
REGENT RESULTS IN COMMA-FREE CODES 

B. H. JIGGS 

1. Introduction. A set D of ^-letter words is called a comma-free diction
ary (2), if whenever (ai&2 . . . ak) and (bib2 . . . bk) are in D, the "overlaps" 
(a2az . . . akbi), (a3&4 . . . ^6162), • • • , (a^ i • . . ^-1) are not in D. We say that 
two ^-letter words are in the same equivalence class if one is a cyclic permu
tation of the other. An equivalence class is called complete if it contains k dis
tinct members. Comma-freedom is violated if we choose words from incomplete 
equivalence classes, or if more than one word is chosen from the same complete 
class. Thus, if we require that the words be formed from a fixed «-letter 
alphabet, we obtain an upper bound on the size of a comma-free code by 
counting the complete classes. Letting Wk(n) denote the greatest number of 
words that such a dictionary can contain, we have (2) 

(1) Wk(n) <lZ »{d)nk'd, 
K d\k 

where the summation is extended over all divisors d of k, and n is the Mobius 
function defined by 

( l if d = 1, 
n(d) = <0 if d has any square factor, 

' ( — 1)r \ld = pip2 . • . pr, where pi, . . . , pr are distinct primes. 

The first (last) n letters of a word are called an initial (final) n-gram (digram, 
trigram, tetragram being used for 2, 3, 4 respectively). 

Golomb et al. (2, 3) investigate these codes and demonstrate many of their 
properties. In addition to this, Golomb, Welch, and Delbruck (3) and Golomb 
(1) provide an introduction to the biological aspects and applications of these 
codes. References to the biological literature are contained therein. Jaynes (4) 
cites the relevant engineering literature. The purpose of this paper is to report 
further results on the subject, obtained since the previous articles were written 
by a number of investigators, both human and electronic. Table I summarizes 
known values of Wk(n) to date; entries not mentioned in (2, 3) are under
lined. The arrows indicate that a row or column is known out to 00. In § 6 
we discuss a generalization comma-free codes of index r. 

2. Results for even k. First we mention an improvement of Theorem 4 
(2) which is due to Robert Jewett. 
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T H E O R E M 1. If k = 2i, then the tipper bound given by equation (1) is not 
attained by Wk(n) provided that n > 2l + i-

Proof. Let t ing 0, . . . , n — 1 be the letters of our a lphabet , consider the 
equivalence classes containing words t h a t have 0 in every position except 
possibly positions r and r + i, 1 < r < i. For each letter d we define a sequence 
Xi X2 . • • %i determined by the representat ives of these classes, where 

3 if d appears in some representat ive in position r, and in another in 
position r + i, 

2 if d appears in some representat ive in position r + i, b u t never in 
position r, 

1 if d appears in some representat ive in position r, bu t never in 

position r + i, 

0 otherwise. 

First , we notice t h a t if d 7e b then xd and xr
b cannot both have the value 3. 

Since if they did we would have words of the form W\ — 0 . . . (M) . . . 0^0 . . . 0, 
w2 = 0 . . . 0q0 . . . (W0 . . . 0, w3 = 0 . . . 060 . . . OsO . . . 0, w, = 0 . . . 0/0 . . . 
060 . . . 0. Bu t then W2Wz and w±W\ would contain all possible representat ives 
of the class (0 . . . OdO . . . 060 . . .0) as overlaps. Secondly, if d 9^ 6, then there 
exists an r such t h a t 0 ^ xr

d 5^ xr
b 9e 0. For if d is in the r th position of the 

representat ive of (0 . . . 0^0 . . . 060 . . . 0), then xr
d = xr

b implies t h a t 
xr

d = xT
h = 3, which is a contradict ion. Fur ther , for this r, xd and xr

b are 
not zero. T h u s the maximum number of dist inct sequences {xr

d} is the maximum 
number of dist inct letters in a comma-free dict ionary. Now the maximum 
number of dist inct sequences containing a 3 is i. Fur the r , we m a y replace 
every 0 in our sequences by 1, leaving them all dist inct . T h u s we may have 2* 
dist inct sequences not containing a 3. 

T H E O R E M 2 (L. D . Baumer t ) . If D achieves the upper bound (1) for k = 2i, 
n > 4, then every letter occurs in every position. 

Proof. Suppose A does not occur in the j t h position. Consider the complete 
equivalence classes containing words t h a t have A in every position, except 
possibly positions j and j + i (modulo k). There is a 1-1 correspondence 
between these classes and the complete classes for k = 2, same n. T h e eligible 
members of each such class for k = 2i correspond to the eligible members 
of the corresponding class for k = 2. Fur ther , this correspondence preserves 
comma-freedom. Bu t codes for k = 2, n > 4 do not achieve the upper bound. 

