariant space to uniquely characterize the vortex line shape.

2.4. Normalized vorticity gradient tensor
Along the lines of Das & Girimaji (2019), we normalize Φ by its Frobenius norm to
compute the normalized vorticity gradient tensor (χ ):

χij ≡ Φij

‖Φ‖ where ‖Φ‖ =
√

ΦmnΦmn. (2.22)

The normalized vorticity gradient tensor (χ ), like Φ, is trace free. Additionally, each
component of the tensor is bounded. Following Das & Girimaji (2019, 2020) these bounds
can be determined. For the sake of brevity only the key results are presented here.

The bounds of the diagonal elements of χ are a consequence of its trace-free nature
combined with the constraint imposed by normalization:

−
√

2
3

≤ χij ≤
√

2
3

∀ i = j. (2.23)

Off-diagonal components of the tensor constrained simply by normalization are bounded
as follows:

− 1 ≤ χij ≤ 1 ∀ i /= j. (2.24)

The tensor χ has three invariants denoted by pω, qω and rω:

pω = −χii = 0, qω = −1
2
χijχji = Qω

‖Φ‖2 , rω = −1
3
χijχjkχki = Rω

‖Φ‖3 . (2.25a–c)

The invariants – qω and rω – are also bounded. To obtain the bounds, first the tensor χ
is decomposed into a symmetric (χ s) and a skew-symmetric (χw) tensor. The resulting
tensors are then expressed in the principal frame of χ s. The trace-free constraint of χ s and
the normalization restrictions are used to establish the bounds of qω and rω. The second
invariant of χ is bounded as (Das & Girimaji 2020)

− 1
2 ≤ qω ≤ 1

2 . (2.26)

For a given value of qω, rω is bounded by

− 1 + qω

3

√
1 − 2qω

3
≤ rω ≤ 1 + qω

3

√
1 − 2qω

3
. (2.27)

Both the minimum and maximum values of rω occur at qω = 0 leading to the following
absolute bounds for rω:

−
√

3
9

≤ rω ≤
√

3
9

. (2.28)

The bounds of qω (2.26) and rω (2.27) represent the boundaries of the realizable qω–rω

plane. It is important to note here that unlike the normalized velocity gradient invariants,
these bounds of χ -invariants are valid in compressible flows as well (as χ continues to be
divergence free).

In addition to the inherent advantages of studying local vortex line geometry in
a compact normalized invariants space, analysing vorticity gradient dynamics in this
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0.4

qω

rω

d ω
 = 0 d

ω  = 0

Figure 2. Schematic of vortex line shapes represented by different points in the qω–rω plane.

normalized framework has an added advantage of naturally avoiding finite-time singularity
(Vieillefosse 1982; Cantwell 1992; Girimaji & Speziale 1995; Meneveau 2011). The tensor
χ is well defined and contains all the relevant information regarding the shape of the local
vortex lines, even when the magnitude grows without bounds.

2.5. Vortex line shape in the normalized invariant space
The invariants of χ uniquely characterize the shape of the local vortex lines and ‖Φ‖
specifies the scale factor (Das & Girimaji 2020). All the vortex line shape features
discussed in this section can be obtained by performing phase space analysis (Kaplan
1958) of the following system of ordinary differential equations, obtained from (2.19) and
(2.22):

dxi

ds′ = χijxj where s′ = ‖Φ‖s. (2.29)

We now detail the local vortex line shape features, as represented by the different regions
in the qω–rω space, in figure 2.

Two-dimensional vortex lines: along the rω = 0 line, χ has a zero eigenvalue (λ1 = 0)
and this results in planar vortex line shapes. For points lying on the negative qω axis, all the
eigenvalues are real, which leads to open hyperbolic vortex lines. Moving down the line
as qω becomes more negative, the oblique eigenvectors of the two non-zero eigenvalues
approach orthogonality. At the bottom-most point (qω = −0.5, rω = 0) χ is symmetric
and has orthogonal eigenvectors, which leads to converging and diverging vortex lines
perpendicular to each other. At the origin (qω = 0, rω = 0) all eigenvalues of χ are
zero and this represents straight vortex lines. On the positive qω axis, χ has two purely
imaginary eigenvalues resulting in closed vortex lines that are planar elliptic in shape.
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At the topmost point (qω = 0.5, rω = 0), χ is skew symmetric and the corresponding
vortex lines are perfectly circular in shape.

Three-dimensional vortex lines (non-degenerate topologies): the interior of the qω–rω

plane represent all possible 3-D vortex line shapes that can be classified into four distinct
topologies. The four regions of the qω–rω plane demarcated by the rω = 0 and the
discriminant dω = q3

ω + (27/4)r2
ω = 0 lines, represent these four topologies – SFS, UFC,

U-N/S/S and S-N/S/S – similar to the Qω–Rω plane (figure 1). Note that inside each of
the topology regions, the actual vortex line shapes differ from the canonical form given in
figure 1 and vary depending upon the (qω,rω) value. For example, inside the UFC region
of the qω–rω plane (above discriminant line and rω > 0), the axis of spiraling of the vortex
line is in general oblique with respect to the direction of compression.

Three-dimensional vortex lines (degenerate cases): specific shapes emerge at the
boundaries of the qω–rω plane. Such degenerate 3-D vortex line shapes are discussed
below.

(i) Left and right curved boundaries: on the right boundary (blue line in the figure),
vortex lines spiral out while being compressed along the axis of the real eigenvector,
perpendicular to the focal plane. The vortex line shape at this boundary is the same
as the canonical shape for UFC topology given in the Qω–Rω plane. Similarly, on the
left boundary (orange line in the figure) vortex lines spiral in while being stretched
along the axis of the real eigenvector resembling the canonical shape for SFS vortex
line topology.

