ON SELF-ADJOINT FACTORIZATION OF OPERATORS

HEYDAR RADJAVI

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space \mathscr{H} is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.

This work was motivated by a well-known result of Halmos and Kakutani (3) that every unitary operator on \mathscr{H} is the product of four symmetries, i.e., operators that are self-adjoint and unitary.

1. By "operator" we shall mean bounded linear operator. The space \mathscr{H} will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on \mathscr{H} by \mathscr{M} and that of symmetries by \mathscr{J} . The following usual notation for the product of two classes \mathscr{X} and \mathscr{Y} will be used: $\mathscr{X}\mathscr{Y} = \{A: A = XY, X \in \mathscr{X}, Y \in \mathscr{Y}\}; \mathscr{X}^2 = \mathscr{X}\mathscr{X}$. We observe that $\mathscr{M}\mathscr{J} = \mathscr{J}\mathscr{M}$, since if $M \in \mathscr{M}$ and $J \in \mathscr{J}$, then $JMJ \in \mathscr{M}$ and MJ = J(JMJ). Hence A is the product of m hermitian operators and n symmetries in any order if and only if $A \in \mathscr{M}^m \mathscr{J}^n$.

We shall implicitly use many results of the spectral theory for normal operators, but it is convenient to fix some notation: Let $E(\cdot)$ denote the resolution of the identity for the normal operator A on \mathcal{H} . Let

 $S = \{z: r_1 < |z| \leq r_2\}$ and $T = \{z: |z| = r\}.$

Then the restrictions of A to $E(S)\mathcal{H}$ and to $E(T)\mathcal{H}$ will be denoted by $\phi(A, r_1, r_2)$ and $\phi(A, r)$, respectively.

The *rank* of an operator is the dimension of the closure of its range. The spectrum of A will be denoted by $\sigma(A)$.

2. We start with the following result.

LEMMA 1. Let A be an operator on \mathcal{H} and let $A = \sum_{j=1}^{\infty} \bigoplus A_j$, where each A_j is an invertible operator on \mathcal{H}_j and where the \mathcal{H}_j all have the same (finite or infinite) dimension. Assume that an integer n exists such that either

$$||A_{j+1}|| \cdot ||A_j^{-1}|| \le 1$$

for all $j \ge n$ or $||A_{j+1}^{-1}|| \cdot ||A_j|| \le 1$ for all $j \ge n$. Then $A \in \mathcal{M}^2 \mathscr{J}^2$. Furthermore, if A is invertible and if either of the above inequalities holds for all $j \ge 1$,

Received July 16, 1968.

https://doi.org/10.4153/CJM-1969-156-6 Published online by Cambridge University Press

then operators B and C in $\mathcal{M}\mathcal{J}$ can be chosen such that A = BC, $||B|| \leq ||A||$, and $||C|| \leq ||A|| \cdot ||A^{-1}||$.

Proof. It is convenient to employ the notation of operator matrices: for any pair of natural numbers j and k, A_j can be considered as an operator on \mathscr{H}_k ; it will cause no confusion to denote this operator by A_j also. Now define an operator B_j on \mathscr{H}_j as follows:

$$B_{1} = A_{1}, \qquad B_{2} = A_{1}^{*},$$

$$B_{2k+1} = (A_{2k+1}A_{2k-1} \dots A_{1}) (A_{2k}^{*}A_{2k-2}^{*} \dots A_{2}^{*})^{-1},$$

$$B_{2k+2} = B_{2k+1}^{*}, \qquad k = 1, 2, \dots$$

Define C_j on \mathscr{H}_j by $C_j = B_j^{-1}A_j$, j = 1, 2, ...; observe that $C_1 = I$ and

