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The obvious metaphysical differences between Newton and Leibniz concerning
space, time, and motion reflect less obvious differences concerning the relation be-
tween geometry and physics, expressed in the questions: what are the invariant quan-
tities of classical mechanics, and what sort of geometrical frame of reference is re-
quired to represent those quantities? Leibniz thought that the fundamental physical
quantity was “living force” (mv<), of which every body was supposed to have a defi-
nite amount; this notion violates the classical principle of relativity, since it makes a
physical distinction between uniform velocity and absolute rest. But Leibniz did not
try to represent this physical quantity in a spatio-temporal reference frame, assuming,
instead, that all such frames are equivalent so long as they agree on the relative mo-
tions (changes in the mutual Euclidean distances) among bodies. Newton, in contrast,
explicitly incorporated the relativity principle into his dynamics: he characterized the
invariant quantity of force by acceleration rather than velocity, and recognized that the
quantity of a body’s moving force depends on the frame of reference in which it is de-
scribed. Yet he tried to represent this dynamical conception in absolute space, which
entails precisely the distinction between motion and rest, and hence the violation of
classical relativity, that Leibniz’s dynamics postulates. In the subsequent history of
dynamics, serious methodological issues have been raised by the problem of express-
ing what is physically invariant in an appropriate geometrical structure.

As far as Newtonian mechanics is concerned, this problem was essentially solved
.by James Thomson in 1884, when he introduced the term “reference frame” and de-
fined what we now call the inertial frame. His insight was that the laws of motion
themselves postulate certain spatial and temporal structures, or, in his words, a certain
kind of reference-frame and “dial-traveler” (time scale). He therefore proposed a
“Law of Inertia,” which I paraphrase: for any system of interacting bodies, it is possi-
ble to construct a reference-frame and a time scale with respect to which all accelera-
tions are proportional to, and in the direction of, impressed forces. (Thomson 1884,
p. 387.) To assert this as a law of nature is to assert, in modern language, that space-
time is a flat affine space with a projection on time, and that deviations of a body’s
motion from the geodesics of the affine structure correspond to forces acting on the
moving body. Of course we must add to this statement the demand that all of these
actions are matched by equal and opposite reactions, so that a true impressed force
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can be distinguished from a pseudo-force, but Thomson'’s basic approach remains
satistfactory; the main reasons to doubt it are the reasons to doubt Newton’s laws gen-
erally.

Yet the end of the nineteenth century saw, not a recognition of the clarification
that had been achieved, but an often bewildering philosophical debate over Newton’s
laws and the reference frame that they require, a debate that continued even after spe-
cial relativity might have made the issues seem outdated. This is because to many of
the participants in that debate, the (now seemingly straightforward) problem that
Thomson addressed inevitably raised philosophical issues that affected the founda-
tions of mechanics. Thus Ludwig Lange, for example, independently recapitulated
Thomson’s work (more or less) in his definition of “inertial system™ (Lange 1885),
but, while Thomson modestly thought he had clarified a point in Newtonian mechan-
ics, Lange thought that he had set Newton'’s laws on an entirely new footing — a foot-
ing that purportedly replaced absolute notions with relative, real with ideal, and, espe-
cially, factual with conventional. Even though Lange’s definition and his general
point of view were given much attention by Emst Mach and other physicists and
philosophers, they seem to have had little influence on physicists working on the elec-
trodynamical questions that led to special relativity, and so Lange’s historical impact
is difficult to assess. Yet something like Lange’s general understanding of the role of
reference-frames in mechanics became quite widespread in the philosophy of physics
of the late nineteenth and early twentieth centuries, and it continues to make its pres-
ence known. It seems worthwhile, therefore, to look at the origins of this view and to
see how a problem essentially concerning the invariant structure of Newtonian me-
chanics became a problem concerning a conventional choice of reference frames.