COROLLARY. If k = 2i, n > 4, and D achieves the upper bound, then no 
initial (k — 1)-grant is a final (fe — l)-gram. 

Proof. If ai&2 . • • &k and 6ai<22 . . . ak-i were in D, then ak could not be 
initial, which contradicts Theorem 2. 
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THEOREM 3 (Alfred Hales). If k = 4, n > 2, then D achieves the upper bound 
only if no initial trigram is a final trigram. 

Proof. Suppose ABCD and BCDE were in D; then A ^ E, and letting Z 
be a third letter, we see that AAAE, AAAZ, ZEEE, AAEE must represent 
their classes. This means that the class containing AAEZ cannot be repre
sented. 

THEOREM 4 (L. D. Baumert). W4(4) < 60. 

The proof consists of several lemmas. In order to condense these proofs 
the following conventions are assumed throughout: 

(a) A, B, C, D are the letters of the alphabet. 

(b) (ACAD) denotes the equivalence class containing the word ACAD. 

(c) *(ABCB)* means that no element of (ABCB) may be added to the par
tially formed dictionary without destroying comma-freedom. 

(d) A sequence ABCD, DCBB, *(CDBB)* means that because of overlap 
properties, existing hypotheses, and the Corollary to Theorem 2, the 
choice of ABCD requires that DCBB be chosen and these together 
imply *(CDBB)*. 

(e) \D\ is the number of words in D. 

LEMMA 1. If \D\ = 60 (n = k = 4), every diagram occurs initially or finally. 

Proof. There are two types of diagrams (xx and xy). Let x = D, y = C; if 
DD does not occur, then *(DDDC)*. Suppose CD does not occur, then we 
have four cases: (1) DDDC, CCDD, DBDC, DBDD, *(D£CC)*; (2) DCDD, 
DDCC, *(J9CCC)*; (3) DCDD, CCDD, DCCC, ACDD, DCAC, *(CCCA)*; 
(4) DCDD, CCDD, CCDC, BCDD, CCDB, BCDC, DCDB, CCCB, BDDD, 
DCCB, BDDC, *{DBCB)*. 

LEMMA 2. If \D\ = 6 0 (n = k = 4), then every letter begins (ends) at least 
two initial and two final digrams. 

Proof. Suppose that the only final digram beginning in A were .4^1 (one 
exists by Theorem 2). Then AB, AC, AD are initial only (Lemma 1). Con
sidering (BACA), (BADA), (CADA), we see that one of BA, CA, DA is 
initial only, another final only, and the third both initial and final. From 
symmetry considerations, we need only investigate the case where BA is 
both initial and final, CA is initial only, DA is final only. Then CAD A, CAB A, 
BAD A, A AD A, AABA, but A ABA and BAD A with A A as a final digram 
contradict comma-freedom. Suppose the only final digram beginning in A 
were AB, then A AC A, A AD A, and considering (CAD A) we see that one 
of CA, DA is both initial and final, the other final only. Thus by symmetry 
we need only consider CA final only, DA both initial and final. Then AACA, 
A AD A, DACA, BACA, BAD A, AADB, DADB, *(DBCA)*. Symmetry takes 
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care of AC (or AD) as the only final digram. Proofs for initial digrams and 
for final letters are quite similar. 

L E M M A 3. If \D\ = 60 (n = k = 4), not every digram beginning {ending) in 

X is both initial and final. 

Proof. Let X = A and suppose t h a t every digram beginning (ending) in A 
were both initial and final. Considering (AAAB), (AAAC), (AAAD), (ABAC), 
(ABAD), (A CAD) we see t h a t we cannot pick a comma-free set from them. 

L E M M A 4. If \D\ = 60 (n — k = 4) , every letter begins a digram that is both 
initial and final. 

Proof. Let A A, A B be initial only; AC, AD final only (Lemma 2) . Then 
A ABA and considering (CAB A), (CAD A), (DAB A) we see t h a t one of 
CA, BA, DA is both initial and final, another final only, and the thi rd initial 
only. Three cases arise: (1) CA bo th initial and final, DA initial, BA final; 
then A ABB, *(DAAA)*. (2) CA bo th initial and final, DA final, BA init ial; 
then CAD A, *(BACA)*. (3) BA both initial and final, CA initial, DA final; 
then A A AC, *(DAAQ*. Assuming AA, AB are final only and AC, AD 
initial only, we have BAA A, BBAA, CBAA, DBA A and (1) BABD, DAAB, 
ADDA, DABD, *(DABA)* or (2) BDBA, DBDA, DAAB, ADAB, BBDA, 
*(DBBB)*. 