(ii) Bottom boundary: along the qω = −0.5 line, the tensor χij is symmetric. The vortex
line shapes here resemble the canonical S-N/S/S or U-N/S/S shapes depending
on the sign of rω. Vortex lines corresponding to left half of the bottom boundary
(qω = −0.5, rω < 0) undergo compression along two orthogonal directions and an
expansion in the third direction forming a tubular structure. Similarly, vortex lines
corresponding to right half of the bottom boundary (qω = −0.5, rω > 0) expand
in two orthogonal directions and are compressed in the third direction resulting in
disc-like shapes.

(iii) Intersection of (i) and (ii): at the corners of the plane where the discriminant
lines intersect with the boundary, i.e. at q = −0.5, r = ±1/(3

√
6), χ has two equal

eigenvalues resulting in a star node. The corresponding vortex line shapes are termed
as ‘axisymmetric vortex compression’ at the left corner and ‘axisymmetric vortex
expansion’ at the right corner.

In principle, the corresponding streamline shape for each of these vortex lines can be
obtained using the Biot–Savart law. This would lead to a higher order description of the
streamline topology than that obtained by Chong et al. (1990). For example, for a straight
vortex line (qω = 0, rω = 0), the corresponding streamline would be locally helical and
for a circular vortex line (qω = 1/2, rω = 0), the streamline is toroidal in nature.

3. Numerical simulation details

Vortex line geometry can provide novel insight into various flow processes. In this work,
we focus on the characteristic features of local geometry in turbulent flows and flows
exhibiting vortex-line reconnection. We use DNS data to examine the local vortex line
geometry for different flows:

(i) forced homogeneous isotropic turbulence;
(ii) breakdown of Taylor–Green vortex flow;
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Reλ Grid resolution κmaxη Source

1 2563 105.6 Yakhot & Donzis (2017)
6 2563 34.8 Yakhot & Donzis (2017)
9 2563 26.6 Yakhot & Donzis (2017)
14 2563 19.87 Yakhot & Donzis (2017)
18 2563 15.59 Yakhot & Donzis (2017)
25 2563 11.51 Yakhot & Donzis (2017)
86 2563 2.83 Yakhot & Donzis (2017)
225 5123 1.34 Donzis et al. (2008)
385 10243 1.41 Donzis et al. (2008)
588 20483 1.39 Donzis et al. (2008)

Table 1. Details of forced isotropic turbulence data sets.

(iii) vortex reconnection of anti-parallel vortex tubes;
(iv) vortex reconnection in orthogonally interacting tubes.

As mentioned in § 1, these flows involve important vortical processes.

3.1. Forced homogeneous isotropic turbulence
The DNS datasets of incompressible forced homogeneous isotropic turbulence from the
Turbulence and Advanced Computation lab at Texas A&M University are employed. The
simulations are performed in a periodic box of dimensions 2π × 2π × 2π, with random
forcing applied at large scales to maintain statistical stationarity. The datasets have been
well validated and previously used to study intermittency (Donzis, Yeung & Sreenivasan
2008; Donzis & Sreenivasan 2010), anomalous scaling (Yakhot & Donzis 2017, 2018) and
velocity gradient dynamics (Das & Girimaji 2019). The datasets used here span a Taylor
Reynolds number range of Reλ ∈ (1588). The Taylor Reynolds number is based on the
Taylor microscale (λ) and is given by

Reλ = u′λ
ν

; λ =
√

15νu′2

ε
, (3.1a,b)

where u′ is the root-mean-square velocity, ν is the kinematic velocity and ε is the
mean dissipation rate. The details of all the datasets used, which includes the numerical
resolution based on the maximum wavenumber resolved κmax and the Kolmogorov length
scale η, are given in table 1. The analysis performed herein computes second-order
gradients of the velocity field. To ensure sufficient accuracy for all such computations
the derivatives are computed using Fourier transforms. Further, the DNS datasets in this
study are highly resolved and have been previously used for studying higher order velocity
gradient moments (Yakhot & Donzis 2017, 2018).

3.2. Taylor–Green vortex flow
Direct simulations of the time evolution of incompressible Taylor–Green vortex flow are
performed in a periodic box of dimension 2π, starting from the initial field given by

u = U0 sin x cos y cos z
v = −U0 cos x sin y cos z

w = 0

⎫⎬
⎭ . (3.2)
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The pressure field is initialized as follows:

p = p0 + ρ0U2
0

16

[(
cos

2x
L

+ cos
2y
L

)(
cos

2z
L

+ 2
)]

, (3.3)

where ρ0 = 1, L = 1. Following Chapelier, De La Llave Plata & Renac (2012) and Bull &
Jameson (2015), the Reynolds number (Re) is chosen to be

Re = U0L
ν

= 1600. (3.4)

The simulations are performed using a finite volume solver based on gas kinetic methods
(GKM) given by Xu (1998). Instead of solving the Navier–Stokes equation, GKM solves
the modelled Boltzmann equation for the single-particle distribution function f . The solver
employs a first order Bhatnagar–Gross–Krook (BGK) model for the collision terms in the
Boltzmann equation. Subsequently, the distribution function f is then used to compute the
fluxes for the conservative variables. The solver has been well validated for a variety of
compressible flows: wall-bounded flows (Xie & Girimaji 2014; Mittal & Girimaji 2020),
decaying and homogeneous shear turbulence (Kumar, Girimaji & Kerimo 2013; Kumar,
Bertsch & Girimaji 2014) and mixing layers with Kelvin–Helmholtz instability (Karimi
& Girimaji 2016, 2017). Although GKM is well suited for non-equilibrium and rarefied
effects, it is equally applicable in the context of an incompressible continuum regime. Su,
Xu & Ghidaoui (1999) have shown that in the limit of low Mach number GKM converges
to the incompressible solution. For incompressible flows, a previous work by Kerimo &
Girimaji (2007) has shown extensive validation of the GKM solver by comparing against
Navier–Stokes solvers for decaying isotropic turbulence. Additionally, in the linear limit,
the solver has shown excellent agreement with rapid distortion theory (Bertsch & Girimaji
2015) and linear stability analysis (Xie & Girimaji 2014) for various incompressible flows.
In the next subsection we validate the solver for a Taylor–Green vortex flow by comparing
results against data from the literature.