Lange developed his concept of inertial system from precedents in the German liter-
ature on the foundations of physics, especially Carl Neumann (1870), Heinrich Streintz
‘(1883), and Ernst Mach (1883). Taking it as a basic principle that all motion is relative,
these authors held that the classical law of inertia raised the fundamental “problem of
the reference-system”: relative to what system of reference is the motion of a free body
rectilinear, and relative to what time-scale is it uniform? More generally, relative to
what do the laws of motion hold? Neumann’s infamous “Alpha body” was his answer
to this question: he postulated that “at an unknown place in the cosmos,” beyond our
observation, sits a rigid and unchanging body, and that relative to this “Alpha-body” the
motion of a free body is rectilinear (1870, p. 15). Streintz, attempting to improve on
Neumann, proposed that the law of inertia holds with respect to any body found to be
free of external forces, and named the appropriate reference-bodies “fundamental bod-
ies.” Both approaches had serious difficulties (see DiSalle 1988, especially chapter III),
but the questions they were designed to answer seemed unavoidable once Newton’s the-
ory of absolute space was recognized to be unsatisfactory.

As Thomson’s work shows, however, these questions are not really appropriate.
The laws of motion do not hold “relative to inertial systems,” or relative to anything,
Again, by claiming that accelerations occur only in the presence of forces, the laws of
motion assert the possibility of constructing systems in which every acceleration is
traced to an interaction — in other words, they assert that inertial systems exist — and
so one can'’t sensibly say that the laws are true only in such frames. True or false, the
laws make frame-independent claims about the distinction between free motion and
motion influenced by interactions. Ernst Mach recognized this when he pointed out
that we could state the laws of motion without specifying any frame of reference at
all, since the laws enable us to find a suitable frame (Mach 1883, p. 269); his chief
objection to the laws was not that they are essentially relative, but that all of the evi-
dence for them comes from mqtions relative to the fixed stars, and so there is no em-
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pirical reason to regard them as anything more than an inductive generalization about
those relative motions. Even general relativity, while it suggests that one of the postu-
lated Newtonian distinctions (between free motion and gravitational free fall) cannot

. be justified empirically, does not claim that such distinctions in general are relative to
frames of reference. Yet by the end of the nineteenth century, a number of physicists
and philosophers had come to regard the “relativity of the laws of motion” to a re-
stricted class of reference frames as a fundamental principle, and by 1916 Einstein re-
garded this as the fundamental “epistemological defect” of the classical laws. It may
be possible to gain some insight into the historical passage from Newton’s physics to
Einstein’s from the nineteenth-century discussions of relativity and frame-dependence
and the methodological issues that they raised.

Ludwig Lange arrived at the idea of “inertial-system” from Neumann’s (1870)
definition of equal times, which Lange called the “inertial time-scale”: equal times
are those in which a free particle travels equal distances. As Neumann pointed out
(1870, p 18; see also Thomson and Tait, 1867, sections 247-48), this is an arbitrary
stipulation, since one can always find a time-scale relative to which any particle mo-
tion is uniform. Given the stipulation, however, it is a factual claim that any second
free particle will travel equal distances in equal times relative to the first. Since the
comparison of distances and times for the two particles presupposes absolute simul-
taneity, and the two particles provide a dynamical definition of “equable flow” of
time, Neumann’s proposal is just an explicit dynamical version of Newton’s absolute
time. Lange’s definition of the spatial “inertial system,” and the corresponding law,
are modelled on Neumann’s formulation:

Definition 1. “Inertial-system’ means any coordinate system with the characteris-
tic that, with reference to it, the concurrent paths of three [material] points, simul-
taneously projected from the same point of space and then left to themselves (but
which do not lie in a straight line) are all rectilinear.

Theorem 1. With reference to an Inertial-system, the path of any fourth point left
to itself is also rectilinear. (Lange 1885a, p. 544-45.)

The requirement of three moving points follows from an argument analogous to
Neumann’s, presented more or less rigorously in Lange (1885a, 1885b). For three or
fewer point motions, we can almost always construct a coordinate system in which
these motions are rectilinear, and so it is a matter of convention whether three “points
left to themselves” move in straight lines; we can first make a factual claim (Lange’s
“theorem”) about the rectilinear motion of some fourth point. On these lines Lange
believed he had solved the “problem of the reference-system”: the laws of motion do
not describe motion in absolute space, or even motion relative to the fixed stars, but
motion relative to inertial systems.