L E M M A 5. If \D\ = 6 0 (n = k = 4) , no letter begins three digrams that are 
both initial and final. 

Proof. Let AA, AB, AC be such digrams. Considering (AAAB), (AAAC), 
(ABAC), we have only two symmetr ic possibilities, one of which is A ABA, 
CAAA, CAB A, A ABC, CBAB, CBAA, ACBC, CBAD. By Lemma 3, AD is 
final only, giving DCBC, CAAD, CADB, *(DBAA)*. Let AB, AC, AD be 
the digrams, then any comma-free solution for (ABAC), (ACAD), (ADAB) 
leaves one of BA, CA, DA initial only, another final only, and the third both 
initial and final. Let BA be both initial and final, CA initial, DA final, then 
CAD A, BAD A, CAB A, and by Lemma 3 : (1) A A final only, *(DAAA)*\ 
(2) AA initial only, AAAC, A CD A, *(CBAA)*. 

L E M M A 6. If \D\ = 6 0 (n = k = 4), no letter begins three digrams that are 
not both initial and final. 

Proof. Assume t h a t A begins three such digrams. Then we have several 
cases to consider. 

(I) AB, AC, AD are the digrams, A A is both initial and final. Then (1) 
AB, AC initial only, AD final only, by symmet ry wTe may choose CAB A, 
then AABA, DABA, (a) CAAA, AABC, *(CBAB)*, (b) ACAA, AAAD, 
DBA A, *(DBAC)*, (c) ACAA, DAAA, AABD, *(DBAB)* and (2) AD 
initial only, AB, AC final only, choose CAB A as above, then (a) AAAB, 
AADA, AAAC, BDAA, *(DBDA)*, (b) AAAB, ADAA, AAAC, BDAA, 
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CDAA, DADB, AADB, BDBA, DCDB, *(DBAC)*, (c) A ABA, AABD, 
DBAB, ADDB, *(DBAA)*, (d) AABA, BDAA, DADB, AADB, *(DBBA)*. 

(II) One of AB, AC, AD is both initial and final. (1) AA initial only, AD, 
AC final only, AB both, we can choose DACA as above (a) A ABC, CAB A, 
AABD, AABA, AADB, AADC, CABD, *(DBAB)*, (b) AABC, BACA, 
AABD, AABA, AADC, A ADD, BDCA, DDCA, DBAD, DBDD, BDCD, 
*{DCAC)*, (c) ABC A, AADC, A ADD, AADA, AABD, DABD, *(DCAB)*. 
(2) AA, AB initial only, AD final only, AC both, then AABA, (a) AACA, 
CAB A, AACC, CACC, CBAC, *(CBAB)*, (b) AACA, BACA, DACA, 
AADC, DAB A, *(DAAA)*, (c) A A AC, ACBA, AADB, DAB A, DA AC, 
*(DAAA)*. (3) AA, AD final only, AB initial only, AC both, then DAAA, 
DA AD, DA AC, *(DAAB)*. (4) AB, AC initial only, A A final only, AD 
both, we can choose CAB A and then BAAA, *(DBAA)*. 

LEMMA 7. If all digrams beginning in a fixed letter are initial (final), then 
\D\ < 60 (n = k = 4). 

Proof. There are four cases. (1) AB, AC, AD, A A initial, AA, AB final, we 
can choose DACA and then AACA, BACA, BAAA, AADB, *(DBCA)*. 
(2) AA, AB, AC, AD initial, AB, AC final, then AADA, we can choose 
CAB A and thus CAD A, (a) DAB A, A A AC, *(DAAC)*, (b) BAD A, A A AC, 
*(CBAA)*. (3) AA, AD initial, AA, AB,AC, AD final, we can choose CAB A, 
and then (a) DAAA, CAAA, AABA, AABD, AABC, DBAB, DBAD, DBCB, 
*(DBCA)*, (b) AADA, CAD A, BAD A, AAAB, BDAA, *{DCAB)*. (4) AB, 
AC initial, AA, AB, AC, AD final, we can choose CAB A and then DAAA, 
DAAB, BAAA, *(BBAA)*. 

LEMMA 8. If exactly three initial and three final digrams begin with the same 
letter, then \D\ < 60 (n = k = 4). 