3.2.1. Numerical validation
We simulate the Taylor–Green vortex flow on three sets of grid with 2563, 5123 and 10243

points. The evolution of turbulent kinetic energy with normalized time, t∗, is shown in
figure 3(a). The turbulent kinetic energy (E) is normalized by U2

0 and t∗. Here t∗ is defined
as

t∗ = tU0

L
. (3.5)

The results for kinetic energy decay agree very well with the results of Chapelier et al.
(2012) for all three grids. Additionally, figure 3(b) plots the evolution of volume-averaged
dissipation rate ε = 2ν〈SijSij〉 normalized by (U3

0/L), where Sij is the strain-rate
tensor. The current results are compared against those obtained from a high-order flux
reconstruction based method by Bull & Jameson (2015). The initial growth of dissipation
(up to t∗ = 5) on the 2563 grid agrees well with the reference solution; however, there
is significant undershoot in the peak value. As the grid resolution is improved (5123 and
10243 grids), a much better agreement with the reference solution is observed.

Figure 4 shows the kinetic energy spectrum just after the dissipation peaks at t∗ = 9.
Turbulence at this stage is well developed up to the smallest dissipative scales. The
spectrum, as obtained from Bull & Jameson (2015), is also plotted here for comparison
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Figure 3. Time evolution of (a) normalized kinetic energy (E/U2
0) and (b) normalized mean dissipation rate

(ε/(U3
0/L)) for a Taylor–Green vortex.
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Figure 4. Kinetic energy spectrum just after peak dissipation at t∗ = 9.

and we observe good agreement between the two datasets. Overall, the results for the
kinetic energy spectrum and dissipation rate evolution on the 10243 grid agree very well
with the benchmark data from the literature. The flow field from the 10243 grid is used for
further analysis in this paper.

3.3. Vortex reconnection of anti-parallel vortices
We simulate the interaction of two perturbed anti-parallel vortex tubes (figure 5) in a
periodic box of dimension 2π using initial conditions as outlined by Melander & Hussain
(1988). The core of the vortex tubes is specified by the following parametric curve:

x = xc + p cos α cos t
y = yc + p sin α cos t

z = t

⎫⎬
⎭ . (3.6)
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ω
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m
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y
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ω

Figure 5. Schematic of initial configuration for interaction of anti-parallel vortices.

Here, (xc, yc) is the centroid of the unperturbed tube and is specified as (±0.81, 0), α =
π/3 is the inclination angle and p = 0.2 is the perturbation amplitude. To ensure vorticity
is zero outside the tubes, a compact Gaussian function (Melander & Hussain 1988) is used
for the vorticity distribution within the tube’s cross-section of radius rc = 0.666:

ω(r) =
{
ω0(1 − f (r/rc)) r ≤ rc
0 r > rc

, (3.7)

where f (η) = exp (−Kη−1 exp (1/η − 1)), K = 1/2 exp(2) log(2) and ω0 = 20. Vorticity
at every point in the cross-section is tangential to the parametric curve describing the
vortex core (3.6). This is done to ensure that circulation (Γ ) is conserved along the vortex
tube. The vorticity and velocity fields are related by the following equation:

∇2v = −∇ × ω. (3.8)

This Poisson equation (3.8) is solved to generate a solenoidal velocity field to initialize
the present simulations. The ensuing vorticity field is divergence free and approximately
compactly supported in the tubes. The Reynolds number based on the circulation Γ is set
to

Re = Γ

ν
= 3000. (3.9)

The solver outlined in § 3.2 is used for simulating the flow on a uniform grid with
256 points in each direction. This resolution was found to be reasonable for the present
problem.

3.4. Vortex reconnection in orthogonally interacting tubes
We also simulate the interaction of two orthogonally offset vortex tubes in a periodic
box of dimension 2π (Boratav et al. 1992). The initial configuration is shown in figure 6.
We specify vorticity along the axes of the tubes, specifically vorticity in ‘vortex Y’ is
along the −ŷ axis and vorticity in ‘vortex Z’ is along the +ẑ axis. The compact Gaussian
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ω
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Figure 6. Initial configuration for interaction of orthogonally offset tubes.

function, described previously in (3.7), distributes vorticity in the tube’s cross-section.
This ensures vorticity is non-zero only inside the tube of radius rc = 0.666. Both tubes
have an initial circulation of Γ = 7.665, and the Reynolds number based on circulation is
set to Re = 1400. As discussed previously, the velocity field is initialized by solving the
Poisson equation (3.8).

4. Local vortex line shapes in turbulent flows

The probability distribution of local vortex line shapes in turbulent flow fields generated
from (i) randomly initialized isotropic field with large-scale forcing and (ii) Taylor–Green
vortex field without any external forcing are investigated in detail in this section. The
vortex line shapes are analysed in the framework of normalized vorticity gradient tensor
invariants (qω,rω). A comparison is drawn between the probability distributions of vortex
line shapes in the two different turbulent flows.

4.1. Forced isotropic turbulence
The p.d.f. of Φ11 and its normalized component, χ11, for different Reλ are shown in
figure 7. As expected, the tails of the p.d.f. of Φ11 grow with increasing Reynolds number.
Conversely, the p.d.f. of χ11 is bounded by definition and is compactly supported in the
range described by (2.23). Importantly, the χ11 p.d.f. collapses to a self-similar shape
for Reλ ≥ 38. Following the precedent of Das & Girimaji (2020), vortex line shapes are
analysed in the bounded invariant space of χ .