$$C_{2k} = (A_1^*A_3^* \dots A_{2k-1}^*)^{-1}(A_2A_4 \dots A_{2k}),$$

$$C_{2k+1} = C_{2k}^*, \qquad k = 1, 2, \dots$$

The inequalities

$$||B_{2k+1}|| = ||B_{2k+2}|| \leq \left(\prod_{j=0}^{k} ||A_{2j+1}||\right) \left(\prod_{j=1}^{k} ||A_{2j}^{-1}||\right),$$
$$||C_{2k}|| = ||C_{2k+1}|| \leq \left(\prod_{j=1}^{k} ||A_{2j}||\right) \left(\prod_{j=1}^{k} ||A_{2j-1}^{-1}||\right),$$

and

$$||A_k|| \leq ||A||$$
 for all k

together with either of the inequalities hypothesized in the lemma show that the B_j and C_j are uniformly bounded. Hence $B = \sum_{j=1}^{\infty} \bigoplus B_j$ and $C = \sum_{j=1}^{\infty} \bigoplus C_j$ are bounded operators on \mathscr{H} and A = BC.

The operator B is a direct sum of operator matrices of the form $X \oplus X^*$. The equation

$$\begin{pmatrix} X & 0 \\ 0 & X^* \end{pmatrix} = \begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

implies that $X \oplus X^*$ belongs to $\mathcal{M}\mathcal{J}$, and hence so does B.

The operator C can be written as $C_1 \oplus D = I \oplus D$, where D is of the same form as B. Hence $C \in \mathcal{M}\mathcal{J}$, so that $A \in \mathcal{M}^2\mathcal{J}^2$.

The bounds given for ||B|| and ||C|| in the lemma are immediate.

THEOREM 1. Let A be a normal operator on \mathcal{H} with pure point spectrum. Then A is the product of two commuting normal operators in \mathcal{MJ} .

Proof. First assume that A is invertible. By Zorn's Lemma there is a maximal class $\{\mathscr{H}_{\alpha}\}$ of mutually orthogonal subspaces of \mathscr{H} such that, for each α , (i) \mathscr{H}_{α} reduces A, and (ii) the restriction A_{α} of A to \mathscr{H}_{α} can be represented as diag $(z_{\alpha 1}, z_{\alpha 2}, \ldots)$, where the sequence $\{|z_{\alpha j}|\}_{j=1}^{\infty}$ is monotone. Then the orthogonal complement, \mathscr{H}_{0} , of $\sum_{\alpha} \bigoplus \mathscr{H}_{\alpha}$ is necessarily finite-dimensional and reduces A; let A_{0} denote the restriction of A to \mathscr{H}_{0} .

OPERATORS

Let A_{β} be a fixed member of $\{A_{\alpha}\}$ and incorporate A_{0} into A_{β} , i.e., redefine A_{β} as $A_{0} \oplus A_{\beta}$. Then $A = \sum_{\alpha} \bigoplus A_{\alpha}$; all of the operators in this direct sum satisfy the conditions of Lemma 1. Hence $A_{\alpha} = B_{\alpha}C_{\alpha}$ for each α , where the operators B_{α} and C_{α} are the members of $\mathscr{M}\mathscr{J}$ constructed as in Lemma 1 for A_{α} . We observe that the B_{α} and C_{α} are all diagonal and hence $B_{\alpha}C_{\alpha} = C_{\alpha}B_{\alpha}$. Furthermore, it follows from Lemma 1 that

$$||B_{\alpha}|| \leq ||A||$$
 and $||C_{\alpha}|| \leq ||A|| \cdot ||A^{-1}||$

for all $\alpha \neq \beta$. Hence $B = \sum_{\alpha} \bigoplus B_{\alpha}$ and $C = \sum_{\alpha} \bigoplus C_{\alpha}$ are bounded normal operators belonging to $\mathcal{M}\mathcal{J}$, and A = BC = CB.

