# Examples in the Geometry of Cross Ratios 

By Charles Tweedie

(Read 8th May. MS. received 2nd June, 1908)
When P is joined to four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ coplanar with P , a pencil of four lines is formed whose cross ratio is constant if ABCD are collinear. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are not in a line the cross ratio $\mathbf{P}(\mathbf{A B C D})$ has a value which in general varies with the position of P , but which should be known when P is given in position and also A, B, C, D. A simple expression for the cross ratio is given and its utility in locus problems is illustrated by a variety of simple examples, which in several cases furnish methods for constructing a general cubic curve, with or without double point, a trinodal quartic, etc.
§ 1. Let $1,2,3,4$ be four points in a plane, $P$ any fifth point. There exists the following relation in the signed areas of the triangles P12, etc.
(P12) (P34) $+(\mathrm{P} 13)(\mathrm{P} 42)+(\mathrm{P} 14)(\mathrm{P} 23)=0 \quad-\quad \mathrm{I}$; and the cross ratio of the pencil $\mathbf{P}(1234)$ is given by

$$
\mathrm{P}(1234)=(\mathrm{P} 13)(\mathrm{P} 24) /(\mathrm{P} 14)(\mathrm{P} 23)-\quad-\quad-\quad-\quad \mathrm{II} .
$$

These are easily established. Let $|\mathrm{Pl}|=r_{1},|\mathrm{P} 2|=r_{2}$, etc.; and let (12) denote the signed angle 1P2.

Then $\mathrm{P} 12=\frac{1}{2} r_{1} r_{2} \sin (12) ; \mathrm{P} 34=\frac{1}{2} r_{3} r_{4} \sin (34)$; etc.
Substitution in I leads to the trigonometrical identity $\sin (12) \sin (34)+\sin (13) \sin (24)+\sin (14) \sin (23)=0$ and the right side of II reduces to the well-known expression for the cross ratio $\sin (13) \sin (24) / \sin (14) \sin (23)$.

Cor. 1. $\mathrm{P}(1234)=\mathrm{P}(1235) . \mathrm{P}(1254)$; $=(\mathrm{P} 1235) \mathrm{P}(1256) \mathrm{P}(1264)$; etc.
Cor. 2. $P(1234) . P(1342) P(1423)=-1$.
Cor. 3. $\quad \mathrm{A}(\mathrm{BCPQ}) \cdot \mathrm{B}(\mathrm{CAPQ}) \mathrm{C}(\mathrm{ABPQ})=+1$.
Cor. 4. Divide in I by ( P 14 ) ( P 23 ) when it gives rise to $\mathrm{P}(1234)+\mathrm{P}(1324)=1$.
§ 2. Let $\mathrm{P}(1234)=\lambda$ it is then easy to establish the following well-known relations either by direct substitution in II or by the aid of Cor. 1. and Cor. 4. of §(1):

$$
\begin{align*}
& \mathrm{P}(1234)=\mathrm{P}(2143)=\mathrm{P}(3412)=\mathrm{P}(4321)=\lambda  \tag{1}\\
& \mathrm{P}(1243)=1 / \lambda  \tag{2}\\
& \mathrm{P}(1324)=1-\lambda  \tag{3}\\
& \mathrm{P}(1342)=1 /(1-\lambda)  \tag{4}\\
& \mathrm{P}(1423)=1-1 / \lambda=(\lambda-1) / \lambda  \tag{5}\\
& \mathrm{P}(1432)=\lambda /(\lambda-1) \tag{6}
\end{align*}
$$

§ 3. In the dual problem let 1234 be a transversal to the sides of a quadrilateral ABCD as in Figure 7.

Let $a, b, c, d$ be the perpendicular distances of the vertices of ABCD from the transversal.

Denote by $\overline{13}$ the directed segment from 1 to 3 , and by (13) the angle between the sides of the quadrilateral that pass through 1 and 3. Let $\sin (1234)$ denote $\sin (13) \sin (24) / \sin (14) \sin (23)$.

