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Composition of Inner Functions
J. Mashreghi and M. Shabankhah

Abstract. We study the image of the model subspace Kθ under the composition operator Cϕ, where ϕ
and θ are inner functions, and find the smallest model subspace which contains the linear manifold
CϕKθ . Then we characterize the case when Cϕ maps Kθ into itself. This case leads to the study of
the inner functions ϕ and ψ such that the composition ψ ◦ ϕ is a divisor of ψ in the family of inner
functions.

1 Introduction

Given a holomorphic self-map ϕ of the open unit disk D, the composition opera-
tor Cϕ is defined by

Cϕ f = f ◦ ϕ, f ∈ Hol(D).

It is easily verified that Cϕ is continuous with respect to the topology of Hol(D).
Whenever X is a Banach space inside Hol(D), we naturally wonder if X is invariant
under Cϕ and that the restriction is a bounded operator. Following this fundamen-
tal question, several others such as compactness, normality, etc., arise. Generally
speaking, it turns out that the operator-theoretic behavior of Cϕ is closely related to
function-theoretic properties of its symbol ϕ.

If X = H p(D), the Hardy space of the open unit disk, we know that Cϕ : H p(D)→
H p(D) is automatically bounded. This is a consequence of the classical subordination
principle of Littlewood [10]. The compactness of Cϕ in this setting, however, is a
more delicate question. A characterization of compact composition operators on
Hardy spaces was obtained by Shapiro [12]; see also the notes in the last chapter
of [13]. The study of composition operators on different subclasses of Hol(D), e.g.,
on Besov spaces [14], on Bloch spaces [2] or on the Dirichlet space [6,7,15], is a very
active domain of research. The literature is extremely vast and it is rather impossible
to make a comprehensive list.

In his seminal work of 1949, A. Beurling characterized the closed subspaces of H2

which are invariant under the forward shift operator [1]. They are precisely of the
form θH2 where θ is an inner function. The associated model subspace Kθ is defined
to be the orthogonal complement of θH2, i.e., Kθ = H2 	 θH2. If we look at Kθ as a
subspace of H2(T), this relation can be rewritten as

(1.1) Kθ = H2 ∩ θH2
0 .
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Given a set A ⊂ H2, the smallest S∗-invariant closed subspace of H2 that contains A
will be denoted by 〈A〉. Therefore, Kθ’s are the closed invariant subspaces of the
backward shift operator S∗. Moreover, Kθ is a reproducing kernel Hilbert space, i.e.,
for every f ∈ Kθ and λ ∈ D, we have f (λ) = 〈 f , kθλ〉2, where

kθλ(z) =
1− θ(λ)θ(z)

1− λz
, z ∈ D.

In this paper, we study the image of Kθ under the composition operator Cϕ,
where ϕ is an inner function. This work is a continuation of [11]. In Theorem 2.1,
we show that Cϕ maps Kθ into the model subspace Kη , where the inner function η is
explicitly determined by ϕ and θ. The formulation of η depends on the behavior of ϕ
and θ at the origin. Moreover, we show that η is optimal, in the sense that Kη is the
smallest model subspace of H2 which contains CϕKθ. Then in Theorem 4.1, we explore
the case when Kη ⊂ Kθ. In other words, we characterize the inner functions θ and ϕ
such that Cϕ maps Kθ into itself. In studying this case, we provide non-trivial inner
functions ϕ and ψ such that ψ ◦ ϕ is a divisor of ψ in the family of inner functions.

2 What is 〈CϕKθ〉?
In this section, we study the action of Cϕ on a given Kθ when ϕ is an inner func-
tion. In particular, we determine the smallest closed S∗-invariant subspace of H2 that
contains CϕKθ.

Given an inner function ϕ, we know that f is non-cyclic for S∗ if and only if f ◦ϕ
is non-cyclic for S∗ [5, Theorem 2.4.4]. In other words, if we put

K =
⋃

θ inner
Kθ,

then for any inner symbolϕ, the restricted mappings Cϕ : K → K and Cϕ : H2 \ K →
H2 \ K are well defined. Theorem 2.1 provides a precise refinement of the first map-
ping.