We now dispose of the restriction that A be invertible. If X is the product of two normal, commuting members of $\mathscr{M}\mathscr{J}$, then so is $X \oplus 0$. Furthermore, if A has finite rank, then \mathscr{H} can be written as the direct sum of two equidimensional subspaces relative to which $A = A_1 \oplus 0$. Then the equality

$$\begin{pmatrix} A_1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_1 & 0\\ 0 & A_1^* \end{pmatrix} \begin{pmatrix} I & 0\\ 0 & 0 \end{pmatrix}$$

proves the assertion of the theorem on A. These remarks permit us to assume that A has trivial null space and the closure of its range is infinite-dimensional. Hence $A = \sum_{j=1}^{\infty} \bigoplus A_j$, where $A_j = \phi(A, r_{j+1}, r_j)$, $r_j = ||A||/2^{j-1}$. We also assume, of course, that A is not invertible.

Let K be the set of integers for which A_j has infinite rank. For each $j \in K$ write $A_j = F_j \oplus D_j$, where F_j has finite rank and D_j is a direct sum of diagonal operators satisfying the monotonicity condition given in the first paragraph of this proof. Now $A = F \oplus \sum_{j \in K} \oplus D_j$, where F is necessarily compact. We have, as before, $D_j = B_j C_j$, where B_j and C_j are commuting normal members of \mathcal{M}_j . Furthermore, the uniform bounds given above for the B_{α} and C_{α} show that

$$||B_j|| \le ||A_j|| \le ||A||$$
 and $||C_j|| \le ||A_j|| \cdot ||A_j^{-1}|| \le a_j/a_{j+1} = 2$

for all $j \in K$. Hence $\sum_{j \in K} \bigoplus B_j$ and $\sum_{j \in K} \bigoplus C_j$ are both bounded operators in $\mathscr{M}_{\mathscr{J}}$ and their product is $\sum_{j \in K} \bigoplus D_j$.

Finally, we consider the compact operator F. There is no loss of generality in assuming that F has infinite rank. For otherwise K is necessarily an infinite set, and one can transfer to F one eigenvalue from each of the D_j with $j \in K$; this can be done without disturbing the stated properties of the D_j . The proof is now completed by the observation that F can be written as diag (z_1, z_2, \ldots) such that $\{|z_j|\}_{j=1}^{\infty}$ is non-increasing; Lemma 1 is then applicable to F.

THEOREM 2. Every unitary operator on \mathcal{H} with pure point spectrum is the product of two commuting members of \mathcal{J}^2 .

Proof. This is a corollary to Theorem 1 and the proof of Lemma 1.

For compact operators we have the following stronger version of Theorem 1.

THEOREM 3. Every compact normal operator A on \mathcal{H} is the product of two commuting, compact normal operators in \mathcal{MJ} .

Proof. As in the proof of Theorem 1, we can reduce the general case to the one in which A has infinite rank and trivial null space. Thus, represent A as diag(z_1, z_2, \ldots) with $\lim_n z_n = 0$. By splitting the sequence $\{z_n\}_{n=1}^{\infty}$ suitably, we express A as $\sum_{k=0}^{\infty} \bigoplus A_k$, where A_0 has finite rank and A_k has the following property for each $k \ge 1$: $A_k = \text{diag}(z_{k1}, z_{k2}, \ldots)$, where $|z_{k,j+1}| \le |z_{k,j}|/2$ for all j. Incorporating A_0 into A_1 and writing $A = \sum_{k=1}^{\infty} \bigoplus A_k$, we observe that Lemma 1 is applicable to each A_k . Furthermore, by the structure of the operators B and C in the proof of Lemma 1, we obtain $A_k = D_k F_k$, where D_k and F_k are compact diagonal operators with $||D_k|| = |z_{k1}|$ and $||F_k|| = 1$ for $k \ge 2$. Let $D_{k'} = |z_{k1}|^{-1/2}D_k$ and $F_{k'} = |z_{k1}|^{1/2}F_k$ for all k. Since $\lim_k z_{k1} = 0$, it follows that $D = \sum_{n=1}^{\infty} \bigoplus D_k'$ and $F = \sum_{n=1}^{\infty} \bigoplus F_k'$ are both compact, diagonal members of \mathcal{M} . Then A = DF, as required.

