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Abstract. A-Weyl’s theorem and property (ω), as two variations of Weyl’s theorem,
were introduced by Rakočević. In this paper, we study a-Weyl’s theorem and property
(ω) for functions of bounded linear operators. A necessary and sufficient condition is
given for an operator T to satisfy that f (T) obeys a-Weyl’s theorem (property (ω)) for
all f ∈ Hol(σ (T)). Also we investigate the small-compact perturbations of operators
satisfying a-Weyl’s theorem (property (ω)) in the setting of separable Hilbert spaces.
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47A10.

1. Introduction. This paper is a continuation of a previous paper of the authors
and Feng [17], where the stability of Weyl’s theorem under holomorphic functional
calculus is studied. A-Weyl’s theorem and property (ω) as two variations of Weyl’s
theorem, which have been recently studied in [3, 4, 5], were introduced by Rakočević
[21, 22]. The purpose of this paper is to investigate a-Weyl’s theorem and property (ω)
for functions of operators on Banach spaces. A necessary and sufficient condition is
given for an operator T to satisfy that f (T) obeys a-Weyl’s theorem (property (ω)) for
each function f analytic on some neighbourhood of σ (T).

We first give some notations and terminologies. Throughout this paper, � and �

denote the set of complex numbers and the set of natural numbers respectively. X will
always denote a complex infinite dimensional Banach space. We let B(X ) denote the
algebra of all bounded linear operators on X , and letK(X ) denote the ideal of compact
operators in B(X ).

Let T ∈ B(X ). We denote by σ (T) and σp(T) the spectrum of T and the point
spectrum of T respectively. Denote by n(T) and R(T) the kernel of T and the range
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of T respectively. T is called a semi-Fredholm operator, if R(T) is closed and either
nul T or nul T∗ is finite, where nul T := dim n(T) and nul T∗ := dim n(T∗); in this case,
ind T := nul T − nul T∗ is called the index of T . In particular, if −∞ < ind T < ∞,
then T is called a Fredholm operator. It is well known that if T is semi-Fredholm and
K ∈ K(X ), then T + K is also semi-Fredholm and ind (T + K) = ind T . T is called a
Weyl operator if it is Fredholm of index 0.

The Wolf spectrum σlre(T), the essential spectrum σe(T) and the Weyl spectrum
σw(T) of T are defined as:

σlre(T) := {λ ∈ � : T − λ is not semi-Fredholm},

σe(T) := {λ ∈ � : T − λ is not Fredholm}

and

σw(T) := {λ ∈ � : T − λ is not Weyl},

respectively. ρs−F (T) := � \ σlre(T) is called the semi-Fredholm domain of T . The
approximate point spectrum σa(T) and the essential approximate point spectrum σea(T)
of T are defined as:

σa(T) = {λ ∈ � : λ − T is not bounded below}

and

σea(T) =
⋂

K∈K(X )

σa(T + K),

respectively. The set σea(T) has been introduced in [20] and studied in [20, 21, 23]. It is
easy to see that

σea(T) = σlre(T) ∪ {λ ∈ ρs−F (T) : ind (T − λ) > 0}.

Given a subset σ of �, denote by iso σ and int σ the set of all isolated points of σ

and the interior of σ respectively. We denote

π00(T) := {λ ∈ iso σ (T) : 0 < nul (λ − T) < ∞}

and

πa
00(T) := {λ ∈ iso σa(T) : 0 < nul (λ − T) < ∞}.

Following Coburn [9], we say that Weyl’s theorem holds for T ∈ B(X ), denoted
by T ∈ (W), if σ (T) \ σw(T) = π00(T). Today, Weyl’s theorem has been extended to
various operators acting on both Hilbert spaces and Banach spaces, and there has been
a lot of work (see, for example, [6, 8, 11, 12, 13, 14]). We say that a-Weyl’s theorem holds
for T ∈ B(X ), denoted by T ∈ (a-W), if σa(T) \ σea(T) = πa

00(T). A-Weyl’s theorem has
been introduced and studied in [21]. T is said to have property (ω), denoted by T ∈ (ω),
if σa(T) \ σea(T) = π00(T). It is well known that both T ∈ (a-W) and T ∈ (ω) imply
that T ∈ (W) (see [2]).
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Let Hol(σ (T)) denote the set of all functions f which are analytic on some
neighbourhood of σ (T) (the neighbourhood depends on f ) for given f ∈ Hol(σ (T)),
f (T) denotes the holomorphic functional calculus of T with respect to f .

Let T ∈ B(X ). If σ is a clopen subset of σ (T), then there exists an analytic Cauchy
domain � such that σ ⊆ � and [σ (T) \ σ ] ∩ � = ∅. We let E(σ ; T) denote the Riesz
idempotent of T corresponding to σ , that is,

E(σ ; T) = 1
2π i

∫
�

(λ − T)−1dλ,

where � = ∂� is positively oriented with respect to � in the sense of complex variable
theory. In this case, we denote X (σ ; T) = R(E(σ ; T)). If λ ∈ iso σ (T), then {λ} is a
clopen subset of σ (T) and we simply write X (λ; T) instead of X ({λ}; T); if, in addition,
dimX (λ; T) < ∞, then λ is called a normal eigenvalue of T . A normal eigenvalue of
T is also called a Riesz point of T (see [7]). The set of all normal eigenvalues of T will
be denoted by σ0(T).

