ON SELF-ADJOINT FAGTORIZATION OF OPERATORS

HEYDAR RADJAVI

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space \mathscr{H} is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.

This work was motivated by a well-known result of Halmos and Kakutani (3) that every unitary operator on \mathscr{H} is the product of four symmetries, i.e., operators that are self-adjoint and unitary.

1. By "operator" we shall mean bounded linear operator. The space \mathscr{H} will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on \mathscr{H} by \mathscr{M} and that of symmetries by \mathscr{J}. The following usual notation for the product of two classes \mathscr{X} and \mathscr{Y} will be used: $\mathscr{X} \mathscr{Y}=\{A: A=X Y, X \in \mathscr{X}, Y \in \mathscr{Y}\} ; \mathscr{X}^{2}=\mathscr{X} \mathscr{X}$. We observe that $\mathscr{M} \mathscr{J}=\mathscr{J} \mathscr{M}$, since if $M \in \mathscr{M}$ and $J \in \mathscr{J}$, then $J M J \in \mathscr{M}$ and $M J=J(J M J)$. Hence A is the product of m hermitian operators and n symmetries in any order if and only if $A \in \mathscr{M}^{m} \mathscr{J}^{n}$.

We shall implicitly use many results of the spectral theory for normal operators, but it is convenient to fix some notation: Let $E(\cdot)$ denote the resolution of the identity for the normal operator A on \mathscr{H}. Let

$$
S=\left\{z: r_{1}<|z| \leqq r_{2}\right\} \quad \text { and } \quad T=\{z:|z|=r\}
$$

Then the restrictions of A to $E(S) \mathscr{H}$ and to $E(T) \mathscr{H}$ will be denoted by $\phi\left(A, r_{1}, r_{2}\right)$ and $\phi(A, r)$, respectively.

The rank of an operator is the dimension of the closure of its range. The spectrum of A will be denoted by $\sigma(A)$.
2. We start with the following result.

Lemma 1. Let A be an operator on \mathscr{H} and let $A=\sum_{j=1}^{\infty} \oplus A_{j}$, where each A_{j} is an invertible operator on \mathscr{H}_{j} and where the \mathscr{H}_{j} all have the same (finite or infinite) dimension. Assume that an integer n exists such that either

$$
\left\|A_{j+1}\right\| \cdot\left\|A_{j}^{-1}\right\| \leqq 1
$$

for all $j \geqq n$ or $\left\|A_{j+1^{-1} \|}\right\| \cdot\left\|A_{j}\right\| \leqq 1$ for all $j \geqq n$. Then $A \in \mathscr{M}^{2} \mathscr{J}^{2}$. Furthermore, if A is invertible and if either of the above inequalities holds for all $j \geqq 1$,
then operators B and C in $\mathscr{M} \mathscr{J}$ can be chosen such that $A=B C,\|B\| \leqq\|A\|$, and $\|C\| \leqq\|A\| \cdot\left\|A^{-1}\right\|$.

Proof. It is convenient to employ the notation of operator matrices: for any pair of natural numbers j and k, A_{j} can be considered as an operator on \mathscr{H}_{k}; it will cause no confusion to denote this operator by A_{j} also. Now define an operator B_{j} on \mathscr{H}_{j} as follows:

$$
\begin{gathered}
B_{1}=A_{1}, \quad B_{2}=A_{1}^{*} \\
B_{2 k+1}=\left(A_{2 k+1} A_{2 k-1} \ldots A_{1}\right)\left(A_{2 k}^{*} A_{2 k-2}^{*} \ldots A_{2}^{*}\right)^{-1} \\
B_{2 k+2}=B_{2 k+1}{ }^{*}, \quad k=1,2, \ldots .
\end{gathered}
$$

Define C_{j} on \mathscr{H}_{j} by $C_{j}=B_{j}^{-1} A_{j}, j=1,2, \ldots$; observe that $C_{1}=I$ and

$$
\begin{gathered}
C_{2 k}=\left(A_{1}^{*} A_{3}^{*} \ldots A_{2 k-1}^{*}\right)^{-1}\left(A_{2} A_{4} \ldots A_{2 k}\right), \\
C_{2 k+1}=C_{2 k}{ }^{*}, \quad k=1,2, \ldots .
\end{gathered}
$$