The joint p.d.f.s of qω–rω in forced isotropic turbulent flows of different Reλ are plotted
in figure 8. The dashed lines mark the realizable region of the qω–rω plane. It is well known
that the joint p.d.f. of velocity gradient tensor invariants (q–r) has a characteristic teardrop
shape with maximum probability of occurrence along the right discriminant line of the
plane (Das & Girimaji 2020). In contrast, the joint p.d.f. of qω–rω shows that the highest
probability of occurrence is at and around the origin of the plane, which represents straight
parallel vortex lines. At Reλ = 1, the p.d.f. resembles that of a Gaussian field reflecting
the random forcing of the flow field. As Reλ increases from 1 to 25 the region close to
the origin becomes progressively more densely populated, which indicates an increase in
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Figure 7. Marginal p.d.f. of the longitudinal component of the (a) un-normalized (Φ11) and (b) normalized
(χ11) vorticity gradient tensor.
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and (h) 225; (i) line contour plots for Reλ = 86–588.
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Figure 9. Population fraction of non-degenerate vortex line topologies for forced isotropic turbulence at
different Reλ.

probability of straight vortex lines in the flow. At Reλ = 25, the joint p.d.f. approaches its
asymptotic shape. The characteristic form is symmetric in rω and resembles a ‘bell-like’
shape. In the next range of Reynolds numbers, i.e. for Reλ ∈ (25, 225), the joint p.d.f.
contours undergo finer refinements of this shape. At Reλ = 225, the joint p.d.f. attains a
self-similar shape and is invariant above this Reynolds number. This is demonstrated by
superposing line contours in figure 8(i). It is evident that the joint p.d.f.s of Reλ = 225, 385
and 588 are nearly identical. This is similar to the findings of Das & Girimaji (2019) for
the q–r joint p.d.f., which also asymptotes to a self-similar shape at the same Reλ(= 225).
It is further evident from figure 8 that from Reλ = 1 to 86 the joint p.d.f. shrinks closer to
the origin, while from Reλ = 86 to 225 the p.d.f. expands away from the origin before it
achieves a characteristic invariant distribution. The characteristic p.d.f. at Reλ ≥ 225 has
the highest density near the origin and the densities decrease as we move away from the
origin. This indicates a clear preference of turbulence to attain local vortex line shapes that
are straight. This is in agreement with the findings of Boschung et al. (2014). The p.d.f. in
the plane further indicates that the focal topologies have a higher probability of occurrence
in a turbulent flow field than non-focal vortex lines. For all the Reλ cases, the joint p.d.f. is
more symmetric in rω than the velocity gradient case. The symmetry is more pronounced
at higher Reynolds numbers. This symmetry indicates that vortex lines in a turbulent flow
field are equally likely to be stable (converging towards a centre or a node) as unstable
(diverging from a centre or a node). Such a symmetry is consistent with the observations
of Wang (2012) in the distribution of positive and negative vortex line segments. Boschung
et al. (2014) also reported that the joint distribution of invariants of curvature tensor for
local vortex lines is symmetric.

The percentage of points in the turbulent flow field belonging to the four different vortex
line topologies are plotted as a function of Reλ in figure 9. The vortex line topology
percentages do not show a strong dependence on Reynolds number. There is a noticeable
variation in the fractions of SFS and UFC topologies only for Reλ ≤ 25. However, the sum
total of the two focal topologies (SFS and UFC) and that of the two non-focal topologies
(SN/S/S and UN/S/S) remain nearly constant at all Reynolds numbers. As inferred from
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Figure 10. Scatter plot for extreme values of ‖Φ‖2 (> 900) and ‖A‖2 (> 140) for Reλ = 225.
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Figure 11. (a) Conditional average of the Frobenius norm of the vorticity gradient tensor (〈Φ2|rω, qω〉/〈Φ2〉)
in the qω–rω plane for Reλ = 225; (b) scatter plot of extreme vorticity magnitude (‖Φ‖2 > 1000) in the qω–rω

plane.

the qω–rω joint p.d.f., the focal topologies (SFS and UFC) indeed dominate over the
non-focal topologies (SN/S/S and UN/S/S). The focal vortex lines occupy approximately
75 % of the flow field, while only 25 % of the field is constituted by non-focal vortex lines.
At high Reynolds numbers (Reλ ≥ 86), the symmetry of the probability distribution with
respect to rω is further evident in figure 9, as the population fractions of stable and unstable
topologies obtained are exactly equal.

The intermittency of velocity gradients has received much attention in previous works
(Sreenivasan & Antonia 1997; Buaria et al. 2019). We now examine the intermittency
of the vorticity gradients. A scatter plot of the extreme values of the velocity gradient
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Figure 12. (a) Filled contour plot of the qω–rω joint p.d.f. for the initial field of a Taylor–Green vortex flow.
Field vortex lines in physical space dominated by regions I and II of the qω–rω joint p.d.f. coloured by (b) qω

(c) rω.

tensor norm (‖A‖2) and vorticity gradient tensor norm (‖Φ‖2) is shown in figure 10. A few
locations in the turbulent flow field have high values for both ‖A‖2 and ‖Φ‖2; however,
there are also a significant number of points with high ‖Φ‖2 and low ‖A‖2 and vice versa.
Nearly 45 % of points exhibit both high velocity and vorticity gradients.