We denote

ρ0
s−F (T) := {λ ∈ � : T − λ is Weyl},

ρ+
s−F (T) := {λ ∈ ρs−F (T) : ind (T − λ) > 0}

and

ρ−
s−F (T) := {λ ∈ ρs−F (T) : ind (T − λ) < 0}.

Obviously, ρs−F (T) = ρ−
s−F (T) ∪ ρ0

s−F (T) ∪ ρ+
s−F (T) and ρ0

s−F (T) = � \ σw(T).
Now, we can list the main results of this paper.

MAIN THEOREM 1.1. Let T ∈ B(X ). Then, f (T) ∈ (a-W) for all f ∈ Hol(σ (T)) if
and only if the following conditions hold.

(i) T ∈ (a-W).
(ii) If ρ−

s−F (T) 	= ∅, then there exists no λ ∈ ρs−F (T) such that 0 < ind (T − λ) < ∞.
(iii) If σp(T) ∩ [ρ−

s−F (T) ∪ ρ0
s−F (T)] 	= ∅, then iso σa(T) ⊆ σp(T).

It is worth mentioning that Weyl type theorems are closely related to some basic
concepts in local spectral theory (see [1]). Oudghiri [18] related Weyl’s theorem to
the single-valued extension property in local spectral theory. In [2], Aiena gave some
sufficient conditions for an operator T to satisfy f (T) ∈ (a-W) for all f ∈ Hol(σ (T)) in
terms of certain glocal spectral subspaces.

MAIN THEOREM 1.2. Let T ∈ B(X ). Then, f (T) ∈ (ω) for all f ∈ Hol(σ (T)) if and
only if the following conditions hold.

(i) T ∈ (ω).
(ii) If ρ−

s−F (T) 	= ∅, then σ0(T) = ∅ and there exists no λ ∈ ρs−F (T) such that 0 <

ind (T − λ) < ∞.
(iii) If σ0(T) 	= ∅, then iso σ (T) ⊆ σp(T).

If X is a complex separable Hilbert space and dimX = ∞, then it is proved in [17]
that any operator T ∈ B(X ) has an arbitrarily small compact perturbation satisfying
Weyl’s theorem. Since A ∈ (ω) implies that A satisfies Weyl’s theorem, the following
theorem strengthens the above result.
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MAIN THEOREM 1.3. Let X be a complex separable infinite dimensional Hilbert
space. Then, given T ∈ B(X ) and ε > 0, there exists K ∈ K(X ) with ‖K‖ < ε such that
T + K ∈ (ω) and T + K ∈ (a-W).

The rest part of this paper is organized as follows. In Section 2, we shall make
some preparations for the proofs of main theorems. Section 3 is devoted to the proof of
Main Theorem 1.1. The proofs of main theorem 1.2/1.3 shall be provided respectively
in Section 4 and Section 5.

2. Preparations. In this section, we give some useful lemmas.

LEMMA 2.1 ([19], Theorem 2.10). Let T ∈ B(X ) and suppose that σ (T) =
σ1 ∪ σ2, where σi(i = 1, 2) are clopen subsets of σ (T) and σ1 ∩ σ2 = ∅. Then,
X (σ1; T) + X (σ2; T) = X ,X (σ1; T) ∩ X (σ2; T) = {0} and T admits the following matrix
representation

T =
[

T1 0
0 T2

]
X (σ1; T)
X (σ2; T)

,

where σ (Ti) = σi(i = 1, 2).

Using [15, Corollary 3.22] and the above lemma, we can obtain the following
lemma whose proof is left to the reader.

COROLLARY 2.2. LetX be a complex separable Hilbert space and T ∈ B(X ). Suppose
that σ is a clopen subset of σ (T). Then

T =
[

A ∗
0 B

]
X (σ ; T)
X (σ ; T)⊥ ∼

[
A 0
0 B

]
X (σ ; T)
X (σ ; T)⊥,

where σ (A) = σ and σ (B) = σ (T) \ σ .

In this paper, if S, T ∈ B(X ), then we let S ∼ T denote that S and T are similar.

LEMMA 2.3 ([10], chapter XI, proposition 6.9). Let T ∈ B(X ) and λ0 ∈ iso σ (T).
Then, the following statements are equivalent.

(i) λ0 ∈ σ0(T).
(ii) λ0 ∈ ρ0

s−F (T).
(iii) λ0 ∈ ρs−F (T).

Note that an operator T ∈ B(X ) is bounded below if and only if nul T = 0 and
R(T) is closed, then, by the continuity of the index function ind (·), the following
lemma is clear.

LEMMA 2.4. Let T ∈ B(X ) and λ0 ∈ iso σa(T). If λ0 ∈ ρs−F (T), then 0 < nul (T −
λ0) < ∞ and ind (T − λ0) ≤ 0.

The proof of the following lemma is simple and we omit it.

LEMMA 2.5. Let T ∈ B(X ) and f ∈ Hol(σ (T)). Then, f (σa(T)) ⊆ σa(f (T)) and
f (σp(T)) ⊆ σp(f (T)).