The most important philosophical consequence of his work, according to Lange,
was that one could capture the empirical content of what Newton called “absolute” in a
relativistic treatment of motion. Since “Neumann’s convention” had provided a “sub-
stitute” for absolute time, he mistakenly asserted, the concept of absolute time “has al-
most disappeared from present-day dynamics.” (L.ange 1885b, p. 336.) Since he
viewed the inertial system as an analogous substitute for absolute space, he was con-
vinced that his version of the law of inertia had accomplished the “avoidance of any
absolute concept” (1885, p. 278). He therefore proposed some new terminology:

1. A point in uniform motion relative to an inertial system can also—with refer-
ence to another given inertial system—be treated as inertially at rest.
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2. A point with curvilinear motion relative to an inertial system cannot be called
inertially at rest relative to any other, nor can one so designate a point whose
motion relative to one inertial system is rectilinear but not uniform. (1885, p.
279)

Points that are not “inertially at rest” are “inertially accelerated” or “inertially rotat- -
ing.” But since the latter quantities are independent of the choice of an inertial system
and so correspond exactly with what Thomson called absolute rotation and accelera-
tion — even Lange conceded that “all the same, there remains in the concept of abso-
lute motion a valuable core consisting of that which it has in common with the con-
cept of inertial rotation” —it should be obvious that Lange is proposing only a verbal
change. Furthermore, in one respect in which his proposed changes are not entirely
verbal, they are seriously misleading. They suggest since the laws of motion them-
selves make sense only with respect to a certain kind of coordinate system, accelera-
tion, rotation, and uniform motion are meaningful only in such coordinate systems.
Obviously, however, the possibility of inertial frames assumes the possibility of dy-
namically distinguishing these states of motion; what is “relative to a coordinate sys-
tem” is just what cannot be so distinguished, namely position and velocity. Thus,
Lange’s “relativistic” way of thinking about inertial systems obscures a cruciatly im-
portant aspect of the transition from absolute space to inertial frames; the abandon-
ment of the search for a background against which dynamical laws are supposed to be
valid, and a corresponding focus on the spatio-temporal structure intrinsic to
Newtonian dynamics.

The methodological implications of his work are also difficult to gather from
Lange’s own statements. For one thing, his talk of a procedure, projecting material
points from a given spatial point, seems to suggest that he is rying to base the law of
inertia on an operational definition. (For this interpretation see, for example, Barbour
1989.) Yet Lange’s stated philosophical aim was not to describe operational proce-
dures, but to find the most abstract formulation possible of the law; for example, he
disagreed with Mach’s expression of the law by reference to the fixed stars, precisely
because “abstract mechanics” demands a form of the law that “does not rest on any
given object of physical astronomy, but rather consists of purely dynamical concepts.”
(1885, p. 269.) Moreover, he repeatedly emphasized that the inertial system was sup-
posed to be an “ideal construction” which “could never find immediate application,”
but from which all practical methods could be derived (e.g., 1885a, p. 544). He de-
scribed the “material point left to itself” on which the construction is based as a
“mathematical abstraction” and a “requirement that is never completely fulfilled”; on
that account, the content of the law of inertia is “never factually given, but rather as-
sumed” in order to comprehend mechanical phenomena. Lange’s project, therefore,
was only a conceptual “completion” of the law, a “purification of the hypothesis of
superfluous elements” (1885, p. 270), and was not intended to be operationalistic.

We can get a clearer idea of Lange’s methodology, and of the consequences it had
for his broader philosophy of space and time, from his understanding of the conven-
tional stipulation that he placed at the core of the law of inertia. First, he saw
Neumann'’s convention for equal times as an illustration of a profound and general
methodological prescription, which he called the “principle of particular determina-
tion™ a scientific “theorem” should be expressed

so that the theorem is conventionally valid for the smallest possible part of its ob-
Jjects; the contents of the theorem relate, then, insofar as they are more than mere
convention, insofar as they are new empirical results, only to all of the rest [of the
objects to which the thedrem refers].(1885, p. 278.)
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In other words, given a hypothesis that generalizes about a class of objects, we ought
to determine how much arbitrariness there is in the generalization, and to express the
non-arbitrary, empirical content of the hypothesis with the minimal number of ob-

_jects. Lange’s determination that the law of inertia is a convention for three or fewer
particles, and an empirical claim for more than three, was intended to be a direct ap-
plication of this principle. Indeed, he saw his recognition of this “partial convention”
as the crucial difference between his formulation of the law inertia and James
Thomson's (Lange 1885b, p. 351).