Vorticity gradients are a higher order derivative than velocity gradients and representing
statistics of a lower order quantity in a higher order space leads to a near uniform
distribution much like the distribution of kinetic energy in a velocity gradient invariant
space. Therefore, the intermittency of velocity gradients cannot be captured in the
qω–rω space. However, the intermittency of vorticity gradients can be examined in the
qω–rω space. Toward this end, the conditional average of the Frobenius norm squared of
the vorticity gradient tensor (〈‖Φ‖2|rω, qω〉) is shown in figure 11(a). It is evident from the
figure that the highest conditional average ‖Φ‖2 occurs at the origin indicating that straight
vortex lines have the highest vorticity gradients on average. The conditional average of
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Figure 13. The qω–rω joint p.d.f. filled contour plots for Taylor–Green vortex simulation at (a) t∗ = 0,
(b) t∗ = 0.132, (c) t∗ = 0.145, (d) t∗ = 0.160, (e) t∗ = 0.185, ( f ) t∗ = 0.740, (g) t∗ = 5, (h) t∗ = 9.23 and
(i) t∗ = 11.57.

‖Φ‖2 decreases away from the origin and is minimum at the boundaries of the qω–rω

plane. It may further be noted that the average vorticity gradient magnitude tends to be
slightly higher for focal or spiraling vortex lines compared with the non-focal vortex line
shapes. Next, the points of most intense vorticity gradient magnitudes (‖Φ‖2 > 1000) are
marked in the qω, rω plane in figure 11(b). The scatter plot clearly suggests that these
intense magnitude events are most likely to occur when the vortex lines are straight. There
also appears to be a tendency for such high values to occur when vortex lines are nearly
two-dimensional (2-D), i.e. rω ≈ 0.

Overall, the local vortex line shape exhibits a characteristic bell shape that is invariant
at sufficiently high Reynolds numbers. Vortex lines in a turbulent flow field are equally
likely to be stable or unstable. Turbulence exhibits a strong preference for focal vortex
lines over non-focal vortex lines. Further, the highest average vorticity gradient occurs in
locally straight vortex lines.
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Figure 14. The qω–rω joint p.d.f. line contour plots and population fractions of non-degenerate topologies
for forced isotropic turbulence (FIT) at Reλ = 225, Taylor–Green vortex flow (TG) at t∗ = 12 (shortly after
peak dissipation) and turbulent channel flow at Reτ = 5200 on the wall-normal plane y+ = 100. Data for the
turbulent channel flow case are obtained from Johns Hopkins Turbulence Database (Moser, Kim & Mansour
1999; Perlman et al. 2007; Li et al. 2008).

4.2. Taylor–Green vortex breakdown
The joint p.d.f. distribution of qω–rω for the initial Taylor–Green field is plotted in
figure 12(a). The initial p.d.f. is densely populated in two regions: (I) at the ordinate axis
near qω = 0.4; and (II) at the intersection of the lower boundary and discriminant lines
(qω = −1/2, rω = ±1/(3

√
6)). The local vortex line shapes corresponding to region II

are axisymmetric vortex expansion or axisymmetric vortex compression depending on the
sign of rω, whereas region I corresponds to vortex line shapes that are close to planar
elliptic. We identify planes in the physical domain wherein the joint p.d.f. of that plane is
concentrated in either region I or region II. The field vortex lines in such planes, derived
from the vorticity field, are then plotted in figure 12(b–c). Figure 12(b) plots the vortex
lines coloured by qω and figure 12(c) plots the same coloured by rω. We observe that
qω is positive and rω ≈ 0 for the elliptic vortex lines (region I). Similarly in region II,
(qω ≈ −0.5, rω > 0) for axisymmetrically expanding vortex lines and (qω ≈ −0.5, rω <

0) for axisymmetrically compressing vortex lines. Therefore, the field vortex lines are in
agreement with the shapes predicted by the qω–rω classification framework.

We now present the evolution of the qω–rω joint p.d.f. as the flow starts breaking
down toward turbulence. The initial field (figure 13a) is mostly constituted by vortex
line shapes belonging to regions I and II of the qω–rω plane as discussed above.
The vortex line shapes belonging to region I, predominantly planar elliptic in nature,
begin to change first, which results in a reduction of the p.d.f. values (figure 13b,c).
These vortex line shapes are replaced by straight parallel vortex lines, as indicated by
the emerging p.d.f. values near the origin (figure 13c,d). Following this, the region II
(axisymmetrically expanding/compressing) vortex lines are replaced by locally straight
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vortex lines (figure 13d– f ). At t∗ ≈ 0.74, the characteristic bell shape of the p.d.f. begins
to materialize. Note that this happens quite early on in the timeline of breakdown to
turbulence, well before the peak dissipation is achieved at t∗ = 9.23. The p.d.f. then
undergoes further refinements and asymptotes to a self-similar form shortly after the peak
of dissipation (figure 13g–i). We now compare the joint probability distribution of qω–rω

of the Taylor–Green vortex flow field after peak dissipation with that of the forced isotropic
turbulent flow field at Reλ = 225 and that of the turbulent channel flow at the Reτ = 5200.
The data for turbulent channel flow is obtained from Johns Hopkins Turbulence Database
(Moser et al. 1999; Perlman et al. 2007; Li et al. 2008). The data at the wall-normal
plane y+ = 100 is considered in plotting the joint p.d.f. for the channel flow. The Taylor
Reynolds number at the plane y+ = 100 is Reλ = 81. The velocity derivatives in the joint
p.d.f. computations are obtained with spectral accuracy in the streamwise and spanwise
directions, while a fourth-order central difference scheme is used for the wall-normal
derivative. As shown in figure 14, the p.d.f.s and the population percentages for the
four vortex line topologies are nearly identical for all the flows. This indicates that
the characteristic bell shape of the qω–rω distribution is unique in turbulent flow fields
much like the characteristic teardrop-shape distribution observed for the velocity gradient
invariants.