In this paper, we denote by card σ the cardinality of a subset σ of �. If λ ∈ � and
δ > 0, then we denote Bδ(λ) = {z ∈ � : |z − λ| < δ}.
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LEMMA 2.6. Let T ∈ B(X ) and f ∈ Hol(σ (T)). If 0 ∈ σ (f (T)) and nul f (T) < ∞,
then 1 ≤ card {λ ∈ σ (T) : f (λ) = 0} < ∞; if, in addition, 0 ∈ iso σa(f (T)), then for each
µ ∈ {λ ∈ σ (T) : f (λ) = 0}, there exists δ > 0 such that Bδ(µ) \ {µ} ⊆ � \ σa(T).

Proof. It is obvious that {λ ∈ σ (T) : f (λ) = 0} 	= ∅. If {λ ∈ σ (T) : f (λ) = 0} is an
infinite subset of σ (T), then we can choose a limit point λ0 of {λ ∈ σ (T) : f (λ) = 0}.
Without loss of generality, we assume that f is analytic on a neighbourhood � of
σ (T). Then, there is a component �1 of � such that λ0 ∈ �1 and f ≡ 0 on �1. Set
σ1 = σ (T) ∩ �1 and σ2 = σ (T) \ σ1. Then, σi(i = 1, 2) are clopen subsets of σ (T) and
σ1 	= ∅.

By Lemma 2.1, T can be written as

T =
[

T1 0
0 T2

]
X (σ1; T)
X (σ2; T)

,

where σ (Ti) = σi(i = 1, 2). Hence, f (T1) = 0. Since λ0 is a limit point of {λ ∈ σ (T) :
f (λ) = 0}, λ0 ∈ σ1 and σ1 is a clopen subset of σ (T), it is easy to see that card {λ ∈ σ1 :
f (λ) = 0} = ∞ and dimX (σ1; T) = ∞. Then, we have

f (T) =
[

f (T1) 0
0 f (T2)

]
X (σ1; T)
X (σ2; T)

=
[

0 0
0 f (T2)

]
X (σ1; T)
X (σ2; T)

.

It follows immediately that nul f (T) ≥ dimX (σ1; T) = ∞, a contradiction. Thus, we
have proved that card {λ ∈ σ (T) : f (λ) = 0} < ∞.

Now we assume that 0 ∈ iso σa(f (T)) and µ ∈ σ (T) satisfies that f (u) = 0. We
shall prove that there exists δ > 0 such that Bδ(µ) \ {µ} ⊆ � \ σa(T). If not, then we
can choose {µn}∞n=1 ⊆ [σa(T) \ {µ}] such that µn → µ. By Lemma 2.5, f (µn) ∈ σa(f (T))
for all n and f (µn) → f (µ) = 0. Since card {λ ∈ σ (T) : f (λ) = 0} < ∞, we may assume
that f (µn) 	= 0 for all n ≥ 1. Thus, we obtain 0 /∈ iso σa(f (T)), a contradiction. �

Using a similar argument as in the proof of Lemma 2.6, one can obtain the
following result.

COROLLARY 2.7. Let T ∈ B(X ) and f ∈ Hol(σ (T)). If 0 ∈ iso σ (f (T)) and
nul f (T) < ∞, then 1 ≤ card {λ ∈ σ (T) : f (λ) = 0} < ∞ and {λ ∈ σ (T) : f (λ) = 0} ⊆
iso σ (T).

LEMMA 2.8 ([17], Lemma 2.7). Let T ∈ B(X ) and f ∈ Hol(σ (T)). If 0 ∈ σ (f (T))
and nul f (T) < ∞, then, there exists g ∈ Hol(σ (T)) such that f (T) = g(T) and

g(λ) = (λ − λ1)k1 (λ − λ2)k2 · · · (λ − λn)kn g0(λ),

where λi ∈ σ (T)(1 ≤ i ≤ n), g0 ∈ Hol(σ (T)) and g0(λ) 	= 0 for all λ ∈ σ (T).

LEMMA 2.9. Let T ∈ B(X ). Suppose that λi ∈ σ (T)(1 ≤ i ≤ n) and f (λ) = (λ −
λ1)k1 · · · (λ − λn)kn g(λ), where g ∈ Hol(σ (T)) and g(λ) 	= 0 for all λ ∈ σ (T). For each i,
there exists a δi > 0 such that [Bδi (λi) \ {λi}] ⊆ [� \ σa(T)]. Then, there exists δ > 0 such
that [Bδ(0) \ {0}] ⊆ [� \ σa(f (T))].

Proof. Without loss of generality, we assume that {Bδi (λi)}n
i=1 are pairwise

disjoint and g is well defined on ∪n
i=1Bδi (λi). Set δ0 = min{|g(λ)| : λ ∈ σ (T)} and

δ = δ0
2 · �n

i=1δ
ki
i . Obviously, δ > 0 and 0 ∈ σ (f (T)).
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Arbitrarily choose a λ0 ∈ Bδ(0), λ0 	= 0. We shall prove that λ0 − f (T) is bounded
below. Without loss of generality, we may assume that λ0 ∈ σ (f (T)).