Considering his place in the history of the philosophy of space and time, Lange el-
evated his “partial conventionalism into a metaphysical challenge to the Newtonian
belief in the existence of absolute space. To Newton’s argument that centrifugal ef-
fects reveal the absolute rotation of a sphere in absolute space, Lange responded that

For the satisfaction of our epistemological need it suffices completely to introduce
the inertial system as an ideal convention and to refer the motion of the sphere to
this. We are not in the least advanced by the assumption of a really-existing [em-
phasis added] immaterial coordinate system.

Like some contemporary commentators, Lange blamed Newton's metaphysical real-
ism conceming space and time on his “religious conception of nature,” according to
which space and time are “creations of the Eternal and Omnipresent.” The modern
scientist, however, more accustomed to the “systematic separation between belief and
knowledge,” does not need to claim real, “transcendent” existence for the mental con-
structions that are created in order to give coherence to the phenomena. Thus Lange
viewed absolute space as Newton’s realist answer to the “problem of the reference
system,” and considered that he himself had solved the problem in a conventionalist

way, showing that the law of inertia is essentially founded in a coordinate system cho-
sen by convention.

To understand clearly the philosophical significance of Lange’s work, however,
his own interpretation notwithstanding, we have to examine the precise role played by
convention, His mathematical arguments make it a matter of convention whether
three particles are moving in straight lines, but what does this imply about the dynam-
ical case of free particles in rectilinear and uniform motion? One such particle can al-
ways be represented as moving uniformly in a straight line by suitable adjustments of
the coordinates and the time-scale, but two or three particles whose mutual distances
increased and decreased could not be represented as moving each in a straight line in
the same sense. What we can say about the requirement of three free particles is more
restricted than the “conventionalist” result about arbitrarily moving points: a refer-
ence-system in which one, two, or three free particles move uniformly may not be one
in which all free particles move uniformly. Lange’s illustration of this supposes, first,
that all free particles move uniformly relative to some reference-system (which we
can call the inertial frame). Obviously there will be systems relative to which some
one of these particles moves uniformly, but which rotate (for example, about the path
of the particle) relative to the inertial frame; we can even find systems in which two
of the particles move uniformly, but which rotate (for example, about the line joining
those two particles) relative to the inertial frame — and, evidently, relative to any sys-
tem in uniform motion relative to the inertial frame. After the third particle, however,
the freedom to adapt the frame comes to an end: as long as the particles do not travel
collinearly or in parallel paths, any movement of the frame that preserves the uniform
rectilinear motion of these particles must do the same for all the free particles in the
inertial frame. So the dynamical significance of Lange’s minimal “partial conven-
tion,” as he pointed out (1885b, pp. 344-46), is that if there is at least one coordinate
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system and time scale in which arbitrarily many free particles move uniformly, any
three free particles satistfying Lange’s conditions define another system and time
scale in uniform motion relative to the first.

All of this indicates that Lange did not really provide a conventionalist answer to
the “problem of the reference system.” In fact he answered a different sort of ques--
tion, one more nearly related to Thomson’s approach than one might have thought:
assuming that inertial frames exist, in what circumstances can we say that any given
frame is inertial? If such a class of frames exists, it is not a matter of conventional
choice whether a given frame belongs to the class; what Lange has shown is that a
factual determination can indeed be made, but only with at least three free particles.
Far from supporting the relativity of motion, then, Lange’s spatial “particular determi- -
nation” (that three particles are required) postulates an objective distinction between
the state of free motion and other possible states: for particles moving freely, frames
are always possible in which aritrarily many move uniformly in straight lines, while
for particles moving anyhow, such frames are generally possible for any three parti-
cles. Lange recognized this point in 1902, when he published a reconsideration of his
1885 work in light of critical reactions to it (1902, pp. 9, 37). Now, instead of pre-
senting the inertial system as that relative to which the law of inertia holds, he
claimed (analogously to James Thomson) that “the pronouncement of the law...is sim-
ply reduced to the assumption of the phoronomical possibility of a system in which
arbitrarily many (n > 3) points left to themselves” move uniformly; the three particles
projected from a point, formerly part of the definition underlying the law, Lange now
recognized as “the simplest possible prototype of all practical real methods” of con-
structing an inertial system (1902, pp. 38-39).