Then

$$
\begin{aligned}
& \mathrm{A} 1 . \mathrm{A} 3 \sin (13)=a \cdot \overline{13}=2 \triangle \mathrm{~A} 13 \\
& \mathrm{C} 2 . \mathrm{C} 4 \sin (24)=c \cdot \overline{24}=2 \triangle \mathrm{C} 24 \\
& \mathrm{~B} 1 . \mathrm{B} 4 \sin (14)=b \cdot \overline{14}=2 \triangle \mathrm{~B} 14 \\
& \mathrm{D} 2 . \mathrm{D} 3 \sin (23)=d \cdot \overline{23}=2 \triangle \mathrm{D} 23 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\mathrm{A} 1}{\mathrm{~B} 1} \cdot \frac{\mathrm{C} 2}{\mathrm{D} 2} \cdot \frac{\mathrm{~A} 3}{\mathrm{D} 3} \cdot \frac{\mathrm{C} 4}{\mathrm{~B} 4} \times \sin (1234) \\
& =\frac{a c}{b d}(1234)
\end{aligned}
$$

i.e. $\quad \frac{a c}{b d} \sin (1234)=(1234) \quad\left(\because \cdot \frac{\mathrm{A} 1}{\mathrm{~B} 1}=\frac{a}{b} ;\right.$ etc $)$

Also

$$
(\mathrm{A} 13)(\mathrm{C} 24) /(\mathrm{B} 14)(\mathrm{D} 23)=\frac{a c}{b d}(1234)
$$

$$
\therefore \frac{\mathrm{A} 13 \cdot \mathrm{C} 24}{\mathrm{~B} 14 \cdot \mathrm{D} 23} \sin (1234)=(1234)^{2}
$$

Cor. From these equations a great variety of identities may be deduced. In particular if $(1234)=-1$ we obtain

$$
\frac{(1 \mathrm{~A} 3)(2 \mathrm{C} 4)}{(1 \mathrm{~B} 4)(2 \mathrm{D} 3)} \times \frac{\sin (1 \mathrm{~A} 3) \sin (2 \mathrm{C} 4)}{\sin (1 \mathrm{~B} 4) \sin (2 \mathrm{D} 3)}=1
$$

Similarly when ABCD are united into a single point we obtain the formula in areas given in $\S(1)$.
§4. If P, 1, 2, 3, 4 have co-ordinates $(x y z) ;\left(x_{1} y_{1} z_{1}\right) ;$ etc., then

$$
P(1234)=\frac{\left(x y_{1} z_{3}\right)\left(x y_{2} z_{4}\right)}{\left(x y_{1} z_{4}\right)\left(x y_{2} z_{3}\right)}
$$

where $\left(x y_{1} z_{3}\right)$ is the determinant whose rows are $x y z ; x_{1} y_{1} z_{1} ; x_{3} y_{3} z_{3}$.
For non-homogeneous co-ordinates put $z=1$ throughout.
In the dual theorem if 1234 is the line $l x+m y+n=0$ and the lines through $1,2,3,4$ forming the sides of ABCD are $l_{1} x+m_{1} y+n_{1} z=0$, etc., then

$$
(1234)=\frac{\left(l m_{1} n_{3}\right\rangle\left(l m_{2} n_{4}\right)}{\left(l m_{1} n_{4}\right)\left(l m_{2} n_{3}\right)}
$$

For non-homogeneous co-ordinates put $n=1$ throughout. The identity of form in these two analytical expressions enables us to dispense with the distinction of co-ordinates.
§5. If five points $1,2,3,4,5$ are taken and $P$ be any other point in their plane, there are but two independent cross ratios formed by joining $\mathbf{P}$ to four of these points.


It therefore follows that if $a b c d$ are any four of the points 12345 then $\mathrm{P}(a b c d)$ is a rational function of $\lambda$ and $\mu$ linear in either of the variables. The elimination of $\lambda$ and $\mu$ from these relations gives rise to a great variety of identical relations.

Cor. The equations I-V also furnish the values of the cross ratio of any four of the five points $1,2,3,4,5$ for the conic containing all the five points.

These may also be verified for the conic as follows. We have the identity

If

$$
\begin{aligned}
& 5(1234) \cdot 3(1245) \cdot 4(1253)=1 \\
& \lambda=5(1234) \\
& \mu=4(1235) \text { as on the conic } \\
& 3(1245) \times \lambda \times 1 / \mu=1 \\
& 3(1245)=\mu / \lambda \\
& 3(1254)=\lambda / \mu \text { as in III. }
\end{aligned}
$$

then
Hence
or
$\S$ 6. If $\mathbf{P}(1234)=\lambda ; P(1235)=\mu$, then $P$ is thereby uniquely determined. For $P(1234)=\lambda$ represents a conic through $1,2,3,4$; and $\mathrm{P}(1235)=\mu$ a second conic through $1,2,3,5$. The conics cut in $1,2,3$ and in the unique point $P$. We may therefore speak of $\lambda$ and $\mu$ as being the co-ordinates of $P$. Only when $\mathrm{P}(1234)=5(1234)$; and $\mathrm{P}(1235)=4(1235)$ is P indeterminate, being then any point on the conic through $1,2,3,4,5$.