CLAIM. If µ ∈ σ (T) and f (µ) = λ0, then µ ∈ ∪n
i=1Bδi (λi).

In fact, if not, then |µ − λi| ≥ δi for all i. Thus,

δ > |λ0| = |f (µ)| ≥ δ0 · �n
i=1|µ − λi|ki ≥ δ0 · �n

i=1δ
ki
i > δ,

a contradiction.
Since |λ0| < |f (λ)| on ∪n

i=1∂Bδi (λi), by Rouché’s theorem, we deduce that f (λ) and
f (λ) − λ0 have the same number of zeros in ∪n

i=1Bδi (λi), where each zero is counted as
many times as its multiplicity. Hence, we may assume that

f (λ) − λ0 = (λ − µ1) · · · (λ − µm)f0(λ),

where f0 ∈ Hol(σ (T)) and f0(λ) 	= 0 for all λ ∈ σ (T). Here, µi(1 ≤ i ≤ m) may repeat
according to multiplicity. Then,

f (T) − λ0 = (T − µ1)(T − µ2) · · · (T − µm)f0(T),

where f0(T) is invertible.
Note that µi 	= λj for all i and j(otherwise λ0 = f (µi) = f (λj) = 0, a contradiction).

Then, by our claim, we have

{µi : 1 ≤ i ≤ m} ⊆ ∪n
j=1[Bδj (λj) \ {λj}].

Therefore, T − µi is bounded below for all i and hence f (T) − λ0 is bounded below. �
Using a similar argument as in the proof of Lemma 2.9, one can obtain the

following result.

COROLLARY 2.10. Let T ∈ B(X ) and suppose that λi ∈ iso σ (T)(1 ≤ i ≤ n). If f (λ) =
(λ − λ1)k1 · · · (λ − λn)kn g(λ), where g ∈ Hol(σ (T)) and g(λ) 	= 0 for all λ ∈ σ (T), then
0 ∈ iso σ (f (T)).

3. Proof of Main Theorem 1.1.

LEMMA 3.1. Let T ∈ B(X ). Then,

σa(T) \ σea(T) = [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T).

Hence,

T ∈ (a-W) ⇐⇒ [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T) = πa
00(T)

and

T ∈ (ω) ⇐⇒ [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T) = π00(T).

Proof. Obviously, we need only prove that

σa(T) \ σea(T) = [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T).
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The inclusion relation “⊇” is obvious. We only prove that the inclusion relation “⊆”
holds. λ0 ∈ [σa(T) \ σea(T)] implies that λ0 /∈ σea(T), that is, there exists K ∈ K(X ) such
that T + K − λ0 is bounded below. Hence, ind (T − λ0) = ind (T + K − λ0) ≤ 0. Note
that λ0 ∈ σa(T), then nul (T − λ0) > 0. Thus, we obtain λ0 ∈ [ρ−

s−F (T) ∪ ρ0
s−F (T)] ∩

σp(T). �
Recall that a set, which is made up only of isolated points, is called a discrete set.

The following result provides a necessary and sufficient condition for an operator to
satisfy a-Weyl’s theorem.

LEMMA 3.2. Let T ∈ B(X ). Then, T ∈ (a-W) if and only if the following conditions
hold:

(i) [ρ0
s−F (T) ∪ ρ−

s−F (T)] ∩ σp(T) is a discrete set;
(ii) πa

00(T) ⊆ ρs−F (T).

Proof. “=⇒”. By Lemma 3.1, T ∈ (a-W) implies that πa
00(T) ⊆ ρs−F (T) and

[ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T) ⊆ iso σa(T). Hence, [ρ0
s−F (T) ∪ ρ−

s−F (T)] ∩ σp(T) is a
discrete set.

“⇐=”. By Lemma 2.4, it follows easily from πa
00(T) ⊆ ρs−F (T) that πa

00(T) ⊆
[ρ−

s−F (T) ∪ ρ0
s−F (T)] ∩ σp(T). By Lemma 3.1, it suffices to prove that [ρ−

s−F (T) ∪
ρ0

s−F (T)] ∩ σp(T) ⊆ πa
00(T).

Arbitrarily choose a λ0 ∈ [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T). Then, by condition (i),
there exists a δ1 > 0 such that nul (λ − T) = 0 for all λ ∈ Bδ1 (λ0) \ {λ0}. Note that
λ0 ∈ ρ−

s−F (T) ∪ ρ0
s−F (T) and ρ−

s−F (T) ∪ ρ0
s−F (T) is open, then there exists δ2 > 0 such

that Bδ2 (λ0) ⊆ ρ−
s−F (T) ∪ ρ0

s−F (T). Set δ = min{δ1, δ2}. Then, it is easy to see that
λ − T is bounded below for all λ ∈ Bδ(λ0) \ {λ0}. Then, it follows from λ0 ∈ [ρ−

s−F (T) ∪
ρ0

s−F (T)] ∩ σp(T) that λ0 ∈ πa
00(T). �

COROLLARY 3.3. Let T ∈ B(X ) and suppose that T ∈ (a-W). If λ ∈ ρs−F (T) and
ind (λ − T) ≤ 0, then either λ /∈ σa(T) or λ ∈ πa

00(T).