5. Local vortex line shape in vortex reconnection

We now examine the local vortex line structure during the important process of vortex line
reconnection. As mentioned in § 1, reconnection plays a key role in many flows of interest.
In these flows, reconnection can occur between two vortices of different initial alignments.
Here, we consider two canonical initial orientations previously studied in the literature and
examine the reconnection process from the local vortex line shape point of view. The focus
is primarily on the mechanism of bridging (Melander & Hussain 1988; Kida et al. 1991;
Boratav et al. 1992) in vortex reconnection.

5.1. Anti-parallel vortex tubes
We now examine the evolution of local vortex line shapes during vortex reconnection via
bridging in sinusoidally perturbed anti-parallel vortex tubes. The key events leading up
to and beyond bridging are traced by analysing the isosurfaces of vorticity magnitude at
different instants of time in figure 15. The isosurfaces are coloured by qω to track the
evolution of local vortex line shapes during this period. We do not show results for rω as
it is close to zero everywhere in the tubes at all times. This indicates that the local vortex
lines are nearly 2-D and allows qω to completely characterize the local vortex line shape.
The different steps in the vortex reconnection process and the corresponding vortex line
shapes are discussed below with reference to figures 15–17.

(i) At t = 0, qω is zero everywhere on the surface, which indicates that the local vortex
line shape is straight on the tube surface. In figure 16, we plot contours of qω in the
symmetry (x–y) plane to describe the vortex line shapes in the tube’s cross-section.
Initially, the dominant vortex line shape in the tube’s cross-section is straight, except
for small regions near the core (red and blue crescent-shaped regions in figure 16a).
In these particular regions, the curvature effects are dominant. Due to the strong
curvature effects, the linearity assumption of determining local vortex line shapes
from qω–rω might not hold. As a result, the local vortex line shape is not necessarily
reflective of the large-scale vortex line shape.
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Figure 15. The |ω| isosurfaces at 30 % of maximum initial vorticity coloured by qω at t = (a) 0, (b) 3.6,
(c) 4.4, (d) 4.8, (e) 5.4 and ( f ) 6.
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Figure 16. The qω contours in the symmetry plane at t = (a) 0, (b) 3.6 and (c) 6. Contours are only shown in
regions wherein |ω| > 0.3ω0.
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Figure 17. The qω contours in the dividing plane at t = (a) 4.4, (b) 4.8 and (c) 6. Contours are only shown in
regions wherein |ω| > 0.3ω0.

(ii) The two tubes move toward each other by mutual induction and are pressed against
each other at t = 3.6. At this stage, the cores of the tubes in the interaction region
are significantly flatter. The vortex line shape is dominantly straight in the tubes
everywhere excluding the contact region. The contact region comprises of positive
values of qω, which indicates locally elliptic vortex lines. The vortex line shapes
in the contact region are examined in greater detail by the contours of qω in the
cross-section of the contact zone shown in figure 16(b). The local vortex line shapes
in the contact zone are dominantly planar elliptic as evident from the positive values
of qω.

(iii) Cross-linking between the tubes results in annihilation of vorticity in the symmetry
plane. Correspondingly, orthogonal vorticity emerges in the dividing plane resulting
in vortex reconnection. By t = 4.4, reconnection is initiated and at the ends of the
contact zone a hump connects the two tubes. The hump is called a bridge (Melander
& Hussain 1988) and the process is termed vortex reconnection via bridging. Vortex
line shapes inside the bridges are analysed by examining the contours of qω in the
dividing plane in figure 17. The vortex line shapes inside the bridges are dominantly
planar elliptic in the inner bridge portions, while planar hyperbolic vortex lines are
prevalent in the outer bridge regions. Henceforth, this specific occurrence of paired
vortex line shapes in the bridges will be referred to as ‘elliptic–hyperbolic pairing’.
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Figure 18. The qω–rω joint p.d.f. filled contours at t = (a) 0, (b) 4.4 and (c) 6. Only points with |ω| > 0.3ω0
are considered.

Aside from the bridges, the vortex line shapes everywhere else in the vortex tubes
are mostly straight.

(iv) The orthogonal transfer of vorticity from the tubes in the interaction region makes
them weaker, and correspondingly the bridges become stronger. This is evident from
figure 15(d), wherein the bridges have thickened and the interaction region has
experienced thinning. At this stage the vortex line shapes in the curved region of
the tubes are more elliptic. Moreover, as shown in figure 17(b), ‘elliptic–hyperbolic
pairing’ continues to be the dominant vortex line shapes inside the bridges.

(v) As the bridges strengthen, self-induction causes the bridges to pull apart from the
interaction region, stretching the remnant of tubes (threads) in the contact zone. The
separation between the bridges has increased in figure 15(e). The distribution of
vortex line shapes in the tubes is similar to that in figure 15(d).

(vi) At the final time step under consideration (figure 15 f ), the bridges have morphed
to be part of the two vortex half-rings and the hump is indiscernible. The two
formed vortex half-rings have elliptic vortex line shapes near the curved portions.
The ‘elliptic–hyperbolic pairing’ is still the dominant vortex line topology inside the
morphed bridges (figure 17c). Meanwhile, self-induction between the curved threads
results in them moving away from each other. The corresponding vortex line shapes
inside the threads (figure 16c) are also predominantly straight.

We now analyse the evolution of vortex line shapes in the vortex tubes altogether by
examining the joint probability distribution of qω–rω. We only consider points with
vorticity magnitude greater than 30 % of the maximum initial vorticity in plotting such
joint distributions (figure 18). Initially, the vortex line shape is locally straight (i.e.
qω ≈ rω ≈ 0) almost everywhere. At t = 4.4, i.e. at the inception of bridging, the joint
p.d.f. has expanded along the qω axis while still remaining constrained in the rω axis. This
implies that the local vortex line shapes are highly likely to be planar. In addition, the
vortex line shapes are no longer restricted to only straight lines, rather they are very likely
to be elliptic or hyperbolic in nature. Finally, by t = 6, the likelihood of straight vortex
lines has decreased further as more elliptic and hyperbolic vortex lines appear. This is
partially due to the coiling of vortex lines (Van Rees, Hussain & Koumoutsakos 2012) in
the vortex half-rings.