Thus in the course of Lange’s philosophical development, his “ideal construction”
lost its foundational role in the expression of the law of inertia and became a way of
considering the possible application of the law. The law itself, meanwhile, became
something that Lange had criticized Newton for expressing, namely a kind of “exis-
tence-hypothesis,” insofar as it asserts the existence of reference systems in which

- free particles move uniformly. Lange himself did not fully appreciate this point, and -
never abandoned the view that he had established some form of relativism combined
with conventionalism, and it is not difficult to understand why (especially in light of.
the fact that even contemporary physics texts occasionally say that the laws of motion
hold relative to inertial systems). When we speak of the “kinematical possibility” of
constructing a certain kind of reference system, namely one in which every accelera-
tion is proportional to an impressed force, we seem to be naming just one of (obvious-
ly) many possibilities for the assignment of coordinates; this leaves an opening for the
popular but vague statement that inertial frames are merely the simplest possible ones
— a statement that evidently contains a certain element of truth, but that ignores the
grounding of inertial frames in the lawlike dynamical structure of the Newtonian uni-
verse. Therefore the assertion that they are possible seems scarcely comparable, in its
“metaphysical” significance, to a claim about the affine structure of Newtonian space-
time. For similar reasons it is frequently said that Minkowski’s space-time formula-
tion of special relativity has essentially different metaphysical implications from
Einstein’s original formulation. In the time before the invariant four-dimensional ver-
sion of Newtonian mechanics was developed, then, it was (at first glance) compara-
tively easy to suppose that the abandonment of absolute space for an equivalence
class of possible frames was really the abandonment of a realistic picture of spatio-
temporal structure for a conventionalist one.

In order to clear this matter up, and to understand from a methodological point of
view what Thomson and Lange really accomplished, we need to recognize exactly
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where convention really enters into the construction of an inertial frame. That an iner-
tial frame is possible is evidently a strong dynamical claim: it means that every com-
ponent of every acceleration within a dynamical system is objectively traceable, by
virtue of the equality of action and reaction, to some source within the system. This
implies, for example, in the case of our solar system, that of all the possible resting
points we could choose in order to “frame” the system, those are distinguished by law
— not necessarily by simplicity or any other kind of “convenience” — in which all ac-
celerations are determined by Newtonian interactions. (The dynamical analysis of all
of these interactions warrants Newton’s assertion that, assuming the laws of motion
and astronomical phenomena, we can “demonstrate the frame of the system of the
world.” 1729, p. 323.) Thus, as was noted above, Thomson’s and Lange’s claim is pre-
cisely equivalent to the claim, in the four-dimensional picture, that of all the geometri-
cally possible worldlines, those are distinguished which represent physically possible
trajectories of free particles. However it is formulated, this structure provides a defini-
tion of matter in its passive inertial state, and so it is the necessary foundation for the
Newtonian account of active forces as causes of accelerations. Whatever conventional-
ist challenge affects the proposed geometrical structure, then, affects at the same time
the entire classical picture of “fundamental forces of nature.”

The opening for conventionalism occurs precisely with the principle through
which the commitment to the Newtonian program (and its accompanying spatio-tem-
poral structure) is first made, a principle which Lange, for all his stated conventional-
ism, was content to take for granted. This is just the principle that there is an objec-
tive distinction between free motion and motion under the influence of a force. Lange
spoke of the free particle as the “element” of dynamical theory, in the sense that con-
structions (like his construction of the inertial system) are “derived from” this element
just as constructions in pure geometry are derived from the geometrical point (1885,
p. 350). But he did not see that, while this ideal physical thing, the free particle, is in-
deed the element of a physical theory, its spatio-temporal path is the element of a spa-
tio-temporal affine geometry in precisely the sense in which spatial length is the ele-
ment of spatial metrical geometry; the worldlines of freely moving particles thus pro-
vide a “coordinative definition” of the affine structure of space-time just as the rigid
body provides a coordinative definition of Euclidean length. We can give empirical
arguments for or against the suitability of these definitions: for example, Newton’s
Scholium on space, time, and motion argues empirically that the definition of true
motion through force and acceleration makes sense and has a clear application, while
Einstein’s argument about the equivalence principle suggests that the traditional defi-
nition cannot be unambiguously applied, and therefore (in effect) that the affine struc-
ture of space-time is best coordinated to the paths of freely falling particles. In either
case, the justification for the definition extends only as far as the successful applica-
tion to the phenomena that the theory is supposed to address.