Now we are going to give the proof of Main Theorem 1.1.

Proof of Main Theorem 1.1 “=⇒”. Assume that f (T) ∈ (a-W) for all f ∈
Hol(σ (T)).

(i) Set f1(λ) = λ. Then, evidently, T = f1(T) ∈ (a-W).
(ii) If (ii) does not hold, then we can choose λ1, λ2 ∈ � such that 0 < ind (T −

λ1) < ∞ and −∞ ≤ ind (T − λ2) < 0. Obviously, we can choose k ∈ � such that
ind (T − λ1) + k · ind (T − λ2) < 0. Define f2(z) = (z − λ1)(z − λ2)k. Then, f2(T) is
semi-Fredholm and

ind f2(T) = ind (T − λ1) + k · ind (T − λ2) < 0,

that is, 0 ∈ ρ−
s−F (f2(T)).

ind (T − λ1) > 0 implies that there exists δ > 0 such that ind (T − µ) > 0 for all
µ ∈ Bδ(λ1). Then, nul (T − µ) ≥ ind (T − µ) > 0 for all µ ∈ Bδ(λ1). Hence, we have
Bδ(λ1) ⊆ σp(T). By Lemma 2.5, it follows that f2(Bδ(λ1)) ⊆ σp(f2(T)).

Evidently f2 is an open mapping, then f2(Bδ(λ1)) is an open neighbourhood
of 0. Note that 0 ∈ ρ−

s−F (f2(T)), then, we can choose ε > 0 such that Bε(0) ⊆
f2(Bδ(λ1)) ∩ ρ−

s−F (f2(T)) ⊆ σp(f2(T)) ∩ ρ−
s−F (f2(T)). By Lemma 3.2, we have f2(T) /∈

(a-W), a contradiction.
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(iii) If (iii) does not hold, then we can choose λ1 ∈ σp(T) ∩ [ρ−
s−F (T) ∪ ρ0

s−F (T)]
and λ2 ∈ iso σa(T) such that λ2 /∈ σp(T). By Lemma 3.1, it follows from T ∈ (a-W)
that λ1 ∈ πa

00(T). It follows from Lemma 2.4 that λ2 ∈ σlre(T).
Define f3(z) = (z − λ1)(z − λ2). Then, 0 < nul f3(T) < ∞. By Lemma 2.5 and

Lemma 2.9, it follows from λ1 ∈ iso σa(T) and λ2 ∈ iso σa(T) that 0 ∈ iso σa(f3(T)).
Hence, we have 0 ∈ πa

00(f3(T)). Since f3(T) ∈ (a-W), by Lemma 3.2, f3(T) is semi-
Fredholm and ind f3(T) ≤ 0. Note that f3(T) = (T − λ1)(T − λ2), then we deduce that
T − λ2 is semi-Fredholm, a contradiction.

“⇐=”. Arbitrarily choose an f ∈ Hol(σ (T)). It suffices to prove that f (T) ∈ (a-W).
Step 1. σa(f (T)) \ σea(f (T)) ⊆ πa

00(f (T)).
Let λ0 ∈ σa(f (T)) \ σea(f (T)) be fixed. Then, by Lemma 3.1, 0 < nul (f (T) − λ0) <

∞ and ind (f (T) − λ0) ≤ 0. It suffices to prove that λ0 ∈ πa
00(f (T)). By Lemma 2.6,

we have card {z ∈ σ (T) : f (z) − λ0 = 0} < ∞. Assume {λi}n
i=1 is an enumeration of

{z ∈ σ (T) : f (z) − λ0 = 0}. Then, by Lemma 2.8, we may assume that

f (z) − λ0 = (z − λ1)k1 · · · (z − λn)kn g(z),

where g(z) 	= 0 for all z ∈ σ (T). Hence,

f (T) − λ0 = (T − λ1)k1 · · · (T − λn)kn g(T),

where g(T) is invertible.
It follows from ind (f (T) − λ0) ≤ 0 that λi ∈ ρs−F (T) and ind (λi − T) < ∞ for all

i. Then,
∑n

i=1 ki · ind (T − λi) = ind (λ0 − f (T)) ≤ 0. It follows from condition (ii) that
ind (T − λi) ≤ 0 for 1 ≤ i ≤ n. By Corollary 3.3, for each 1 ≤ i ≤ n, we have either λi /∈
σa(T) or λi ∈ iso σa(T). Then, by Lemma 2.9, either λ0 /∈ σa(f (T)) or λ0 ∈ iso σa(f (T)).
Since 0 < nul (f (T) − λ0) < ∞, we can conclude that λ0 ∈ πa