If ϕ is an inner function, then by a celebrated result of Frostman [8], λ−ϕ
1−λϕ is a

Blaschke product for all λ ∈ D \ Eϕ, where Eϕ is an exceptional set of logarithmic
capacity zero. We exploit this result in Theorem 2.1 and Corollary 2.4.

Theorem 2.1 Let ϕ and θ be inner functions, and let

η(z) =


(θ ◦ ϕ)(z), if θ(0) 6= 0 and ϕ(0) = 0,

z(θ ◦ ϕ)(z), if θ(0) 6= 0 and ϕ(0) 6= 0,

z θ(ϕ(z))
ϕ(z) , if θ(0) = 0.

Then the mapping Cϕ : Kθ → Kη is well defined and bounded. Moreover, 〈CϕKθ〉 = Kη,
i.e., Kη is the smallest closed S∗-invariant subspace of H2 that contains the image of Kθ

under Cϕ.
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Proof As we agreed, kθλ denotes the reproducing kernel of Kθ at λ ∈ D. Hence, by
direct evaluation,

(2.1) Cϕkθλ =
1− θ(λ)θ ◦ ϕ

1− λϕ
∈ H∞ ⊂ H2.

According to a theorem of Lindelöf, θ◦ϕ is an inner function. Since both ϕ and θ◦ϕ
are inner, we get

(2.2) Cϕkθλ(z) =
θ
(
ϕ(z)

)
− θ(λ)

ϕ(z)− λ
· ϕ(z)

θ
(
ϕ(z)

) , z ∈ T.

For each λ ∈ D and f ∈ H2, define

Qλ( f )(z) =
f (z)− f (λ)

z − λ
, z ∈ D.

In particular, we have Q0 = S∗. Moreover, the alternative expression Qλ =
(1− λS∗)−1S∗ shows that Qλ : H2 → H2 is a bounded operator on H2. Hence, it
follows that

θ
(
ϕ(z)

)
− θ(λ)

ϕ(z)− λ
= [(Cϕ ◦ Qλ)(θ)](z),

which reveals that
θ ◦ ϕ− θ(λ)

ϕ− λ
∈ H2.

To deal with the term ϕ(z)/θ
(
ϕ(z)

)
, we should consider three cases that have been

reflected in the definition of η. We just treat the first case in detail. The proofs of the
other two cases are similar.

From now on, we suppose that θ(0) 6= 0 and ϕ(0) = 0. For this case, we defined
η = θ ◦ ϕ. Thus, by (2.2),

ηCϕkθλ = ϕ× (Cϕ ◦ Qλ)(θ) ∈ H2
0 .

Hence, by (2.1) and (1.1) and the above relation, we conclude that Cϕkθλ ∈ Kη for
every λ ∈ D. Therefore, the mapping Cϕ : Kθ → Kη is a well-defined bounded
operator.

It is a bit more delicate to show that 〈CϕKθ〉 = Kη . Based on the above discussion,
we certainly have 〈CϕKθ〉 ⊂ Kη . To establish the reverse inclusion, we assume that
the function g ∈ H2 is orthogonal to 〈CϕKθ〉, and then we deduce that g ∈ ηH2. This
means that 〈CϕKθ〉⊥ ⊂ ηH2, and thus 〈CϕKθ〉 ⊃ (ηH2)⊥ = Kη .

The assumption g ⊥ 〈CϕKθ〉means that

〈g, S∗nCϕkθλ〉H2 = 0

for every λ ∈ D and n ≥ 0. But

〈g, S∗nCϕkθλ〉H2 = 〈Sng,Cϕkθλ〉H2 = 〈zn, gCϕkθλ〉L2 .
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Hence, we conclude
Cϕkθλ g ∈ H2

0 ,

or equivalently, by (2.2),

(2.3)
ϕ(z)

θ
(
ϕ(z)

) · θ(ϕ(z)
)
− θ(λ)

ϕ(z)− λ
· g(z) ∈ H2

0 .