The expression of $\lambda$ and $\mu$ in trilinear co-ordinates may be conveniently found by taking $1,2,3$ as triangle of reference. Let 4 be the point $(\alpha \beta \gamma), \mathrm{P}$ the point ( $x y z$ ).

By the data

$$
\lambda=\Delta \mathrm{P} 13 \cdot \Delta \mathrm{P} 24 / \Delta \mathrm{P} 14 \cdot \Delta \mathrm{P} 23
$$

and on making the calculation we find

$$
\begin{equation*}
\lambda=(\gamma / z-a / x) /(\gamma / z-\beta / y) \tag{1}
\end{equation*}
$$

Similarly if 5 is the point ( $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ )

$$
\begin{equation*}
\mu=\left(\gamma^{\prime} / z-\alpha^{\prime} / x\right) /\left(\gamma^{\prime} / z-\beta^{\prime} / y\right) \tag{2}
\end{equation*}
$$

Equations (1) and (2) furnish the relations

$$
\begin{align*}
& \frac{1}{x}: \frac{1}{y}: \frac{1}{z}=\lambda \mu\left(\beta^{\prime} \gamma-\beta \gamma^{\prime}\right)-\beta^{\prime} \gamma \mu+\beta \gamma^{\prime} \lambda \\
& : a^{\prime} \gamma(\lambda-1)-a \gamma^{\prime}(\mu-1): a^{\prime} \beta \lambda-a \beta^{\prime} \mu \tag{3}
\end{align*}
$$

Cor. The equation to a line being of the form $\mathrm{A} / y z+\mathrm{B} / z x+\mathrm{C} / x y=0$, it follows that to a straight line in general corresponds a cubic in $\lambda$ and $\mu$ of the second degree at most in either $\lambda$ or $\mu$. If, however, 4 and 5 are chosen so that $\beta / \beta^{\prime}=\gamma / \gamma^{\prime}$,
i.e., if they are in a line with 1 , then to a straight line corresponds a quadratic equation in $\lambda$ and $\mu$. For, if $\beta / \beta^{\prime}=\gamma / \gamma^{\prime}$

$$
\frac{1}{x}: \frac{1}{y}: \frac{1}{z}=\mathbf{L}: \mathbf{M}: \mathbf{N}
$$

where $\mathrm{I}, \mathrm{M}, \mathrm{N}$ are linear functions of $\lambda$ and $\mu$; and $\therefore$ to $\Sigma \mathrm{A} / y z=0$ corresponds

$$
\mathrm{AMN}+\mathrm{BNL}+\mathrm{CLM}=0 .
$$

Similarly if $2,3,4$ say are collinear, and also $1,2,5$ then the equations become

$$
\frac{\mathrm{P} 13}{\mathrm{P} 14}=c \lambda ; \frac{\mathrm{P} 13}{\mathrm{P} 23}=c^{\prime} \mu ;
$$

in which $c=23 / 24 ; c^{\prime}=15 / 25$. In such a case to a linear equation in $x$ and $y$ corresponds a linear equation in $\lambda$ and $\mu$ and inversely. We shall in general assume that no three points in question are collinear.
§ 7. A number of interesting geometrical theorems may be more easily deduced by taking particular algebraic relations connecting $\lambda$ and $\mu$. In what follows, ordinary cartesian co-ordinates are used, and by (Pab) is meant the determinant

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{a} & y_{a} & 1 \\
x_{b} & y_{b} & 1
\end{array}\right|
$$

Ex. 1. To $\lambda=c$ a constant corresponds the conic section given by

$$
(\mathrm{P} 13)(\mathrm{P} 24)=c(\mathrm{P} 14)(\mathrm{P} 23 .)
$$

Ex.2. To the relation

$$
\mathrm{A} \lambda+\mathrm{B} \mu=0
$$

corresponds likewise a conic through the points $1,2,4,5$ but not in general through 3.