00(f (T)).
Step 2. πa

00(f (T)) ⊆ [σa(f (T)) \ σea(f (T))].
Arbitrarily choose a λ0 ∈ πa

00(f (T)). Then, 0 < nul (f (T) − λ0) < ∞ and λ0 ∈
iso σa(f (T)). By Lemma 3.1 and Lemma 2.4, it suffices to prove that λ0 ∈ ρs−F (f (T)).
Note that nul (f (T) − λ0) < ∞, then, by Lemma 2.6 and Lemma 2.8, we may assume
that {λi}n

i=1 is an enumeration of {λ ∈ σ (T) : f (λ) − λ0 = 0} and

f (z) − λ0 = (z − λ1)k1 · · · (z − λn)kn g(z),

where g(z) 	= 0 for all z ∈ σ (T). Then,

f (T) − λ0 = (T − λ1)k1 · · · (T − λn)kn g(T),

where g(T) is invertible.
Since λ0 ∈ iso σa(f (T)), it follows from Lemma 2.6 that there exist δi > 0 such

that Bδi (λi) \ {λi} ⊂ � \ σa(T)(1 ≤ i ≤ n). Then, for each i, either λi /∈ σa(T) or λi ∈
iso σa(T). So, it remains to prove that λi ∈ ρs−F (T) for all i. Now let i be fixed and,
without loss of generality, we assume that λi ∈ iso σa(T).

Since 0 < nul (f (T) − λ0) < ∞, there exists some i0(1 ≤ i0 ≤ n) such that 0 <

nul (T − λi0 ) < ∞. Hence, λi0 ∈ πa
00(T). Since T ∈ (a-W), by Lemma 3.2, we have

λi0 ∈ ρs−F (T) and hence λi0 ∈ σp(T) ∩ [ρ−
s−F (T) ∪ ρ0

s−F (T)]. By condition (iii), we have
λi ∈ σp(T). Note that 0 < nul (λi − T) ≤ nul (λ0 − f (T)) < ∞, then λi ∈ πa

00(T) and,
using Lemma 3.2 again, we have λi ∈ ρs−F (T). Thus, we conclude the proof. �
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If one checks the proof of Main Theorem 1.1, then one can easily obtain the
following result.

COROLLARY 3.4. Let T ∈ B(X ). Then, f (T) ∈ (a-W) for all f ∈ Hol(σ (T)) if and
only if p(T) ∈ (a-W) for each polynomial p(λ).

4. Proof of Main Theorem 1.2. We first give a useful lemma.

LEMMA 4.1. Let T ∈ B(X ). Then, T ∈ (ω) if and only if
(i) σ (T) = σw(T) ∪ σ0(T),

(ii) π00(T) ⊆ σ0(T), and
(iii) ρ−

s−F (T) ∩ σp(T) = ∅.

Proof. By Lemma 3.1, T ∈ (ω) if and only if [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T) = π00(T).
“=⇒”. It follows from T ∈ (ω) that

π00(T) = [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T)

= [ρ−
s−F (T) ∩ σp(T)] ∪ [ρ0

s−F (T) ∩ σp(T)].

Since π00(T) ⊆ iso σ (T) and ρ−
s−F (T) ⊆ int σ (T), it follows that ρ−

s−F (T) ∩ σp(T) = ∅
and [ρ0

s−F (T) ∩ σp(T)] ⊆ iso σ (T). By Lemma 2.3, [ρ0
s−F (T) ∩ σp(T)] ⊆ σ0(T). Hence,

σ (T) = σw(T) ∪ σ0(T).
On the other hand, π00(T) ⊆ [σa(T) \ σea(T)] implies that π00(T) ⊆ ρs−F (T). Then,

by Lemma 2.3, we have π00(T) ⊆ σ0(T).
“⇐=”. By (i) and (iii), it is obvious that

σa(T) \ σea(T) = [ρ−
s−F (T) ∪ ρ0

s−F (T)] ∩ σp(T)

= [ρ−
s−F (T) ∩ σp(T)] ∪ [ρ0

s−F (T) ∩ σp(T)]

= ρ0
s−F (T) ∩ σp(T) = σ0(T).

Then, σa(T) \ σea(T) = σ0(T) ⊆ π00(T). This combining (ii) implies that σa(T) \
σea(T) = π00(T). �

Proof of Main Theorem 1.2 “=⇒”. Assume that f (T) ∈ (ω) for all f ∈ Hol(σ (T)).
(i) Since f (T) ∈ (ω) for all f ∈ Hol(σ (T)), we have T = f1(T) ∈ (ω), where

f1(λ) = λ.
(ii) If (ii) does not hold, then we can choose λ1 ∈ ρ−

s−F (T) and λ2 ∈ [ρs−F (T) ∩
σp(T)] such that 0 ≤ ind (T − λ2) < ∞. Obviously we can choose k ∈ � such that
k · ind (T − λ1) + ind (T − λ2) < 0. Set f2(λ) = (λ − λ1)k(λ − λ2). Then, f2(T) = (T −
λ1)k(T − λ2) is a semi-Fredholm operator and

ind f2(T) = ind (T − λ1)k(T − λ2)

= k · ind (T − λ1) + ind (T − λ2) < 0.