According to Frostman’s theorem [8], we can pick a λ ∈ D such that

(θ ◦ ϕ)(z)− θ(λ)

1− θ(λ)(θ ◦ ϕ)(z)

and
ϕ(z)− λ
1− λϕ

are both Blaschke products,

θ(λ) 6= θ(0) and θ(λ) 6= 0.

In fact, this is true for all λ ∈ D, except on a set of logarithmic capacity zero. The
zeros of the first Blaschke product come from the equation θ

(
ϕ(z)

)
= θ(λ) while

the zeros of the second Blaschke product satisfy the equation ϕ(z) = λ. Hence, the
zeros of the first product include the zeros of the second one, and the two zero sets are
not necessarily equal in general. Note that the first Blaschke product does not vanish
at the origin. Moreover, the denominators of both quotients are outer functions that
are bounded from below by min{1−|λ|, 1−|ϕ(λ)|} and from above by 2. Therefore,
the quotient

θ
(
ϕ(z)

)
− θ(λ)

ϕ(z)− λ
is the product of an outer function that is bounded from above and below on D
and possibly a Blaschke product that is non-null at the origin. Therefore, Smirnov’s
theorem applied to (2.3) ensures that

(2.4)
ϕ(z)

θ
(
ϕ(z)

) · g(z) ∈ H2
0 .

Now, the key point is that the inner functions ϕ and θ ◦ ϕ have no common non-
constant inner factor. Remember that θ(0) 6= 0. Hence, in the first place, ϕ and θ ◦ϕ
cannot have a common Blaschke factor. Secondly, if ϕ has a singular part, for the
corresponding singular measure we can choose a non-empty carrier A ⊂ T such that
for each ζ ∈ A we have limr→1 ϕ(rζ) = 0. Then at any such point we would have

lim
r→1

(θ ◦ ϕ)(rζ) = θ(0) 6= 0.

Hence, if θ ◦ ϕ has a singular part, the carrier of its corresponding singular measure
can be taken to be disjoint from A. Thus, ϕ and θ ◦ ϕ have no non-constant inner
factors. Back to (2.4) and the fact that the inner-outer factorization of H2 functions
is unique up to a unimodular multiplicative constant, we conclude that θ ◦ ϕ must
divide g. In other words, g ∈ (θ ◦ ϕ)H2 = ηH2.
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Remark 2.2. Since ϕ is inner, by [4, Theorem 3.8], CϕKθ is a closed subspaces of H2.
However, CϕKθ may fail to be invariant under S∗. For example, take θ(z) = ϕ(z) =
z2. Then η(z) = zθ

(
ϕ(z)

)
/ϕ(z) = z3, Kθ = span{1, z}, Kη = span{1, z, z2}, but

CϕKθ = span{1, z2}.
In the hierarchy of inner functions, for a givenϕ and θ, the largest inner function η

among the three possible situations in Theorem 2.1 is z × θ ◦ ϕ, and this gives the
largest model subspace Kzθ◦ϕ among the three possible cases. Hence, if we are not
keen about the smallest possible model subspace which contains the image of Cϕ, we
obtain the following result.

Corollary 2.3 For inner functionsϕ and θ, the composition operator Cϕ : Kθ → Kzθ◦ϕ
is well defined and bounded.

If the inner function θ is a Blaschke product, then we can say a bit more about
the behavior of Cϕ on Kθ. This is mainly because Kθ is generated by the kernels kθλ,
where λ’s are the zeros of θ (we do not need to consider all λ ∈ D).

Corollary 2.4 Let ϕ be inner with ϕ(0) = 0, and denote its exceptional set by Eϕ.
Let (dn)n≥1 be a sequence of positive integers, and let (λn)n≥1 be a sequence of distinct
points in D \ ({0} ∪ Eϕ) such that∑

n≥1

dn(1− |λn|) <∞.

Then the zeros of all equations ϕ(z) = λn, n ≥ 1 (multiplicities counted) form a
Blaschke sequence, and for the corresponding Blaschke product B, we have

1

(1− λnϕ) jn
∈ KB, n ≥ 1, 1 ≤ jn ≤ dn.

Moreover, KB is the smallest model subspace of H2 which contains all elements

1/(1− λnϕ)
jn

, n ≥ 1, 1 ≤ jn ≤ dn.