Proof. There are three cases. (1) AA, AB both, AC initial, AD final (a) 
BAAA, AACB, BADC, DACB, BAD A, *(DAAA)*, (b) AABA, AABD, 
DAB A, DBAB, *(DBAC)*, (c) AABA, BDAA, DAB A, A A AD, DDAA, 
*(DDAB)*. (2) AB, AC both, A A initial, AD final, we can choose CAB A, 
(a) AACC, AACA, CACC, CBAC, *(CBAA)*, (b) CAAC, ACBA, DAB A, 
DA AC, AAAD, *(DBAA)*. (3) AB, AC both, A A final, AD initial, we can 
choose CAB A and then BAAA, *(BBAA)*. 

Proof of Theorem 4. Consider the digram structure for the letter A. All 
25 possible cases are prohibited by Theorem 2 or one of the above lemmas. 

Further, we have: 

THEOREM 5. / / n = k = 4, \D\ > 56 implies that no initial trigram is a final 
trigram. 

Proof, xyzw and yzwv in D imply (let x = A, v = B) that (AAAB), (AABB), 
(ABBB), (AAAD), (AADB), (ADBB), (DBBB), (AAAC), (AACB), 
(A CBB), (CBBB) are represented by the elements indicated, if at all. (DBAB), 
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(CBAB), (CBDB), (ADAB), (DBAD), (DBAC), (ABAC), (ADAC), (ADCB), 
(ACCB) must be represented by one of two elements, each of which is an 
overlap of the first set. At least four classes must be dropped to eliminate 
these overlaps. 

3. Computational results. Robert Jewett was the first to exhibit a code 
for n = 2, k = 8, achieving the upper bound 30. Several more of these have 
been computed using an IB M-704 computer. One of these satisfies the in
equalities: 

a > 6 < c > d > e , / > g > A 
a < 6 > c < d > e < / > g > / z 
a^b<c^d=e=f<g=h 
a>b<c=d^e=f<g=h 

An exhaustive search was made to determine 1^(4), the results of which 
show that ^ ( 4 ) = 57. Since this was done by digital computer and is quite 
time-consuming, it cannot be verified by hand. Thus a proof of this fact 
without using a computer would still be of some interest. To this end it is 
interesting to note that in all 57 word dictionaries computed (not all 57's were 
computed), classes of the same kind were missing. Specifically, each code 
had one class of the type (xyzw) and two classes of the type (pqpr) missing. 

A typical code achieving 57 is the following: 

DBDD DDAD BDCD CCCB 
DCCB A CCA DABD BABB 
CACB DACB DCAD DA CD 
BCAD BAAD A CAB BAA A 
BDAD BDCD CCCD BCCD 
ACCD DABB BCAB ABCB 
BBAD DCAB CACD DBAD 
DBCD BAAB BCAA DCBB 
DBBB CCCA BCCA DCCA 
BABD BBCB BACB A A CD 
BACD DCAA ABAD DAAA 
ACAA ABCD 

After considerable computation, it appeared that an exhaustive search for 
codes achieving the upper bound (=116) in the case of n = 3, k = 6, would 
not be feasible. However, it was established by the computer that 116 cannot 
be achieved if AABBCC is used to represent its class. Thus, any 116-code is 
isomorphic to one containing ABB CCA. The computer program which pro
duced these results was written by Lee Laxdal. 

4. Results for odd k. First we mention that a slight error occurs in the 
proof of Theorem 2 (2). Specifically there are 9 (rather than 8) patterns of 

BCCB 
DBCB 
DAAD 
DCBD 
DC CD 
DAAB 
ACAD 
DBBD 
ACCB 
BBCD 
AACB 
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proper differences of k = 7. The missing difference pattern is (-\ H 1 ). 
The result is still valid, however. Using this method of proof it has been 
established that 17 W17(n) = n17 — n. 

Further, John Selfridge has shown that for all odd k, the upper bound (1) 
is attained for a class of dictionaries satisfying a weaker constraint than 
comma-freedom. 

DEFINITION. A collection D of k-letter words over an n-letter alphabet will be 
called locally decipherable if, whenever (ai#2 • • • #*) and (&i#2 - > .bk) are in D, the 
following three conditions do not hold simultaneously for any i = 1,2,... ,k — 1 : 

(i) a 1&2 • • • a>i is a final i-gram in D, 
(ii) ai+i . . . akbi . . . bt is a word of D, 

(iii) bi+ibi+2 . . . bk is an initial (k — i)-gram in D. 

It is clear that every comma-free dictionary is locally decipherable, but not 
necessarily conversely. 