The inequalities

$$
\begin{gathered}
\left\|B_{2 k+1}\right\|=\left\|B_{2 k+2}\right\| \leqq\left(\prod_{j=0}^{k}\left\|A_{2_{j+1}}\right\|\right)\left(\prod_{j=1}^{k}\left\|A_{2_{j}}^{-1}\right\|\right) \\
\left\|C_{2 k}\right\|=\left\|C_{2 k+1}\right\| \leqq\left(\prod_{j=1}^{k}\left\|A_{2_{j}}\right\|\right)\left(\prod_{j=1}^{k}\left\|A_{2_{j-1}}{ }^{-1}\right\|\right)
\end{gathered}
$$

and

$$
\left\|A_{k}\right\| \leqq\|A\| \quad \text { for all } k
$$

together with either of the inequalities hypothesized in the lemma show that the B_{j} and C_{j} are uniformly bounded. Hence $B=\sum_{j=1}^{\infty} \oplus B_{j}$ and $C=\sum_{j=1}^{\infty} \oplus C_{j}$ are bounded operators on \mathscr{H} and $A=B C$.

The operator B is a direct sum of operator matrices of the form $X \oplus X^{*}$. The equation

$$
\left(\begin{array}{rr}
X & 0 \\
0 & X^{*}
\end{array}\right)=\left(\begin{array}{rr}
0 & X \\
X^{*} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

implies that $X \oplus X^{*}$ belongs to $\mathscr{M} \mathscr{F}$, and hence so does B.
The operator C can be written as $C_{1} \oplus D=I \oplus D$, where D is of the same form as B. Hence $C \in \mathscr{M} \mathscr{J}$, so that $A \in \mathscr{M}^{2} \mathscr{J}^{2}$.

The bounds given for $\|B\|$ and $\|C\|$ in the lemma are immediate.
Theorem 1. Let A be a normal operator on \mathscr{H} with pure point spectrum. Then A is the product of two commuting normal operators in $\mathscr{M} \mathscr{F}$.

Proof. First assume that A is invertible. By Zorn's Lemma there is a maximal class $\left\{\mathscr{H}_{\alpha}\right\}$ of mutually orthogonal subspaces of \mathscr{H} such that, for each α, (i) \mathscr{H}_{α} reduces A, and (ii) the restriction A_{α} of A to \mathscr{H}_{α} can be represented as $\operatorname{diag}\left(z_{\alpha 1}, z_{\alpha 2}, \ldots\right)$, where the sequence $\left\{\left|z_{\alpha j}\right|\right\}_{j=1}^{\infty}$ is monotone. Then the orthogonal complement, \mathscr{H}_{0}, of $\sum_{\alpha} \oplus \mathscr{H}_{\alpha}$ is necessarily finite-dimensional and reduces A; let A_{0} denote the restriction of A to \mathscr{H}_{0}.

Let A_{β} be a fixed member of $\left\{A_{\alpha}\right\}$ and incorporate A_{0} into A_{β}, i.e., redefine A_{β} as $A_{0} \oplus A_{\beta}$. Then $A=\sum_{\alpha} \oplus A_{\alpha}$; all of the operators in this direct sum satisfy the conditions of Lemma 1 . Hence $A_{\alpha}=B_{\alpha} C_{\alpha}$ for each α, where the operators B_{α} and C_{α} are the members of $\mathscr{M} \mathscr{J}$ constructed as in Lemma 1 for A_{α}. We observe that the B_{α} and C_{α} are all diagonal and hence $B_{\alpha} C_{\alpha}=C_{\alpha} B_{\alpha}$. Furthermore, it follows from Lemma 1 that

$$
\left\|B_{\alpha}\right\| \leqq\|A\| \quad \text { and } \quad\left\|C_{\alpha}\right\| \leqq\|A\| \cdot\left\|A^{-1}\right\|
$$

for all $\alpha \neq \beta$. Hence $B=\sum_{\alpha} \oplus B_{\alpha}$ and $C=\sum_{\alpha} \oplus C_{\alpha}$ are bounded normal operators belonging to $\mathscr{M} \mathscr{J}$, and $A=B C=C B$.