Proof Put

θ(z) =
∏

n≥1

( |λn|
λn

λn − z

1− λnz

) dn

.

Then
Kθ = Span

{(
1/(1− λnz)

) jn
: n ≥ 1, 1 ≤ jn ≤ dn

}
and

CϕKθ = Span
{(

1/(1− λnϕ)
) jn

: n ≥ 1, 1 ≤ jn ≤ dn

}
.

Note that we implicitly applied [4, Theorem 3.8]. Therefore, by Theorem 2.1,

1

(1− λnϕ) jn
∈ Kη, n ≥ 1, 1 ≤ jn ≤ dn,
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where

η(z) = (θ ◦ ϕ)(z) =
∏

n≥1

( |λn|
λn

λn − ϕ(z)

1− λnϕ(z)

) dn

,

and moreover

〈1/(1− λnϕ) jn : n ≥ 1, 1 ≤ jn ≤ dn〉 = Kη.

Using again Frostman’s theorem for each term in the product above, we see that η is
a Blaschke product if none of the λn’s is taken from the exceptional set of ϕ. Hence,
η becomes a Blaschke product which we denoted by B.

If θ is a single Blaschke factor, i.e.,

θ(z) =
λ− z

1− λz
, λ ∈ D \ {0},

then Kθ = Ckλ, and, by the above corollary,

1

1− λϕ
∈ K λ−ϕ

1−λϕ

,

and moreover 1/(1− λϕ) is S∗-cyclic for K λ−ϕ

1−λϕ

. Corollary 2.4 was obtained by ana-

lyzing the first case of η in Theorem 2.1. It is straightforward to obtain similar results
corresponding to the other two cases.

3 Discussion on a Schröder-type Equation

In studying the inner functions ϕ for which Cϕ maps Kθ into itself, we will face with
the functional equation

(3.1) ψ
(
ϕ(z)

)
× ω(z) = ψ(z), z ∈ D,

where all the functions ψ, ϕ and ω are inner. A variation of (3.1) is known as
Schröder’s equation and has a very long and rich history. A detailed discussion of
this topic can be found in [3]. We study the general version (3.1) in this section.
Since ϕ is a self map of D, it has a fix point in D. To proceed, depending on the
location of the fixed point of ϕ in D or on T, we consider two cases. While the first
case is rather easy and straightforward, the latter is dramatically complex.

We remind that

τp(z) =
p − z

1− pz
, z ∈ D,

and

ρλ(z) = λz, λ ∈ T, z ∈ D.
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Case I: ϕ has a fixed point inside D Suppose that ϕ(p) = p, for some p ∈ D, and
that ψ has a zero of order m ≥ 0 at p. Then we can write

ψ(z) =
( p − z

1− p̄z

)m
ψ0(z),

where ψ0 is an inner function with ψ0(p) 6= 0. Hence, (3.1) becomes( p − ϕ(z)

1− p̄ϕ(z)

)m
ψ0

(
ϕ(z)

)
ω(z) =

( p − z

1− p̄z

)m
ψ0(z).

Divide by (p − z)m and then let z → p to deduce(
ϕ ′(p)

)m
ω(p) = 1.

Hence, ϕ ′(p) and ω(p) are both unimodular constants. Thus, by the maximum
principle and Schwarz’s lemma,ϕ = τp◦ρλ◦τp for some λ ∈ T, and since λ = ϕ ′(p),
ω ≡ λ̄m. Moreover, ψ0 must satisfy

ψ0 ◦ τp ◦ ρλ ◦ τp = ψ0.

By induction, if we repeatedly compose both sides with τp ◦ ρλ ◦ τp, we obtain

(3.2) ψ0 ◦ τp ◦ ρλk ◦ τp = ψ0, k ≥ 1,

which we rewrite as

(3.3) (ψ0 ◦ τp)(λkz) = (ψ0 ◦ τp)(z), k ≥ 1, z ∈ D.

Now, depending on λ being a root of unity or not, we should consider some subcases.

