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The main result of this paper is that every normal operator on an infinite-
dimensional (complex) Hilbert space Jf7 is the product of four self-adjoint 
operators; our Theorem 4 is an actually stronger result. A large class of normal 
operators will be given which cannot be expressed as the product of three 
self-adjoint operators. 

This work was motivated by a well-known resul t of Halmos and Kakutani (3) 
that every unitary operator on ffl is the product of four symmetries, i.e., 
operators that are self-adjoint and unitary. 

1. By "operator" we shall mean bounded linear operator. The space ffl will 
be infinite-dimensional (separable or non-separable) unless otherwise specified. 
We shall denote the class of self-adjoint operators on $? by Je and that of 
symmetries b y ^ . The following usual notation for the product of two classes 
<T and <& will be used: SfW = {A: A = XY, X G ST, Y G <&\ ; «T2 = SIT SIT. 
We observe \hzXJeJ = J Je, since if M G Je and JG J', then JMJ G J( 
and M J = J {JMJ). Hence A is the product of m hermitian operators and n 
symmetries in any order if and only if A G Jt m

c^
n. 

We shall implicitly use many results of the spectral theory for normal 
operators, but it is convenient to fix some notation: Let £(•) denote the reso
lution of the identity for the normal operator A on ffl. Let 

S = {z: r\ < \z\ ^ r2} and T = {z: \z\ = r}. 

Then the restrictions of A to E(S)j4f and to E(T)$? will be denoted by 
4>(A, fi, r%) and <t>{A, r), respectively. 

The rank of an operator is the dimension of the closure of its range. The 
spectrum of A will be denoted by a (A). 

2. We start with the following result. 

LEMMA 1. Let A be an operator on ffl and let A = 2Z7=i ® Aj, where each A} 

is an invertible operator on ^fj and where the ffl\ all have the same {finite or 
infinite) dimension. Assume that an integer n exists such that either 

Pmll-Pr1!! ^ i 
for allj ^ n or p y + r 1 ! ! • p , | | ^ 1 for all j ^ n. Then A eJf2,/2. Further
more, if A is invertible and if either of the above inequalities holds for all j ^ 1, 
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then operators B and C in *JtJ? can be chosen such that A — BC, \\B\\ ^ P | | , 
and\\C\\ S P U • p - 1 ! ! . 

Proof. I t is convenient to employ the notation of operator matrices: for 
any pair of natural numbers j and k, Aô can be considered as an operator 
onJfA; it will cause no confusion to denote this operator by Aj also. Now 
define an operator Bj on ̂ fj as follows: 

Bx = Al9 B2 = Ai*, 

BU+1 = (A2Jc+lA2k-l • • • i l ) ( i 2 / i 2 M * . . . ^2*)~1, 

I and 

B21C+2 — B21C+1 » k : = 1, 2, . . .. 

efine C, on $f ] by Cj — Bj ~1Aj,j= 1,2, . . .; observe that G 

Cih '• = (A1*AS 

C2A+I = C2A; , k = 

-HA«Ai...Au), 

= 1 ,2 , . . . . 

The inequalities 

| | ^ 2 * + l | | = 1 \B2k+2 n (̂riiM« «-i||)(n IMa>~ •„). 

Mr* i i -- HCa+ill \^(Ù\\Ati 
\ 3-1 

llXrilM r̂1 
. .> 

and 
\\Ak\\ ^ \\A\\ for all k 

together with either of the inequalities hypothesized in the lemma show that 
the Bj and Cj are uniformly bounded. Hence B = ]£7= 1 © ^ a n d 
C = X!7=i © Q a r e bounded operators on ffl and 4̂ = BC. 

The operator ^ is a direct sum of operator matrices of the form X © X*. 
The equation 

(x 0 W 0 xVo A 
\o xv \x* o/Vj 0/ 

implies that X © X* belongs t o ^ / , and hence so does 2?. 
The operator C can be written as Ci © Z> = / © D, where D is of the same 

form as B. Hence C £ - < / , so that A £ « ^ 2</2. 
The bounds given for ||i?|| and ||C|| in the lemma are immediate. 

THEOREM 1. Let A be a normal operator on ffi with pure point spectrum. 
Then A is the product of two committing normal operators in ^ ^ . 

Proof. First assume that A is invertible. By Zorn's Lemma there is a maxi
mal class {^fa} of mutually orthogonal subspaces of 3f such that, for each a, 
(i) J#fa reduces A, and (ii) the restriction Aa of A to ffla can be represented 
as diag(zai, za2, . . .), where the sequence {|zaJ]}J=i is monotone. Then the 
orthogonal complement, J^f0j of X)« ®^fa is necessarily finite-dimensional 
and reduces A ; let A 0 denote the restriction of A to J^o-
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Let A$ be a fixed member of {Aa} and incorporate A0 into Ap, i.e., redefine 
A$ as A o 0 4̂/3. Then 4̂ = ]Ta ©^4a; all of the operators in this direct sum 
satisfy the conditions of Lemma 1. Hence Aa = BaCa for each a, where the 
operators Ba and Ca are the members of ^Jtf constructed as in Lemma 1 for 
Aa. We observe that the Ba and Ca are all diagonal and hence BaCa — CaBa. 
Furthermore, it follows from Lemma 1 that 

| | 5 B | | <L\\A\\ a n d IICH ^ I M I I - l l ^ - ' l l 

for all a ^ ft. Hence B = J^a (§Ba and C = ]£« ®Ca are bounded normal 
operators belonging to^J?, and A = BC = CB. 