For

$$
\mathrm{P}(1234) / \mathrm{P}(1235)=\mathrm{P}(1254) .
$$

$$
\therefore \mathrm{P}(1254)=-\mathrm{B} / \mathrm{A}=\mathrm{constant}
$$

Ex. 3. To

$$
\mathrm{A} \lambda+\mathrm{B} \mu+\mathrm{C}=0
$$

corresponds $\quad \mathrm{A} \times \mathrm{P}(1234)+\mathrm{B} \times \mathrm{P}(1235)+\mathrm{C}=0$,
i.e., $\mathrm{A}(\mathrm{P} 13)(\mathrm{P} 15)(\mathrm{P} 24)+\mathrm{B}(\mathrm{P} 13)(\mathrm{P} 14)(\mathrm{P} 25)+\mathrm{C}(\mathrm{P} 14)(\mathrm{P} 15)(\mathrm{P} 23)=0$

This equation in general represents a cubic curve possessing a double point at 1 , and ordinary points at 2, 3, 4, 5 .

Now the datum of a double point is equivalent to three conditions, and each ordinary point is given by one condition. There are therefore a twofold infinity of cubics possessing a double point at 1 and through 2, 3, 4, 5. Also the equation in $\lambda$ and $\mu$ contains two arbitrary constants. We have, therefore, the following theorem suggested.
"Take a cubic with double point at 1 , and let. 2, 3, 4, 5 be any four fixed points on it. Let $\pi_{1}$ denote $\mathrm{P}(1234)$, and $\kappa_{1}$ denote $P(1235), P$ being any other point on the cubic. There is a linear relation connecting $\pi_{1}$ and $\kappa_{1}$, and $\left(\pi_{1} \pi_{2} \pi_{3} \pi_{4}\right)=\left(\kappa_{1} \kappa_{1} \kappa_{3} \kappa_{4}\right)$."

For confirmation see Salmon's Higher Plane Curves, § 163.
Particular cases arise when 2 and 3 are the circular points at infinity.

But if $5(1234)=\alpha$, and $4(1235)=\beta$; and if $\mathrm{A} a+\mathrm{B} \beta+\mathrm{C}=0$, then the curve given by $\mathrm{A} \lambda+\mathrm{B} \mu+\mathrm{C}=0$ is a degenerate cubic consisting of a conic and a straight line through 1 .

Ex. 4. To the relation

$$
\mathrm{A} \lambda \mu+\mathrm{B} \lambda+\mathrm{C} \mu+\mathrm{D}=0
$$

corresponds

$$
\begin{gathered}
\mathrm{A}(\mathrm{P} 13)^{2}(\mathrm{P} 24)(\mathrm{P} 25)+\mathrm{B}(\mathrm{P} 13)(\mathrm{P} 23)(\mathrm{P} 15)(\mathrm{P} 24) \\
+\mathrm{C}(\mathrm{P} 13)(\mathrm{P} 23)(\mathrm{P} 14)(\mathrm{P} 25)+\mathrm{D}(\mathrm{P} 23)^{2}(\mathrm{P} 14)(\mathrm{P} 15)=0
\end{gathered}
$$

This equation represents a quartic curve in general, possessing double points at $1,2,3$, and ordinary points at 4,5 .

There are three arbitrary constants in the $\lambda-\mu$ equation. But only a threefold infinity of quartics are possible possessing nodes at three given points and through other two points. We have therefore the following theorem suggested.
"Take a tri-nodal quartic with nodes at $1,2,3$. Let 4 and 5 be any two fixed points on it, and $P$ an arbitrary point on the curve. Then ( $\left.\pi_{1} \pi_{2} \pi_{3} \pi_{4}\right)=\left(\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{4}\right)$."

There are a variety of degenerate cases. For example if ABCD are such that $\mathrm{A} a \beta+\mathrm{Ba}+\mathrm{C} \beta+\mathrm{D}=0$, then the quartic reduces to the base conic 12345, and a second conic through $1,2,3$, (Degenerate cases may also arise should any of the base points be collinear).

Any relation $f(\lambda, \mu)=0$ will furnish a degenerate curve when $f(\alpha, \beta)=0$.

Ex. 5. If a bilinear equation is given connecting $P(1234)$ and $P(5678)$ the locus of $P$ is in general a quartic ; but in a large variety of cases the curve is of lower order.
(a.) If $\mathrm{P}(1342) / \mathrm{P}(1562)=\lambda$, a constant, the locus of P is a cubic (P14)(P32)(P56) $-\lambda(\mathrm{P} 34)(\mathrm{P} 16)(\mathrm{P} 52)=0$
passing through $1,2,3,4,5,6$; and through the intersection 7 of 14 and $52 ; 8$ of 32 and $16 ; 9$ of 56 and 34 . (Figure 8.)