Category I: there is no integer n ≥ 1 such that λn =
(
ϕ ′(p)

) n
= 1 If λ is not

a root of unity, then (3.3) and the uniqueness theorem for analytic functions force
ψ0 ◦ τp to be a unimodular constant, and thus ψ0 ≡ γ, for some γ ∈ T. Hence, the
inner function

ψ = γ(τp)m, γ ∈ T, p ∈ D,m ≥ 0,

and the hyperbolic rotations

ϕ = τp ◦ ρλ ◦ τp,

satisfy the functional equation

(3.4) ψ ◦ ϕ = λmψ.

A trivial but important special case of this category is ψ(z) = γzm and ϕ(z) = λz.
Note that, after all, we avoid emphasizing that λ is not a root of unity. Firstly, (3.4)

is fulfilled with all λ ∈ T. Secondly, this is because the extra solutions are obtained as
a particular situation of the third category which is treated below. But we integrate
them here.
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Category II: λ = ϕ ′(p) = 1 This means ϕ(z) = z and hence it is a trivial case.

Category III: there is an integer n ≥ 2 such that λn =
(
ϕ ′(p)

) n
= 1 Take n to be

the smallest such integer. Then with a proper choice of k ≥ 1, we have λk = ei2π/n.
Hence, by (3.2), ψ0 must satisfy

ψ0 ◦ τp ◦ ρei2π/n ◦ τp = ψ0.

In this situation, there are plenty of nonconstant solutions for ψ0. (Constant solu-
tions are counted in category I.) The above restriction on ψ0 is equivalent to say that
the Taylor expansion of ψ0 ◦ τp is of the form

(ψ0 ◦ τp)(z) =
∞∑

k=0

akzkn, z ∈ D.

Equivalently, we have

(ψ0 ◦ τp)(z) = ψ1(zn), z ∈ D,

where ψ1 is any arbitrary nonconstant inner function. Hence, with this last formula
for ψ0, the inner function ψ becomes

ψ = γ(τp)mψ1

(
(τp)n

)
, ψ1 inner and nonconstant, p ∈ D, γ ∈ T,m ≥ 0, n ≥ 2,

and only with the hyperbolic rotations

ϕ = τp ◦ ρei2kπ/n ◦ τp, 1 ≤ k ≤ n− 1,

they fulfills the functional equation

ψ ◦ ϕ = ei2mkπ/nψ.

Considering the above categories, we can say that, up to a hyperbolic rotation and
a unimodular constant, the solutions of (3.1) that have a fixed point inside D are of
the forms

ψ(z) = zm with ϕ(z) = λz,

or

ψ(z) = zmψ0(zn) with ϕ(z) = ei2kπ/nz.

Note that, in case I, the inner factor ω is always a unimodular constant.
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Case II: ϕ has no fixed point inside D In this case, ϕ has its Denjoy–Wolff point
on T. If ω is a unimodular constant, then the equation (3.1) becomes

(3.5) ψ
(
ϕ(z)

)
= λψ(z), z ∈ D,

where λ ∈ T. But, if ω is not a unimodular constant, then by replacing z by ϕ(z)
in (3.1) and using induction, we see that

ψ
(
ϕ[N+1](z)

)
×

N∏
n=0

ω
(
ϕ[n](z)

)
= ψ(z), N ≥ 1,

where ϕ[0](z) = z and ϕ[n] = ϕ ◦ · · · ◦ ϕ, n ≥ 1. Hence, considering the fact
that

∏N
n=0 ω

(
ϕ[n](z)

)
is an increasing sequence of divisors of ψ, we deduce that the

product

(3.6) ψ1(z) =
∞∏

n=0
ω
(
ϕ[n](z)

)
is a well-defined non-constant inner function and, moreover, ψ1 is a divisor of ψ
which itself satisfies (3.1). Since, for each z ∈ D, the sequence ϕ[n](z), n ≥ 1, tends
nontangentially to p and the above product is convergent, ω must have the radial
limit 1 at p. Define ψ2 = ψ/ψ1. Thus, putting ψ = ψ1ψ2 in (3.1) and simplifying
the equation reveal that ψ2 must fulfil

(3.7) ψ2

(
ϕ(z)

)
= ψ2(z), z ∈ D.