Evidently, nul f2(T) ≥ nul (T − λ2) > 0. Thus 0 ∈ [ρ−
s−F (f2(T)) ∩ σp(f2(T))] 	= ∅. By

Lemma 4.1, we obtain f2(T) /∈ (ω), a contradiction.
(iii) If (iii) does not hold, then we can choose λ1 ∈ σ0(T) and λ2 ∈ iso σ (T) such

that λ2 /∈ σp(T). Thus, nul (T − λ2) = 0 and, by Lemma 2.3, we have λ2 ∈ σlre(T).
Set f3(λ) = (λ − λ1)(λ − λ2). It is easy to verify that 0 ∈ σlre(f3(T)) and 0 <

nul f3(T) = nul (T − λ1) < ∞. On the other hand, since λ1, λ2 ∈ iso σ (T), by Corollary
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2.10, we have 0 ∈ iso σ (f3(T)). Thus, we obtain that 0 ∈ π00(f3(T)). Since 0 ∈ σlre(f3(T)),
by Lemma 4.1, it follows that f3(T) /∈ (ω), a contradiction.

“⇐=”. Arbitrarily choose an f ∈ Hol(σ (T)). We shall prove that f (T) ∈ (ω).
Step 1. [σa(f (T)) \ σea(f (T))] ⊆ π00(f (T)).
Arbitrarily choose a λ0 ∈ [σa(f (T)) \ σea(f (T))]. Then, by Lemma 3.1, 0 <

nul (f (T) − λ0) < ∞ and ind (λ0 − f (T)) ≤ 0. It suffices to prove that λ0 ∈ iso σ (f (T)).
By Lemma 2.6 and Lemma 2.8, we may assume that {λi}n

i=1 is an enumeration of
{z ∈ σ (T) : f (z) − λ0 = 0} and

f (z) − λ0 = (z − λ1)k1 · · · (z − λn)kn g(z),

where g(z) 	= 0 for all z ∈ σ (T). Hence,

f (T) − λ0 = (T − λ1)k1 · · · (T − λn)kn g(T),

where g(T) is invertible.
It follows from ind (f (T) − λ0) ≤ 0 that λi ∈ ρs−F (T) and ind (λi − T) < ∞ for all

i. We claim that ind (λi − T) ≥ 0 for all 1 ≤ i ≤ n. In fact, if not, then there exists some
i0 such that ind (T − λi0 ) < 0. By condition (ii), σ0(T) = ∅ and ind (T − λi) ≤ 0 for
all i. By Lemma 4.1, it follows from T ∈ (ω) that σ (T) = σw(T), ind (T − λi) < 0 and
T − λi is bounded below for all 1 ≤ i ≤ n. Furthermore, f (T) − λ0 is bounded below.
Then, λ0 /∈ σa(f (T)), a contradiction. Thus, we have proved that ind (T − λi) ≥ 0 for
all 1 ≤ i ≤ n.

Since
∑n

i=1 ki · ind (T − λi) = ind (λ0 − f (T)) ≤ 0, we deduce that ind (T − λi) = 0
for all i. Note that T ∈ (ω) and λi ∈ σ (T), it follows from Lemma 4.1 that λi ∈ σ0(T)
for all i. In view of the form of f (λ), it follows from Corollary 2.10 that λ0 ∈ iso σ (f (T)).

Step 2. π00(f (T)) ⊆ [σa(f (T)) \ σea(f (T))].
Arbitrarily choose a λ0 ∈ π00(f (T)). Then, 0 < nul (f (T) − λ0) < ∞ and λ0 ∈

iso σ (f (T)). By Lemma 2.4 and Lemma 3.1, it suffices to prove that λ0 ∈ ρs−F (f (T)).
Note that nul (f (T) − λ0) < ∞, then, by Corollary 2.7 and Lemma 2.8, we may assume
that {λi}n

i=1 is an enumeration of {λ ∈ σ (T) : f (λ) − λ0 = 0} and

f (z) − λ0 = (z − λ1)k1 · · · (z − λn)kn g(z),

where g(z) 	= 0 for all z ∈ σ (T) and λi ∈ iso σ (T) for all i. Then,

f (T) − λ0 = (T − λ1)k1 · · · (T − λn)kn g(T),

where g(T) is invertible.
Since 0 < nul (f (T) − λ0) < ∞, there exists some i0(1 ≤ i0 ≤ n) such that 0 <

nul (T − λi0 ) < ∞. Hence, λi0 ∈ π00(T). Since T ∈ (ω), by Lemma 4.1, we have
λi0 ∈ σ0(T). So, σ0(T) 	= ∅ and, by condition (iii), iso σ (T) ⊆ σp(T). It follows that
λi ∈ σp(T) for all i. Note that nul (T − λi) ≤ nul (f (T) − λ0) < ∞ for all i, we deduce
that λi ∈ π00(T). Using Lemma 4.1 again, we obtain λi ∈ σ0(T) for all i. Therefore, we
conclude that λ0 ∈ ρs−F (f (T)). �

It can be seen from the proof of Main Theorem 1.2 that the following corollary is
clear.

COROLLARY 4.2. Let T ∈ B(X ). Then, f (T) ∈ (ω) for all f ∈ Hol(σ (T)) if and only
if p(T) ∈ (ω) for each polynomial p(λ).
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5. Proof of Main Theorem 1.3. In this section, it is always assumed that X is
a complex separable infinite dimensional Hilbert space. We first give several useful
lemmas.

LEMMA 5.1 ([15], Theorem 3.48). Let T ∈ B(X ). Then, given ε > 0, there exists
K ∈ K(X ) such that ‖K‖ < ε + max{dist[λ, ∂ρs−F (T)] : λ ∈ σ0(T)} and min ind (T +
K − λ) = 0 for all λ ∈ ρs−F (T).