We now dispose of the restriction that A be invertible. If X is the product of two normal, commuting members of $\mathscr{M} \mathscr{J}$, then so is $X \oplus 0$. Furthermore, if A has finite rank, then \mathscr{H} can be written as the direct sum of two equidimensional subspaces relative to which $A=A_{1} \oplus 0$. Then the equality

$$
\left(\begin{array}{ll}
A_{1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{1}^{*}
\end{array}\right)\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

proves the assertion of the theorem on A. These remarks permit us to assume that A has trivial null space and the closure of its range is infinite-dimensional. Hence $A=\sum_{j=1}^{\infty} \oplus A_{j}$, where $A_{j}=\phi\left(A, r_{j+1}, r_{j}\right), r_{j}=\|A\| / 2^{j-1}$. We also assume of course, that A is not invertible.

Let K be the set of integers for which A_{j} has infinite rank. For each $j \in K$ write $A_{j}=F_{j} \oplus D_{j}$, where F_{j} has finite rank and D_{j} is a direct sum of diagonal operators satisfying the monotonicity condition given in the first paragraph of this proof. Now $A=F \oplus \sum_{j \in K} \oplus D_{j}$, where F is necessarily compact. We have, as before, $D_{j}=B_{j} C_{j}$, where B_{j} and C_{j} are commuting normal members of $\mathscr{M} \mathscr{\mathcal { Z }}$. Furthermore, the uniform bounds given above for the B_{α} and C_{α} show that

$$
\left\|B_{j}\right\| \leqq\left\|A_{j}\right\| \leqq\|A\| \quad \text { and } \quad\left\|C_{j}\right\| \leqq\left\|A_{j}\right\| \cdot\left\|A_{j}^{-1}\right\| \leqq a_{j} / a_{j+1}=2
$$

for all $j \in K$. Hence $\sum_{j \in K} \oplus B_{j}$ and $\sum_{j \in K} \oplus C_{j}$ are both bounded operators in $\mathscr{M} \mathscr{\mathscr { K }}$ and their product is $\sum_{j \in K} \oplus D_{j}$.

Finally, we consider the compact operator F. There is no loss of generality in assuming that F has infinite rank. For otherwise K is necessarily an infinite set, and one can transfer to F one eigenvalue from each of the D_{j} with $j \in K$; this can be done without disturbing the stated properties of the D_{j}. The proof is now completed by the observation that F can be written as $\operatorname{diag}\left(z_{1}, z_{2}, \ldots\right)$ such that $\left\{\left|z_{j}\right|\right\}_{j=1}^{\infty}$ is non-increasing; Lemma 1 is then applicable to F.

Theorem 2. Every unitary operator on \mathscr{H} with pure point spectrum is the product of two commuting members of \mathscr{J}^{2}.

Proof. This is a corollary to Theorem 1 and the proof of Lemma 1.
For compact operators we have the following stronger version of Theorem 1.

Theorem 3. Every compact normal operator A on \mathscr{H} is the product of two commuting, compact normal operators in $\mathscr{M} \mathscr{J}$.

Proof. As in the proof of Theorem 1, we can reduce the general case to the one in which A has infinite rank and trivial null space. Thus, represent A as $\operatorname{diag}\left(z_{1}, z_{2}, \ldots\right)$ with $\lim _{n} z_{n}=0$. By splitting the sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ suitably, we express A as $\sum_{k=0}^{\infty} \oplus A_{k}$, where A_{0} has finite rank and A_{k} has the following property for each $k \geqq 1: A_{k}=\operatorname{diag}\left(z_{k 1}, z_{k 2}, \ldots\right)$, where $\left|z_{k, j+1}\right| \leqq\left|z_{k, j}\right| / 2$ for all j. Incorporating A_{0} into A_{1} and writing $A=\sum_{k=1}^{\infty} \oplus A_{k}$, we observe that Lemma 1 is applicable to each A_{k}. Furthermore, by the structure of the operators B and C in the proof of Lemma 1, we obtain $A_{k}=D_{k} F_{k}$, where D_{k} and F_{k} are compact diagonal operators with $\left\|D_{k}\right\|=\left|z_{k 1}\right|$ and $\left\|F_{k}\right\|=1$ for $k \geqq 2$. Let $D_{k}{ }^{\prime}=\left|z_{k 1}\right|^{-1 / 2} D_{k}$ and $F_{k}{ }^{\prime}=\left|z_{k 1}\right|^{1 / 2} F_{k}$ for all k. Since $\lim _{k} z_{k 1}=0$, it follows that $D=\sum_{k=1}^{\infty} \oplus D_{k}^{\prime}$ and $F=\sum_{k=1}^{\infty} \oplus F_{k}^{\prime}$ are both compact, diagonal members of $\mathscr{M} \mathscr{J}$. Then $A=D F$, as required.