Therefore, the solutions of (3.1) are of the form

ψ = ψ1ψ2,

where ψ1 is given by (3.6), and ψ2 satisfies (3.7), which is a special case of (3.5).
In (3.6), the convergence of the product is the main required condition. If it con-

verges, then surely the outcome is a solution of (3.1). The following lemma provides
a set of sufficient conditions to achieve this goal.

Lemma 3.1 Suppose that ϕ and ω are inner functions with the following properties:

(i) p, the Denjoy–Wolff point of ϕ, is on T;
(ii) |ϕ ′(p)| < 1;
(iii) ∣∣∣ 1− ω(z)

p − z

∣∣∣ 2
≤ C

1− |z|2
, z ∈ D,

where C is a constant (e.g., if ω has finite angular derivative in the sense of Cara-
théodory at p with ω(p) = 1, the above inequality is fulfilled).

Then

ψ(z) =
∞∏

n=0
ω
(
ϕ[n](z)

)
is a well-defined non-constant inner function that satisfies the equation (3.1).
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Proof If f : D → D has finite angular derivative in the sense of Carathéodory at
α ∈ T, then Julia’s inequality says

| f (α)− f (z)|2

1− | f (z)|2
≤ | f ′(α)| |α− z|2

1− |z|2
, z ∈ D.

We apply this inequality to ϕ. Since ϕ(p) = p, by induction, we obtain

|p − ϕ[n](z)|2

1− |ϕ[n](z)|2
≤ |ϕ ′(p)|n |p − z|2

1− |z|2
, z ∈ D.

Hence, replacing z by ϕ[n](z) in (iii) and exploiting the inequality before, we obtain∣∣1− ω(ϕ[n](z)
) ∣∣ 2 ≤

(
C
|p − z|2

1− |z|2
)
|ϕ ′(p)|n, z ∈ D.

The assumption |ϕ ′(p)| < 1 now ensures the convergence of the product in the
definition of ψ.

As a special case, we can take ω = p̄ϕ[n0], n0 ≥ 0, in Lemma 3.1. Hence, we obtain

ψ(z) =
∞∏

n=n0

pϕ[n](z)

which is a non-constant inner function satisfying the equation

ψ
(
ϕ(z)

)
× pϕ[n0](z) = ψ(z).

At the end, let us directly give an explicit non-trivial solution of (3.1). For 0 <
α < 1, define

ϕα(z) =
z + α

1 + αz
.

It is straightforward to verify that

ϕα ◦ ϕβ = ϕ α+β
1+αβ

.

Hence, ϕ[n]
α = ϕα ◦ · · · ◦ ϕα = ϕαn , where αn satisfies the recursive relation

αn =
α + αn−1

1 + ααn−1
, n ≥ 2.

Thus

1− αn =
(1− α)(1− αn−1)

1 + ααn−1
≤ (1− α)(1− αn−1),

which, by induction, implies

1− αn ≤ (1− α)n, n ≥ 1.

For this inequality, we could have appealed to Lemma 3.1. Therefore, the sequence
(αn)n≥1 is a Blaschke sequence, and

ψ =
∞∏

n=1
ϕ[n]
α =

∞∏
n=1

ϕαn

is a well-defined non-constant Blaschke product. Moreover, ψ satisfies the functional
equation ψ ◦ ϕα × ϕα = ψ.
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4 When is Cϕ ∈ L(Kθ)?

Since in the mapping Cϕ : Kθ → Kη , given in Theorem 2.1, the choice of η is op-
timal we naturally wonder when the inclusion Kη ⊂ Kθ holds in order to obtain a
composition operator which maps Kθ into itself.