5.2. Orthogonally interacting tubes
In this section we consider the reconnection of orthogonally offset vortex tubes. The
evolution of isosurfaces of vorticity magnitude coloured by qω at different stages leading
up to and beyond reconnection of the tubes are shown in figure 19. Unlike the previous case
of anti-parallel vortex tubes, there exist certain regions at the vortex tube surface wherein
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Figure 19. The |ω| isosurfaces at 40 % of maximum initial vorticity coloured by qω at t = (a) 0, (b) 2.64,
(c) 4.32, (d) 4.92, (e) 5.28 and ( f ) 6.
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Figure 20. The qω contours in the dividing plane at t = (a) 5.16, (b) 5.28 and (c) 6. Contours are only shown
in regions wherein |ω| > 0.4ω0.

rω is non-zero, which suggests that the local vortex line shapes in such regions are not
necessarily planar and likely to be 3-D. However, such regions are few and far between,
and locally the vortex lines are predominantly 2-D at the surface of the tubes. The different
stages of reconnection are described as follows with reference to figures 19–21.

(i) Initially, the local vortex lines are straight everywhere in the tubes. The vortex tubes
move and deform under the influence of each other’s velocity field. At t = 2.64,
the local vortex line shape continues to be straight almost everywhere except for the
highly curved regions in the vortex tube wherein it is elliptic as indicated by positive
qω values.

(ii) Vortex Z under the influence of the velocity field of vortex Y starts moving along the
direction of it’s binormal. This leads to the configuration as shown in figure 19(c)
wherein the mid regions of the vortex tubes are parallel and the vorticity in the tubes
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Figure 21. The rω contours in the dividing plane at t = (a) 5.16, (b) 5.28 and (c) 6. Contours are only shown
in regions wherein |ω| > 0.4ω0.

is directed in opposite directions. The cores of the vortex tubes at the mid regions
are flat and pressed against each other creating an ideal setting for reconnection via
bridging. At this stage, the vortex line shapes in the tubes are dominantly straight
except for the elliptic vortex lines in the curved regions of the tubes. As in the
previous case of reconnection in anti-parallel vortex tubes, vortex line shapes in
the contact region are also elliptic.

(iii) By t = 4.92, bridging is initiated and the ends of the contact regions are connected
by bridges. The local vortex line shapes in the upper bridge surface are dominantly
hyperbolic as indicated by negative values of qω there. We also plot contours of qω

(figure 20) and rω (figure 21) in the dividing plane slicing through the bridges. At t =
5.16, just after the onset of bridging, qω is dominantly negative in the outer region
of bridges while it is positive in the inner regions. At this stage, the contours of rω

shown in figure 21(a) demonstrate that even though rω is not exactly zero everywhere
inside the bridges, it is very close to zero in the non-zero qω regions of the bridges.
Therefore, in such regions the vortex line shapes are nearly planar and the dominant
vortex line shape in the bridges is clearly constituted by ‘elliptic–hyperbolic pairing’.

(iv) The sequence of events beyond bridging is similar to the anti-parallel case.
Further annihilation of vorticity in the symmetry plane accompanied by generation
of orthogonal vorticity in the dividing plane makes the bridges stronger, while
simultaneously weakening the mid section of the tube (figure 19e). The vortex line
shapes in the tubes in the bridges continue to show ‘elliptic–hyperbolic pairing’.

(v) By t = 6, the bridges have integrated with the tubes and the hump is indiscernible.
Self-induction has pushed the bridges away from each other consequently stretching
the mid sections of the tubes into slender threads. At this stage, the vortex line shapes
at the surface of the reconnected tubes are mostly straight lines barring the highly
curved regions of the tubes wherein elliptic vortex lines occur. Overall, the vortex
line shapes in the reconnected region are still dominated by ‘elliptic–hyperbolic
pairing’ (figure 20c).

Finally, we plot the joint p.d.f. of qω–rω in figure 22 to examine the vortex line shapes
in the entire vortex tubes. Initially, the joint p.d.f. is entirely centred at the origin as the
vortex lines are exclusively straight in the tubes. At t = 5.16, beyond bridging, the joint
p.d.f. has expanded away from the origin albeit being dominantly constrained near the qω

axis implying planar shapes are highly likely. At late times more 3-D shapes appear as the
joint p.d.f. contours expand away from the origin. The sequence of events leading up to and
beyond vortex reconnection via bridging in this case are similar to the anti-parallel case.
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Figure 22. The qω–rω joint p.d.f. filled contours t = (a) 0, (b) 5.16 and (c) 6. Only points with |ω| > 0.4ω0
are considered.

Additionally, in both the cases a specific configuration of elliptic and hyperbolic vortex
lines are prominent in the bridges. This leads us to conclude that the emergence of this
‘elliptic–hyperbolic pairing’ in the bridges is independent of the initial orientation of the
vortex tubes.