For T ∈ B(X ) and λ ∈ ρs−F (T), the minimal index (see [15]) of λ − T is defined by

min ind (λ − T) := min{nul (λ − T), nul (λ − T)∗}.

LEMMA 5.2 ([16], Proposition 3.4). Let T ∈ B(X ). If σ0(T) = ∅, then, given ε > 0,
there exists K ∈ K(X ) with ‖K‖ < ε such that σp(T + K) = ρ+

s−F (T).

Proof of Main Theorem 1.3. For given ε > 0, set σ1 = {λ ∈ σ0(T) :
dist(λ, ∂ρs−F (T)) ≥ ε

2 }. Then, σ1 is a finite, clopen subset of σ (T). Set σ2 = σ (T) \ σ1.
By Corollary 2.2, T admits the following representation

T =
[

T1 E
0 T2

]
X (σ1; T)
X (σ1; T)⊥,

where σ (Ti) = σi(i = 1, 2). Then, one can verify that max{dist[λ, ∂ρs−F (T2)] : λ ∈
σ0(T2)} < ε

2 . Then, by Lemma 5.1, there exists a compact operator K1 on X (σ1; T)⊥

such that ‖K1‖ < ε
2 and min ind (T2 + K1 − λ) = 0 for all λ ∈ ρs−F (T2). Then,

σ (T2 + K1) = σlre(T2 + K1) ∪ [ρs−F (T2 + K1) ∩ σ (T2 + K1)]

= σlre(T2) ∪ ρ+
s−F (T2 + K1) ∪ ρ−

s−F (T2+K1) ∪ [ρ0
s−F (T2+K1) ∩ σ (T2 + K1)]

= σlre(T2) ∪ ρ+
s−F (T2) ∪ ρ−

s−F (T2) ⊂ σ (T2). (1)

In particular, σ0(T2 + K1) = ∅ and σ (T2 + K1) ∩ σ (T1) = ∅.
Using Lemma 5.2, one can find a compact K2 with ‖K2‖ < ε/2 such that σp(T2 +

K1 + K2) = ρ+
s−F (T2 + K1 + K2). Set

T2 = T2 + K1 + K2 and K =
[

0 0
0 K1 + K2

]
X (σ1; T)
X (σ1; T)⊥.

Then, K ∈ K(X ), ‖K‖ < ε and

T + K =
[

T1 E
0 T2

]
X (σ1; T)
X (σ1; T)⊥.

Also, we claim that
(i) σ (T + K) = σ (T1) ∪ σ (T2) and σ (T1) ∩ σ (T2) = ∅,

(ii) σlre(T + K) = σlre(T2) and ind (T + K − λ) = ind (T2 − λ) for all λ ∈ ρs−F (T +
K),

(iii) σp(T + K) = σp(T1) ∪ σp(T2) = σ (T1) ∪ ρ+
s−F (T2) = σ (T1) ∪ ρ+

s−F (T + K),
(iv) σ0(T + K) = σ (T1) = πa

00(T) = π00(T)(since σp(T2) = ρ+
s−F (T2)).

Now let us explain in detail the above facts (i)–(iv).
(i) Using a similar argument as in the equality (1), one can see that σ (T1) ∩ σ (T2) =

∅. By [15, Corollary 3.22], T + K and T1 ⊕ T2 are similar. Then, σ (T + K) = σ (T1) ∪
σ (T2).
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(ii) Since dimX (σ1; T) < ∞, one can see that T1 and E are both compact. Thus,
T + K is a compact perturbation of the following operator

[
0 0
0 T2

]
X (σ1; T)
X (σ1; T)⊥.

Thus, the facts in (ii) are clear.
(iii) We have proved in (i) that T + K and T1 ⊕ T2 are similar. Then, σp(T + K) =

σp(T1) ∪ σp(T2). Note that T1 is acting on a finite-dimensional space, we have σ (T1) =
σp(T1). On the other hand, we have proved that σp(T2) = ρ+

s−F (T2) = ρ+
s−F (T + K).

This proves (iii).
(iv) Since T + K and T1 ⊕ T2 are similar, using the facts (i)-(iii), one can easily

verify the conditions in (iv).
Based on the facts (i)–(iv), we obtain

[ρ−
s−F (T + K) ∪ ρ0

s−F (T + K)] ∩ σp(T + K)

= ρ0
s−F (T + K) ∩ σp(T + K)

= σ0(T + K) = σ (T1) = πa
00(T) = π00(T).

By Lemma 3.1, we deduce that T + K ∈ (a-W) and T + K ∈ (ω). �
REMARK 5.3. As we have seen in the above proof, the result of Theorem 1.3 greatly

depends on the work by D. Herrero [16] on perturbations of Hilbert space operators,
and therefore, the result is established only in the setting of separable Hilbert spaces.

We conclude this paper with the following question.

Question 5.4. Let X be a complex infinite dimensional Banach space. Then, given
T ∈ B(X ) and ε > 0, can one find A ∈ B(X ) with ‖A − T‖ < ε such that A ∈ (W)(or
A ∈ (ω), or A ∈ (a-W))?
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