LEMMA 2. Let A be an invertible normal operator on \mathcal{H} such that $A = rU \oplus B$, where r > 0 and U is unitary. Assume that the rank of B does not exceed that of U. Then $A \in \mathcal{M}^2 \mathcal{J}^2$.

Proof. Express U as a direct sum $\sum_{j=1}^{\infty} \bigoplus U_j$, where each U_j has the same rank as U. Write $A_1 = rU_1 \oplus B$ and $A_j = rU_j$ for $j \ge 2$. Then $A = \sum_{j=1}^{\infty} \bigoplus A_j$ belongs to $\mathcal{M}^2 \mathcal{J}^2$ by Lemma 1.

We note here that the Halmos-Kakutani result can be obtained by taking r = 1, B = 0 (on the trivial subspace), and observing that the operators B and C constructed in the proof of Lemma 1 are both unitary.

THEOREM 4. Every normal operator on \mathcal{H} belongs to $\mathcal{M}^2 \mathcal{J}^2$.

Proof. Every normal operator is the direct sum of operators each acting on an infinite-dimensional separable subspace. Hence it suffices to consider the case in which \mathscr{H} is separable. In view of Theorem 1, we can assume that the point spectrum of A consists of a finite number of points each of which has finite multiplicity. Hence the continuous spectrum of A is not empty. Furthermore, as in the previous proofs, we assume that A has trivial null space.

Now pick a point z in the continuous spectrum of A and let r = |z|. If $\phi(A, r)$ has infinite rank, then r > 0, $\phi(A, r) = rU$, where U is unitary; hence $A \in \mathcal{M}^2 \mathscr{J}^2$ by Lemma 1. Otherwise there exists a monotone sequence $\{r_i\}$ of positive numbers tending to r such that the operator

$$A_{j} = \begin{cases} \phi(A, r_{j}, r_{j+1}), & \{r_{j}\} \text{ increasing,} \\ \phi(A, r_{j+1}, r_{j}), & \{r_{j}\} \text{ decreasing,} \end{cases}$$

has infinite rank for all *j*. If $\sigma(A)$ contains 0, then we can choose r = 0 so that $\{r_j\}$ is decreasing; if $\sigma(A)$ does not contain 0, then, by considering A^{-1} instead of A if necessary, we can again assume $\{r_j\}$ to be decreasing. Hence

OPERATORS

we can also choose $r_1 = ||A||$. Furthermore, in the case where A is invertible, we incorporate $\phi(A, 0, r)$ into A_1 . Thus $A = \sum_{j=1}^{\infty} \bigoplus A_j$ and Lemma 1 is applicable, since $||A_{j+1}|| \cdot ||A_j^{-1}|| \leq r_{j+1}/r_j$ for $j \geq 2$.

COROLLARY. Every operator on $\mathcal H$ which is similar to a normal operator is in $\mathcal M^4$.

Proof. If $M_i \in \mathcal{M}$, i = 1, 2, and if S is invertible, then

$$S^{-1}M_1M_2S = (S^{-1}M_1(S^*)^{-1})(S^*M_2S).$$

Hence \mathcal{M}^2 is invariant under similarity transformations (5); hence so is \mathcal{M}^4 .

If A is similar to a normal operator with pure point spectrum, then it follows from Theorem 1 that A is the product of two commuting members of \mathcal{M}^2 .

3. The next result gives a necessary condition that an operator (not necessarily normal) be in \mathcal{M}^{3} .

THEOREM 5. Let A be an operator on \mathcal{H} and let $\tau(A)$ be the closure of its numerical range. Then $A \in \mathcal{M}^3$ implies that $\tau(A)$ contains either a real or a pure imaginary number.