Of course it was impossible to say all of this explicitly in the language available to
Lange, before the concept of space-time was developed, but, in a review of Lange's
work written in 1891, Gottlob Frege made essentially the same point. He criticized
Lange for exaggerating the difference between his “inertial” concepts and those that
Newton called absolute, and suggested that the question whether motion is “real” was
only a verbal dispute: the important question, he pointed out, was whether there is a
real distinction between accelerated and unaccelerated motion. The distinction is real,
he asserted, “in the same sense in which the constancy of a length is real”: “in both
cases we have arbitrary stipulations, which however are so closely linked to the law-
fulness of nature that they are thereby distinguished from all other stipulations which
are mathematically and logically equally possible.” (Frege 1891, p. 157.) Both stipu-
lations connect a physical process (respectively, measuring forces by accelerations
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and measuring lengths by rigid measuring-rods) with an aspect of geometrical struc-
ture, and the success of the stipulation suggests its connection with some regularity of
nature. This sort of argument follows a pattern familiar from discussions of the mea-
sure of time: it resembles the claim that a pendulum clock is a better choice to mea-
sure time than my heartbeat because the rate of the clock stands in a simpler relation
to natural laws than the rate of my heart. We therefore make no special ontological
claim when we call the quantities thus defined “absolute, true, and mathematical,” as
long as we mean, “as opposed to relative, apparent, or common,” insofar as only the
former are imbedded in a coherent system of laws.

The difficulty Lange’s contemporaries had in seeing Frege’s point brings out an
interesting difference between the inertial frame postulate and its four-dimensional
counterpart. In the latter case, the connection between the elementary physical pro-
cess and its geometrical representation (between the path of a free particle and the
affine geodesics of spacetime) has (modulo the essential difficulty of having four-di-
mensional intuitions in the first place) the same intuitive obviousness as the connec-
tion between the congruence of rigid rods and Euclidean length: the physical invari-
ant “looks like” the geometrical invariant. In the former case, however, we can only
picture the projection of a geodesic in a given inertial frame (a rectilinear motion in a
three-dimensional coordinate system), and we know that this is just one of an equiva-
lence class of allowable projections. Before there was an invariant representation of
what is common to members of the equivalence class, it was perhaps a natural mis-
take to look here for some conventional element in the theory of motion. And so it
seems to me even more remarkable that Thomson should have recognized that the in-
trinsic spatio-temporal structure of Newton’ laws could be expressed in nineteenth-

century language.

More recently, misunderstanding of the fundamental coordination underlying
space-time structure has created difficulties for us, who are accustomed to the four-di-
mensional picture. In the modern version of the metaphysical debate between
Newton and Leibniz, spatial relations are assumed to be epistemologically unprob-
lematic, because the geometry of these relations is easy to think of as the structure of
possible distances between objects — as a set of rules governing the motion and com-
parison of rigid bodies. Space-time, by contrast, represents states of bodies through
time, and bodies are therefore thought to have states of motion “relative to” it; inertial
forces arising from different states of motion are thought to be caused by it.
Therefore space-time seems to take on the aspect of a thing, where space alone could
be thought of as an order; the existence of space-time therefore seems to require some
special metaphysical argument. But space-time is no more the cause of differences in
states of motion than Euclidean space is the cause of differences in length. Both are
“structures of possibilities” coordinated to elementary physical processes; space em-
bodies a set of laws governing possible momentary distances among bodies, space-
time a set of laws governing possible dynamical evolutions. Neither one can be co-
herently reduced to a set of relations, since both structures govern possible relations.
Yet such a structure is not really a thing either, at least not like the things to which its
structure is coordinated. The history of the theory of space-time structure, beginning
with its origins in the three-plus-one dimensional account of inertial frames, helps us
to see that the structure is an aspect of our laws of motion, and that the important
philosophical questions about it are not ontological, but methodological after all.
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