Lemma 2. Let A be an invertible normal operator on \mathscr{H} such that $A=r U \oplus B$, where $r>0$ and U is unitary. Assume that the rank of B does not exceed that of U. Then $A \in \mathscr{M}^{2} \mathscr{J}^{2}$.

Proof. Express U as a direct sum $\sum_{j=1}^{\infty} \oplus U_{j}$, where each U_{j} has the same rank as U. Write $A_{1}=r U_{1} \oplus B$ and $A_{j}=r U_{j}$ for $j \geqq 2$. Then $A=\sum_{j=1}^{\infty} \oplus A_{j}$ belongs to $\mathscr{M}^{2} \mathscr{J}^{2}$ by Lemma 1 .

We note here that the Halmos-Kakutani result can be obtained by taking $r=1, B=0$ (on the trivial subspace), and observing that the operators B and C constructed in the proof of Lemma 1 are both unitary.

Theorem 4. Every normal operator on \mathscr{H} belongs to $\mathscr{M}^{2} \mathscr{J}^{2}$.
Proof. Every normal operator is the direct sum of operators each acting on an infinite-dimensional separable subspace. Hence it suffices to consider the case in which \mathscr{H} is separable. In view of Theorem 1, we can assume that the point spectrum of A consists of a finite number of points each of which has finite multiplicity. Hence the continuous spectrum of A is not empty. Furthermore, as in the previous proofs, we assume that A has trivial null space.

Now pick a point z in the continuous spectrum of A and let $r=|z|$. If $\phi(A, r)$ has infinite rank, then $r>0, \phi(A, r)=r U$, where U is unitary; hence $A \in \mathscr{M}^{2} \mathscr{J}^{2}$ by Lemma 1. Otherwise there exists a monotone sequence $\left\{r_{j}\right\}$ of positive numbers tending to r such that the operator

$$
A_{j}= \begin{cases}\phi\left(A, r_{j}, r_{j+1}\right), & \left\{r_{j}\right\} \text { increasing } \\ \phi\left(A, r_{j+1}, r_{j}\right), & \left\{r_{j}\right\} \text { decreasing }\end{cases}
$$

has infinite rank for all j. If $\sigma(A)$ contains 0 , then we can choose $r=0$ so that $\left\{r_{j}\right\}$ is decreasing; if $\sigma(A)$ does not contain 0 , then, by considering A^{-1} instead of A if necessary, we can again assume $\left\{r_{j}\right\}$ to be decreasing. Hence
we can also choose $r_{1}=\|A\|$. Furthermore, in the case where A is invertible, we incorporate $\phi(A, 0, r)$ into A_{1}. Thus $A=\sum_{j=1}^{\infty} \oplus A_{j}$ and Lemma 1 is applicable, since $\left\|A_{j+1}\right\| \cdot\left\|A_{j}^{-1}\right\| \leqq r_{j+1} / r_{j}$ for $j \geqq 2$.

Corollary. Every operator on \mathscr{H} which is similar to a normal operator is in \mathscr{M}^{4}.

Proof. If $M_{i} \in \mathscr{M}, i=1,2$, and if S is invertible, then

$$
S^{-1} M_{1} M_{2} S=\left(S^{-1} M_{1}\left(S^{*}\right)^{-1}\right)\left(S^{*} M_{2} S\right)
$$

Hence \mathscr{M}^{2} is invariant under similarity transformations (5); hence so is \mathscr{M}^{4}.
If A is similar to a normal operator with pure point spectrum, then it follows from Theorem 1 that A is the product of two commuting members of \mathscr{M}^{2}.
3. The next result gives a necessary condition that an operator (not necessarily normal) be in \mathscr{M}^{3}.

Theorem 5. Let A be an operator on \mathscr{H} and let $\tau(A)$ be the closure of its numerical range. Then $A \in \mathscr{M}^{3}$ implies that $\tau(A)$ contains either a real or a pure imaginary number.