We now dispose of the restriction that A be invertible. If X is the product 
of two normal, commuting members of ^ / , then so is X © 0. Furthermore, 
if A has finite rank, then 3tif can be written as the direct sum of two equi-
dimensional subspaces relative to which A = A\ © 0. Then the equality 

(At o\ (A1 OVJ O\ 
\0 0/ \0 -4i*/\0 0/ 

proves the assertion of the theorem on A. These remarks permit us to assume 
that A has trivial null space and the closure of its range is infinite-dimensional. 
Hence A = L7=i ®Av where A3- = <I>(A, rj+1, r3), r3 = p H / 2 ^ 1 . We also 
assume, of course, that A is not invertible. 

Let K be the set of integers for which A 3 has infinite rank. For each j £ K 
write Aj = F3 © D3, where Fj has finite rank and D3 is a direct sum of 
diagonal operators satisfying the monotonicity condition given in the first 
paragraph of this proof. Now A — F © ^23^K ®B>3, where F is necessarily 
compact. We have, as before, D3 — B3C3, where B3 and C3 are commuting 
normal members of ^f . Furthermore, the uniform bounds given above for 
the Ba and Ca show that 

P , | | è \\AJW £ \\A\\ and HCII ^ p , | | • \\Arl\\ ^ aj/aJ+1 = 2 

for all j G K. Hence Y^J<LK ®B3 and X);€^ ®C3 are both bounded operators 
in tJiïJ? and their product is 2 ^ ^ ©J0 ;-. 

Finally, we consider the compact operator F. There is no loss of generality 
in assuming that F has infinite rank. For otherwise K is necessarily an infinite 
set, and one can transfer to F one eigenvalue from each of the D3 with j £ K; 
this can be done without disturbing the stated properties of the Dj. The proof 
is now completed by the observation that F can be written as diag(zi, z2, . . .) 
such that {|;^|}7=i is non-increasing; Lemma 1 is then applicable to F. 

THEOREM 2. Every unitary operator on Jtif with pure point spectrum is the 
product of two commuting members of </2. 

Proof. This is a corollary to Theorem 1 and the proof of Lemma 1. 

For compact operators we have the following stronger version of Theorem 1. 
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THEOREM 3. Every compact normal operator A on <#? is the product of two 
commuting, compact normal operators in *J£<f . 

Proof. As in the proof of Theorem 1, we can reduce the general case to the 
one in which A has infinite rank and trivial null space. Thus, represent A as 
diag(zi, 02, • • •) with limw zn = 0. By splitting the sequence {zn}n = i suitably, 
we express A as ]C?=o ®Aky where A0 has finite rank and Ak has the following 
property for each k ^ 1: Ak = diag(z*i, zk2, . . .), where \zkij+1\ ^ \zkli\/2 for 
all j . Incorporating A0 into Ax and writing A = XX=i ®Ak, we observe that 
Lemma 1 is applicable to each Ak. Furthermore, by the structure of the 
operators B and C in the proof of Lemma 1, we obtain Ak — DkFk} where 
Dk and Fk are compact diagonal operators with \\Dk\\ = | ^ i | and \\Fk\\ = 1 
for k è 2. Let Dk = \zki\~

1/2Dk and Fk = l^i l1 7 2^ for all k. Since l i m ^ i = 0, 
it follows that D = XJ=i ©£V and F = £ " = i ®Fk are both compact, 
diagonal members of <Jtf . Then A = DF, as required. 

LEMMA 2. Let A be an invertible normal operator on 34? such that A = rU ® B, 
where r > 0 and U is unitary. Assume that the rank of B does not exceed that 
of U. Then A ^Jé2J\ 

Proof. Express U as a direct sum ]Cj°=i ®Uj, where each Uj has the same 
rank as f / .Wri te^ i = rUi ®BsLndAj = rUjiorj ^ 2. Then A = Z7=i ©-4; 
belongs t o ^ 2 ^ / 2 by Lemma 1. 

We note here that the Halmos-Kakutani result can be obtained by taking 
r = 1, B — 0 (on the trivial subspace), and observing that the operators 
B and C constructed in the proof of Lemma 1 are both unitary. 

THEOREM 4. Every normal operator on Ji? belongs to ^é2^/2. 

Proof. Every normal operator is the direct sum of operators each acting 
on an infinite-dimensional separable subspace. Hence it suffices to consider 
the case in which ffl is separable. In view of Theorem 1, we can assume that 
the point spectrum of A consists of a finite number of points each of which 
has finite multiplicity. Hence the continuous spectrum of A is not empty. 
Furthermore, as in the previous proofs, we assume that A has trivial null 
space. 