6. Summary and conclusions

The paper seeks to characterize infinitesimal vortex line topology by adapting the local
streamline topology classification method of Chong et al. (1990). The differences between
velocity and vorticity fields are identified and the critical point analysis is suitably
modified. Topology classification in terms of second and third invariants of the vorticity
gradient tensor is reiterated and the invariant evolution equations are derived. Vortex
line geometry classification, which is related to topology, is introduced using suitably
normalized vorticity gradient invariants (Das & Girimaji 2019). An extensive investigation
of vortex line geometry distribution in forced isotropic turbulence is conducted over a wide
range of Reynolds numbers. Specifically, the joint p.d.f. of the second and third normalized
vorticity gradient invariants (qω–rω) is examined. At very low Reynolds numbers (order
unity), the joint p.d.f. form is similar to that of a Gaussian field. With increasing Reynolds
number, the p.d.f. form changes and attains self-similarity beyond Reλ > 200. It was
shown by Das & Girimaji (2019) that the joint p.d.f. of normalized velocity gradient
invariants also attains self-similarity beyond Reλ > 200. The high-Reynolds-number
vorticity gradient invariants’ p.d.f. is of symmetric bell shape with the highest probability
density at locally parallel vortex lines. Moreover, it is shown that straight vortex lines have
the highest average vorticity gradient magnitude. The topology and geometry distribution
during Taylor–Green vortex breakdown toward turbulence is next examined. Initially, the
flow field is constituted of only two specific vortex line geometric shapes. With time the
flow deforms and convolutes the vortex lines, which creates smaller scales of motion.
Consequently, the vortex line elements of different topologies and geometric shapes are
generated. The joint p.d.f. of qω–rω gradually takes the characteristic bell shape seen
in forced isotropic turbulence. This finding suggests that that the bell-shape distribution
is likely a universal characteristic of turbulence across different types of turbulent flows
analogous to the teardrop shape of the velocity gradient invariants’ joint p.d.f. The study
next examines the vortex reconnection phenomenon, specifically the bridging process
that initiates the merger. Different initial vortex tube configurations are considered. It is
demonstrated the structure of vortex filaments inside the bridges in both cases considered
are distributed in a similar fashion. The bridge is constituted of 2-D elliptic vortex lines on
one side and hyperbolic vortex lines on the other.
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Appendix A

In the present work, the vorticity vector is given by ω and the vorticity gradient tensor is
given by

Φij = ∂ωi

∂xj
. (A1)

It is demonstrated in § 2 that the local vortex line can be classified into distinct topologies
and its shape can be completely defined by the normalized second and third invariants
of Φ.

In a recent work by Boschung et al. (2014), vortex line topology was studied in terms
of curvature and rotation of a surface element normal to the vorticity vector. Toward this
end, they first define a unit vector in the direction of vorticity,

ti = ωi

| ω | . (A2)

They further define a curvature tensor,

T ij = ∂ti
∂xj

. (A3)

This tensor is different from the vorticity gradient tensor and is related to Φij as follows:

T ij = 1
| ω |

(
Φij − ti

∂ωi

∂xj

)
. (A4)

The tensor T ij has two non-zero invariants – first (H) and second (K), while the third
invariant is zero, since the third eigenvalue of T ij is zero by construction. In contrast, Φij
has the first invariant zero by definition, while the second (Qω) and third (Rω) invariants
are used to determine the vortex line geometry.

The main principle behind the work of Boschung et al. (2014) is that the real parts
of the two non-zero eigenvalues of T ij determine the curvature of a surface element
perpendicular to the unit vorticity vector (ti), while the imaginary parts represent the
rotation of such a surface. This surface curvature in turn provides certain information
about the local change of ti and therefore the vortex line tangential to it. Based on this,
they have characterized different surface element topologies and the corresponding 2-D
configurations of the vortex lines in the phase space of H and K (see figure 2 of Boschung
et al. 2014). This provides important information about the converging or diverging nature
of the local vortex lines. However, it does not determine the complete 3-D shape of the
vortex lines.

In the present work, we analyse the geometry of the local vortex lines directly
based on the local vorticity gradient tensor, following the work of Chong et al. (1990).
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This enables us to characterize the complete 3-D shape of the local vortex lines in the
compact phase space of qω and rω (§ 2.5). It is evident that the present framework provides
details about the vortex line shapes that are not amenable to the surface element based
analysis of Boschung et al. (2014).

Appendix B

In a frame of reference rotating with angular velocity Ω , the local vorticity (ωR) field is
related to the inertial vorticity field by

ωR = ω − 2Ω. (B1)

We select a coordinate frame rotating with angular velocity Ω = ω(x0)/2. In such a frame
the local vorticity field (ωR) is given by the following equation:

ωR = ω − ω(x0). (B2)

The local vorticity in such a frame is the same as the ‘relative vorticity field’ ω̃(x; x0)
as defined in (2.15). We now derive equations for vortex lines in the rotating frame of
reference. Vortex lines as observed from a rotating frame of reference are curves tangent
to the local vorticity in the rotating frame. We denote by x′

i the basis of the rotating frame
whereas xi represents the inertial basis. Similarly, (ω′

R)i denotes the components of local
vorticity vector along the rotating basis and (ωR)i denotes the components of vorticity in
the rotating frame expressed along the inertial basis. At time t, the coordinate basis xi can
be transformed to x′

i by a proper rotation. Let Q be an orthogonal coordinate transformation
tensor such that

Qij = ∂x′
i

∂xj
. (B3)

The transformation tensor Q obeys the standard transformation rules transforming vectors
between the two bases xi and x′

i as follows:

(ω′
R)i = Qim(ωR)m. (B4)

In a rotating frame, the differential equation governing vortex lines is as follows:

dx′
i

ds
= (ω′

R)i. (B5)

We multiply (B5) by Qim to cast it along the inertial basis:

dxm

ds
= (ωR)m, (B6)

where we have used (B3) and the transformation identity for vectors (B4). Solution
trajectories obtained by integrating (B6) for a frozen vorticity field are vortex lines as
observed in a rotating frame of reference.

Since ω̃(x; x0) and ωR are the same by definition, (B6) and (2.16) are identical. Thus, the
so-called ‘relative vortex lines’ are indeed the vortex lines observed from a frame rotating
with angular velocity ω(x0)/2.
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