THEOREM 6. Letting Xk{n) be the maximum size for a locally decipherable 
dictionary of k-letter words (k odd) over an n-letter alphabet, we have 

**(») = \ E n(d)n*'d. 
& d\k 

Dr. Selfridge's result casts reasonable doubt on whether Wk(n) must achieve 
the upper bound (1) for all odd k, as was conjectured previously (2). 

5. Asymptotics. An improved asymptotic bound for 

ak — hm 1— , k even, 
W-4oo n 

has been worked out by Basil Gordon. (In (2) it was shown that ak exists 
for all k, that ak = 1/k for odd k, that on = 1/3, and that 1/ek < ak < 1/k 
for even k > 2.) 

THEOREM 7. For even k > 4, 2/ek < ak < 1/k, where e = 2.71828. . . . 

Proof. We construct a comma-free code D containing 

-K-1)'" 
words, thus showing that 

2 / 2V*"1 2 
ak>kV"k) >Vr 

First form a comma-free dictionary D! of two-letter words from our ^-letter 
alphabet containing [n2/h] words, where 2h = k. This is possible if h > 2, 
that is, if k > 4 (2). Partition the set X of ordered pairs of letters from our 
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n-letter alphabet into two disjoint sets, D' and X — D'. Let a\b\ be an arbi
trary pair in Df, and similarly atbi (i A 1) an arbitrary pair in X — Df. Now 
the comma-free code we seek is composed of all words of the type a\a2 . . . ah 

bib2 . . . bh. 
Applying this construction to n = 2, k = 6, the set Dr consists of the 

single word 01 and X - D' = {00, 10, 11}, giving rise to code 000100, 001100, 
001101, 010100, 011100, 011101, 010110, 011110, 011111, which is maximal 
for these parameters. For n = 3, k = 6 this construction gives a code of size 
108 (the bound here is 116). For n = 5, k = 4 we get 136 and the bound 
is 150. 

6. Comma-free codes of index r. The results of this section are due 
to S. W. Golomb. 

A set D of ^-letter words is called a comma-free code of index r if whenever 
(ai<22 . . . ak) and (bib2 . • . bk) are in D, then each of the overlaps (a2az . . . akbi), 
(a3a4 . . . akbib2), . . . , (akbib2 . . . bk-i) differs from every word of D in at 
least r places. In this terminology ordinary comma-free codes are of index 1. 
Letting Wr(n, k) denote the largest number of ^-letter words that a comma-
free code of index r can have over an ^-letter alphabet, then Theorems 8 to 
11 are immediate consequences of the definition. 

THEOREM 8. W0(n, k) = nk, 

THEOREM 9. Wr(n, k) = 0 for r = 0, 1, 2, 

THEOREM 10. Wr(n, k) = 0 for r > k > 1. 

THEOREM 11. Wr(n, k) is a monotonie non-decreasing function of n; Wr(n, k) 
is a monotonie non-increasing function of r. 

THEOREM 12. Wr(n, 2) = n2 for r = 0, [n2/3] for r = 1, [w2/4] for r = 2, 
and 0 for r > 2. 

Proof. Theorems 8 and 10 take care of r = 0 and r > 2 respectively. 
Theorem 3 of (1) provides [w2/3] for r = 1. If r = 2, we note that no letter 
occurs both initially and finally in such a code. Thus the best we can do is 
divide the letters up evenly. This gives [w2/4]. 

THEOREM 13. WT(n, k) = 1 if r = k = n > 0. 

Proof. Note that every word must contain all n = k = r letters. Now if 
(ai#2 . . . ak), (bib2 . . • bk) are two such words, there is a first bt A at. But 
bi = dj for some j > i, say for j = i + h. Then the overlap a,\+n • • • #w#i • • - ah 

agrees with ôi . . . bn at ô .̂ Thus Wr(n, k) = 1. 

THEOREM 14. TF2(n, 3) > max{[i»](n - [iw])2, ft(» + 3)](» - [\(n + 3)])2}. 

Proof. Divide the alphabet into two disjoint sets A, B where \A\ < \B\. 
Consider all words of the form abb, clearly comma-free of index 2. In 
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order to maximize the size of this code we seek the relative maximum of 
f(x) = x(n — x)2 in the range 0 < x < n. This occurs at w/3, giving the 
above result. 

THEOREM 15. Wr(n, r) = qr~d(q + l)d, where q = [n/r], d = n — qr. 

Proof. All overlaps must differ from all words in every position; thus the 
sets of letters occurring in positions 1, 2, . . . , r are disjoint. Maximizing the 
size of such a code gives the result. 
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