Now pick a point z in the continuous spectrum of A and let r = \z\. If 
<l)(A,r) has infinite rank, then r > 0, <f>(A,r) — rU, where U is unitary; 
hence A G ^ # 2 ^ 2 by Lemma 1. Otherwise there exists a monotone sequence 
[TJ] of positive numbers tending to r such that the operator 

A = [ ^{A.rj, rJ+1), {rj} increasing, 
J ( 0 ( ^ , ^ 4 1 , ^ ) , {rj} decreasing, 

has infinite rank for all j . If a (A) contains 0, then we can choose r = 0 so 
that {rf\ is decreasing; if a (A) does not contain 0, then, by considering A-1 

instead of A if necessary, we can again assume {rf\ to be decreasing. Hence 
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we can also choose r\ — \\A\\. Furthermore, in the case where A is invertible, 
we incorporate 4>(A, 0, r) into Av Thus A = £7=i ®Aj and Lemma 1 is 
applicable, since | | ^ + i | | • ||^4;-1|! S fj+i/rj for j ^ 2. 

COROLLARY. Every operator on ffl which is similar to a normal operator is 
in ^ 4 . 

Proof. If Mt G ^#, i = 1, 2, and if 5 is invertible, then 

S~1MlM2S = (S-1Mi(S*)-1)(S*M2S). 

Hence^# 2 is invariant under similarity transformations (5); hence so i s~# 4 . 
If A is similar to a normal operator with pure point spectrum, then it follows 

from Theorem 1 that A is the product of two commuting members of^# 2 . 

3. The next result gives a necessary condition that an operator (not neces
sarily normal) be in ^ 3. 

THEOREM 5. Let A be an operator on ffl and let r{A)be the closure of its numeri
cal range. Then A Ç ^ # 3 implies that r{A) contains either a real or a pure 
imaginary number. 

Proof. Assume that A = MxMiMz, Mt Ç Jt. If 0 £ v(A), then 0 G T(A). 
Hence assume that A is invertible, so that the Mt are invertible. Now let 
B = M2M% and observe that B and B* are similar. Hence a can be chosen 
such that both a and â are in the approximate point spectrum of B. (This 
follows, e.g., from the well-known fact that the boundary points of <r{B) are 
in its approximate point spectrum; the symmetric property of <r(B) relative 
to the real axis should of course be employed also.) 

Choose sequences {xn} and {yn} of unit vectors in ffl such that xn
f = 

(B — a)xn and yn
f = (B — a)yn converge to 0. Now A = M\B implies that 

(Axn, xn) = a(MiXn, xn) + (Mix,/, xn), 

(Aynjyn) = a(Miyn,yn) + (Miyn',yn). 

Choose convergent subsequences of {(Mixn, xn)} and {(Miyn,yn)} and call 
their limits r and s, respectively. Thus ra and sa both belong to r(A). Since 
r and 5 are real, the line segment joining ra to sa intersects at least one of the 
coordinate axes. By the Toeplitz-Hausdorff theorem, the numerical range is 
convex; see (2, p. 110, Problem 166). Hence so is r(^4) ; this implies the desired 
result. 

COROLLARY 1. Let A be an arbitrary operator on ^f and let a be any complex 
number whose square is not real. Then no operator of the form A + ml belongs 
to ^ # 3 if r is a sufficiently large positive number. 

Proof. A sufficiently large translation of the compact set T(A) in any 
direction a, where a2 is not real, results in placing it entirely within one of the 
open quadrants. 
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COROLLARY 2. Let A be a normal operator whose spectrum lies entirely within 
one of the open quadrants. Then A is not in <JK3. In particular, no unitary 
operator whose spectrum is a subset of one of the four open arcs (nir/2, (n + l)ir/2) 
is in J?*. 

Proof. The convex hull of cr{A) coincides with T(A); see (2, p. 112). 

4. The following remarks are pertinent. 
(i) An arbitrary operator on Jrf? does not have to be the product of a finite 

number of self-adjoint operators; an example is the unilateral shift (2, p. 270). 
However, it follows from the polar decomposition theorem together with the 
Halmos-Kakutani result that if A is invertible, then A £ ^^fé. A sufficient 
condition for an arbitrary operator A to be in ^2^/ is that A can be expressed 
as Ai © 0, where Ai and the zero operator 0 act on equi-dimensional sub-
spaces. (A proof of this was given in the course of proving Theorem 1.) 

(ii) A normal (unitary) operator is in *Jtf ( ^ / 2 ) if and only if it is unitarily 
equivalent to its adjoint (1, Theorem 6.3; 5, Theorems 3 and 4). 

(iii) Let ffl be finite-dimensional. Then an arbitrary operator is in ^ # 4 

if and only if its determinant is real (4, Theorem 2) ; this is also a necessary 
and sufficient condition for the results of the present paper on normal and 
unitary operators to be true. 
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