Proof. Assume that $A = M_1 M_2 M_3$, $M_i \in \mathcal{M}$. If $0 \in \sigma(A)$, then $0 \in \tau(A)$. Hence assume that A is invertible, so that the M_i are invertible. Now let $B = M_2 M_3$ and observe that B and B^* are similar. Hence α can be chosen such that both α and $\bar{\alpha}$ are in the approximate point spectrum of B. (This follows, e.g., from the well-known fact that the boundary points of $\sigma(B)$ are in its approximate point spectrum; the symmetric property of $\sigma(B)$ relative to the real axis should of course be employed also.)

Choose sequences $\{x_n\}$ and $\{y_n\}$ of unit vectors in \mathscr{H} such that $x_n' = (B - \alpha)x_n$ and $y_n' = (B - \bar{\alpha})y_n$ converge to 0. Now $A = M_1B$ implies that

$$(A x_n, x_n) = \alpha(M_1 x_n, x_n) + (M_1 x_n', x_n), (A y_n, y_n) = \bar{\alpha}(M_1 y_n, y_n) + (M_1 y_n', y_n).$$

Choose convergent subsequences of $\{(M_1x_n, x_n)\}$ and $\{(M_1y_n, y_n)\}$ and call their limits r and s, respectively. Thus $r\alpha$ and $s\overline{\alpha}$ both belong to $\tau(A)$. Since r and s are real, the line segment joining $r\alpha$ to $s\overline{\alpha}$ intersects at least one of the coordinate axes. By the Toeplitz-Hausdorff theorem, the numerical range is convex; see (2, p. 110, Problem 166). Hence so is $\tau(A)$; this implies the desired result.

COROLLARY 1. Let A be an arbitrary operator on \mathcal{H} and let α be any complex number whose square is not real. Then no operator of the form $A + r\alpha I$ belongs to \mathcal{M}^3 if r is a sufficiently large positive number.

Proof. A sufficiently large translation of the compact set $\tau(A)$ in any direction α , where α^2 is not real, results in placing it entirely within one of the open quadrants.

HEYDAR RADJAVI

COROLLARY 2. Let A be a normal operator whose spectrum lies entirely within one of the open quadrants. Then A is not in \mathcal{M}^3 . In particular, no unitary operator whose spectrum is a subset of one of the four open arcs $(n\pi/2, (n + 1)\pi/2)$ is in \mathcal{J}^3 .

Proof. The convex hull of $\sigma(A)$ coincides with $\tau(A)$; see (2, p. 112).

4. The following remarks are pertinent.

(i) An arbitrary operator on \mathscr{H} does not have to be the product of a finite number of self-adjoint operators; an example is the unilateral shift (2, p. 270). However, it follows from the polar decomposition theorem together with the Halmos-Kakutani result that if A is invertible, then $A \in \mathscr{MJ}^4$. A sufficient condition for an arbitrary operator A to be in $\mathscr{M}^2 \mathscr{J}$ is that A can be expressed as $A_1 \oplus 0$, where A_1 and the zero operator 0 act on equi-dimensional subspaces. (A proof of this was given in the course of proving Theorem 1.)

(ii) A normal (unitary) operator is in $\mathcal{M}\mathcal{J}$ (\mathcal{J}^2) if and only if it is unitarily equivalent to its adjoint (1, Theorem 6.3; 5, Theorems 3 and 4).

(iii) Let \mathscr{H} be finite-dimensional. Then an arbitrary operator is in \mathscr{M}^4 if and only if its determinant is real (4, Theorem 2); this is also a necessary and sufficient condition for the results of the present paper on normal and unitary operators to be true.

References

- Chandler Davis, Separation of two linear subspaces, Acta. Sci. Math. (Szeged) 19 (1958), 172–187.
- 2. P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1967).
- 3. P. R. Halmos and S. Kakutani, *Products of symmetries*, Bull. Amer. Math. Soc. 64 (1958), 77–78.
- Heydar Radjavi, Products of hermitian matrices and symmetries, Proc. Amer. Math. Soc. 21 (1969), 369–372.
- Heydar Radjavi and James Williams, Products of self-adjoint operators, Michigan Math. J. 16 (1969), 177–185.

University of Toronto, Toronto, Ontario