Proof. Assume that $A=M_{1} M_{2} M_{3}, M_{i} \in \mathscr{M}$. If $0 \in \sigma(A)$, then $0 \in \tau(A)$. Hence assume that A is invertible, so that the M_{i} are invertible. Now let $B=M_{2} M_{3}$ and observe that B and B^{*} are similar. Hence α can be chosen such that both α and $\bar{\alpha}$ are in the approximate point spectrum of B. (This follows, e.g., from the well-known fact that the boundary points of $\sigma(B)$ are in its approximate point spectrum; the symmetric property of $\sigma(B)$ relative to the real axis should of course be employed also.)

Choose sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ of unit vectors in \mathscr{H} such that $x_{n}{ }^{\prime}=$ $(B-\alpha) x_{n}$ and $y_{n}{ }^{\prime}=(B-\bar{\alpha}) y_{n}$ converge to 0 . Now $A=M_{1} B$ implies that

$$
\begin{aligned}
& \left(A x_{n}, x_{n}\right)=\alpha\left(M_{1} x_{n}, x_{n}\right)+\left(M_{1} x_{n}{ }^{\prime}, x_{n}\right), \\
& \left(A y_{n}, y_{n}\right)=\bar{\alpha}\left(M_{1} y_{n}, y_{n}\right)+\left(M_{1} y_{n}^{\prime}, y_{n}\right) .
\end{aligned}
$$

Choose convergent subsequences of $\left\{\left(M_{1} x_{n}, x_{n}\right)\right\}$ and $\left\{\left(M_{1} y_{n}, y_{n}\right)\right\}$ and call their limits r and s, respectively. Thus $r \alpha$ and $s \bar{\alpha}$ both belong to $\tau(A)$. Since r and s are real, the line segment joining $r \alpha$ to $s \bar{\alpha}$ intersects at least one of the coordinate axes. By the Toeplitz-Hausdorff theorem, the numerical range is convex; see (2, p. 110, Problem 166). Hence so is $\tau(A)$; this implies the desired result.

Corollary 1. Let A be an arbitrary operator on \mathscr{H} and let α be any complex number whose square is not real. Then no operator of the form $A+r \alpha I$ belongs to \mathscr{M}^{3} if r is a sufficiently large positive number.

Proof. A sufficiently large translation of the compact set $\boldsymbol{\tau}(A)$ in any direction α, where α^{2} is not real, results in placing it entirely within one of the open quadrants.

Corollary 2. Let A be a normal operator whose spectrum lies entirely with in one of the open quadrants. Then A is not in \mathscr{M}^{3}. In particular, no unitary operator whose spectrum is a subset of one of the four open arcs $(n \pi / 2,(n+1) \pi / 2)$ is in \mathscr{J}^{3}.

Proof. The convex hull of $\sigma(A)$ coincides with $\tau(A)$; see (2, p. 112).
4. The following remarks are pertinent.
(i) An arbitrary operator on \mathscr{H} does not have to be the product of a finite number of self-adjoint operators; an example is the unilateral shift (2, p. 270). However, it follows from the polar decomposition theorem together with the Halmos-Kakutani result that if A is invertible, then $A \in \mathscr{M} \mathscr{J}^{4}$. A sufficient condition for an arbitrary operator A to be in $\mathscr{M}^{2} \mathscr{J}$ is that A can be expressed as $A_{1} \oplus 0$, where A_{1} and the zero operator 0 act on equi-dimensional subspaces. (A proof of this was given in the course of proving Theorem 1.)
(ii) A normal (unitary) operator is in $\mathscr{M} \mathscr{J}\left(\mathscr{J}^{2}\right)$ if and only if it is unitarily equivalent to its adjoint (1, Theorem 6.3; 5, Theorems 3 and 4).
(iii) Let \mathscr{H} be finite-dimensional. Then an arbitrary operator is in \mathscr{M}^{4} if and only if its determinant is real (4, Theorem 2) ; this is also a necessary and sufficient condition for the results of the present paper on normal and unitary operators to be true.

References

1. Chandler Davis, Separation of two linear subspaces, Acta. Sci. Math. (Szeged) 19 (1958), 172-187.
2. P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1967).
3. P. R. Halmos and S. Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77-78.
4. Heydar Radjavi, Products of hermitian matrices and symmetries, Proc. Amer. Math. Soc. 21 (1969), 369-372.
5. Heydar Radjavi and James Williams, Products of self-adjoint operators, Michigan Math. J. 16 (1969), 177-185.

University of Toronto,
Toronto, Ontario