The nine points thus obtained form nine associated points of a pencil if cubics in triads upon two systems of three lines; and one obtains ( $v$. Salmon's Higher Plane Curves) the most general form of the cubic, from which its more elementary properties are generally deduced. It will be noted that if 3,4 ; and 1,2 , are given on a fixed cubic, the points 5 and 6 are uniquely determined by the collinearities :-
147

275 $\quad$ and $\quad$| 238 |
| :--- |
| 186. |

Also 34 and 56 cut on the cubic.
The same cubic could be obtained by a variety of such equations, e.g., $P(5164) / P(5324)=\mu$, corresponding to

$$
\begin{aligned}
& 659 \\
& 943
\end{aligned} \quad \text { and } \quad 147
$$

Since all the relations are algebraic, a bilinear equation, $\lambda=\mu$, connecting $\lambda$ and $\mu$ is suggested for the same cubic.
(b.)

$$
\mathbf{P}(2134) / \mathbf{P}(2536)=\lambda \text { gives }
$$

$$
(\mathrm{P} 14)(\mathrm{P} 26)(\mathrm{P} 53)-\lambda(\mathrm{P} 56)(\mathrm{P} 24)(\mathrm{P} 13)=0,
$$

a cubic through $1,2,3,4,5,6$ and through the intersections 7, 8, 9 of 14 and $56 ; 26$ and $13 ; 53$ and 24 . (Figure 9.)

These again form nine associated points. They may also be found in any given cubic as follows.

Take the base points 1, 2, 5; and the point.7. Form the Steinerian hexagon
714
429
953
318
826
and.$\therefore \quad 657$

Then $\mathrm{P}(2134) / \mathrm{P}(2536)=$ constant for all points P on the cubic. Similiar base points for the same configuration are

$$
169: 237: 346: 458: 789 .
$$

Thus start with 1 , ( $\because 7438$ excluded). The other two base points must come from 2569. Take 6, thereby excluding 5728, i.e., excluding in addition 5 and 2 , and leaving $9 ; \therefore 169$ as possible base points

Thus
417
765
593
318
862
$294 ;$
and $\mathrm{P}(6137) / \mathrm{P}(6932)=\mu$ a constant.
Ex. 6. Consider the cross ratios $1(2345): 2(3451) ; \ldots .$. ; 5(1234).
Equate the product of two or more of these to a constant. Fix four of the points, when the fifth traces out a curve which is at most of the fourth degree, and is generally, but not always, unicursal.
(A) e.g. Let 1 (2345) . 2 (3451) $\cdot 3$ (4512) $=$ constant.
(i) Put P for 5
$\therefore(\mathrm{P} 23)^{2} /(\mathrm{P} 12)(\mathrm{P} 24)=\mathrm{constant}$
$\therefore$ the locus of $P$ is a pair of lines.
(ii) Put P for 4 . The locus is again a degenerate conic.
(iii) Put $P$ for 3
$\therefore$ (P15) (P25) (P23)/(P12) (P24) (P13) $=$ constant.
The locus is a cubic with double point at 2 ; through 1 and 3 ; through the intersection of 15 and 24 , and of 25 and 13 ; and tangent to 15 at 1 .
(iv) Put P for 2

$$
\therefore(\mathrm{P} 14)^{2}(\mathrm{P} 35)^{2} /(\mathrm{P} 13)(\mathrm{P} 15)(\mathrm{P} 23)(\mathrm{P} 45)=\text { constant } .
$$

The locus is a quartic with double points at $1,3,5$, through 4, but not through 2; 23 is tangent where 14 again cuts the curve; 45 is tangent at 4.
(v) Put P for 1 when the locus is a pair of lines through 2.
(B) Equate the product of the five ratios to a constant and put $P$ for 5, say.

$$
\therefore \text { P13. P23. P24/P12. P34. P14 = constant. }
$$

This is a cubic through $1,2,3,4: 13$ is tangent at 1,34 is tangent at 3,42 is tangent at 4 , and 21 is tangent at 2. Also 23 and 14 intersect on the curve.

The quadrilateral 1234 is therefore both inscribed and circumscribed to the cubic. A cubic curve with no double point has always a limited number of such quadrilaterals.

Ex. 7.
$\mathrm{P}(1234) \times \mathrm{P}(1278)=$ constant
gives a quartic with double points at 1 and 2.

$$
\mathrm{P}(1234) \times \mathrm{P}(1678)=\text { constant }
$$

furnishes a quartic with a double point at 1.

$$
\mathrm{P}(1234) \mathrm{P}(5678)=\mathrm{constant}
$$

furnishes a quartic which does not in general possess a double point.