Theorem 4.1 Let ϕ and θ be inner functions on D. Then the mapping Cϕ : Kθ → Kθ

is well defined and bounded if and only if one of the the following situations holds:

(i) ϕ(z) = z and any inner θ;
(ii) θ(z) = γz, γ ∈ T, and any inner ϕ;
(iii) θ(z) = ϑ(zn), for some integer n ≥ 2 and an arbitrary inner function ϑ with

ϑ(0) 6= 0, and
ϕ = ρei2kπ/n , 1 ≤ k ≤ n;

(iv) θ(z) = γz
(
τp(z)

)m
, where γ ∈ T, p ∈ D, m ≥ 1, and any hyperbolic rotation

ϕ = τp ◦ ρλ ◦ τp, λ ∈ T;

(v) θ(z) = z
(
τp(z)

)m
ψ
((
τp(z)

) n)
, where p ∈ D, m ≥ 0, n > 1, ψ is a non-

constant inner function, and

ϕ = τp ◦ ρei2kπ/n ◦ τp, 1 ≤ k ≤ n;

(vi) p, the Denjoy–Wolff point of ϕ, is on T, and θ is of the form θ(z) = zψ(z), where
ψ fulfills

ψ
(
ϕ(z)

)
= λψ(z), z ∈ D,

for some unimodular constant λ;
(vii) p, the Denjoy–Wolff point of ϕ, is on T, and

θ(z) = γzψ(z)
∞∏

n=0
ω
(
ϕ[n](z)

)
,

whereω is a non-constant inner function such that the product is convergent, andψ
fulfills

ψ
(
ϕ(z)

)
= ψ(z), z ∈ D.

Proof If θ(z) = γz, then Kθ = C, for which each Cϕ is a well-defined operator on Kθ.
It is also trivial that ϕ(z) = z gives the composition operator Cϕ = id on each Kθ.

According to Theorem 2.1, Cϕ ∈ L(Kθ) if and only if Kη ⊂ Kθ, and the latter
happens if and only if η divides θ in the family of inner functions, i.e.,

η(z)θ1(z) = θ(z), z ∈ D,

where θ1 is an inner function. To treat this equation, we should naturally consider
three cases corresponding to the different definitions of η which were given in Theo-
rem 2.1:
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(i) If θ(0) 6= 0 and ϕ(0) = 0, then η = θ ◦ ϕ and we must have

θ
(
ϕ(z)

)
θ1(z) = θ(z), z ∈ D.

This is the Case I, Category III, with m = 0 and p = 0. Hence, there is an
integer n ≥ 1 and an inner function ϑ, with ϑ(0) 6= 0, such that θ(z) = ϑ(zn)
and ϕ = ρei2kπ/n for 1 ≤ k ≤ n.

(ii) If θ(0) 6= 0 and ϕ(0) 6= 0, then η(z) = zθ
(
ϕ(z)

)
and we must have

zθ
(
ϕ(z)

)
θ1(z) = θ(z), z ∈ D.

Put z = 0 to see that this is impossible.
(iii) If θ(0) = 0, then η(z) = zθ

(
ϕ(z)

)
/ϕ(z) and we must have

θ
(
ϕ(z)

)
ϕ(z)

θ1(z) =
θ(z)

z
, z ∈ D.

Put θ2(z) = θ(z)/z. Hence, the above becomes

θ2

(
ϕ(z)

)
θ1(z) = θ2(z), z ∈ D.

According to the Grand Iteration Theorem, ϕ has a fixed point p in D = D∪T.
Hence, we have the following three possibilities.

(a) If p ∈ D, Category I gives

θ(z) = γz
(
τp(z)

)m

where γ ∈ T and m ≥ 1, and

ϕ = τp ◦ ρλ ◦ τp,

where λ ∈ T.
(b) If p ∈ D, Category II gives

θ(z) = γz
(
τp(z)

)m
ψ
((
τp(z)

) n
)

where γ ∈ T, m ≥ 1, n > 1, ψ is a nonconstant inner function, and

ϕ = τp ◦ ρei2kπ/n ◦ τp, 1 ≤ k ≤ n.

(c) If p ∈ T, then we are in Case II. Thus, θ is either of the form θ(z) = zθ2(z),
where θ2 fulfills

θ2

(
ϕ(z)

)
= λθ2(z), z ∈ D,

for some unimodular constant λ, or

θ(z) = γzθ2(z)
∞∏

n=0
θ1

(
ϕ[n](z)

)
,

where the product is convergent and θ2 fulfills

θ2

(
ϕ(z)

)
= θ2(z), z ∈ D.
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