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PRODUCTS OF NORMAL OPERATORS 

PEI YUAN WU 

1. Main result. Which bounded linear operator on a complex, separable 
Hilbert space can be expressed as the product of finitely many normal 
operators? What is the answer if "normal" is replaced by "Hermitian", 
"nonnegative" or "positive"? Recall that an operator T is nonnegative 
(resp. positive) if (Tx, X) ^ 0 (resp. (Tx, X) > 0) for any x ^ 0 in the 
underlying space. The purpose of this paper is to provide complete 
answers to these questions. 

If the space is finite-dimensional, then necessary and sufficient condi­
tions for operators expressible as such are already known. For normal 
operators, this is easy. By the polar decomposition, every operator is the 
product of two normal operators. An operator is the product of Hermitian 
operators if and only if its determinant is real; moreover, in this case, 4 
Hermitian operators suffice and 4 is the smallest such number (cf. [10] ). 
An operator T is the product of positive (resp. nonnegative) operators if 
and only if det T > 0 (resp. det T ^ 0); in this case, 5 positive (resp. 
nonnegative) operators will do and 5 is the smallest (cf. [1] and [13] ). Thus 
from now on we will only consider the infinite-dimensional space. For this 
case, the problems have only been slightly touched upon before. For 
example, in [8, Solution 144 (a) ] it was shown that the (simple) unilateral 
shift is not the product of finitely many normal operators; in [11] Radjavi 
showed that every normal operator is the product of 4 Hermitian op­
erators. Other than these, there seems to be very few in the literature. In 
this paper, we will completely determine which operators can be expressed 
as such. It turns out that the classes of operators expressible as products of 
normal, Hermitian or nonnegative operators are identical. More precisely, 
we have the following 

THEOREM 1.1. Let T be an operator on a separable, infinite-dimensional 
Hilbert space. Then the following statements are equivalent: 

(1) T is the product of finitely many normal operators', 
(2) T is the product of finitely many Hermitian operators', 
(3) T is the product of finitely many nonnegative operators', 
(4) T = SP or PS depending on whether dim ker T = dim ker T* or 

dim ker T = dim ker T* for some operator S which is one-to-one with dense 
range and some orthogonal projection P; 
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(5) dim ker T = dim ker T* or ran T is not closed; 
(6) T is the norm limit of a sequence of invertible operators. Moreover, 

in this case, T can be expressed as the product of 3 normal operators, 6 
Hermitian operators or 18 nonnegative operators. 

The proof of this theorem will be given in the next section. Before that, 
some corollaries. 

COROLLARY 1.2. Unilateral shifts are not the product of finitely many 
normal operators. 

COROLLARY 1.3. Every compact operator is the product of 3 normal 
operators. 

Proof. If T is compact and ran T is closed, then T must be of finite rank 
whence 

dim ker T = dim ker T* = oo. 

Our assertion follows from the equivalence of (1) and (5) in Theorem 1.1 
immediately. 

COROLLARY 1.4. Every quasinilpotent operator is the product of 3 normal 
operators. 

Proof. That a quasinilpotent operator is not left (right) Fredholm 
follows by applying, to the Calkin algebra, the general principle that the 
boundary of the spectrum of an element in a Banach algebra belongs to 
the left (right) spectrum (cf. [2, p. 13, Theorem 14] ). Our assertion then 
follows from Theorem 1.1. 

2. Proof. We first consider the case when the range of T is closed and 
start with the following 

LEMMA 2.1. T has closed range if and only if (T*T)U2 does. 

Proof Let 

y(T) = inf{ 117*11: ||x|| = l , x l ker T). 

Since ker T = ker ( r* r ) 1 / 2 and \\Tx\\ = || (T*T)]/2x\\, we have 

y(T) = y((T*T)l/2). 

The assertion follows from the fact that T has closed range if and only if 
y(T) > 0 (cf. [4, Proposition XI.3.16] ). 

LEMMA 2.2. If dim ker T = dim ker T*9 then T is the product of 2 normal 
operators and the product of 5 Hermitian operators. If in addition, the range 
of T is closed, then the normal and Hermitian operators may be chosen to 
have closed ranges too. 
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Proof. If dim ker T = dim ker T*, then T = UP, where Uis unitary and 
P = (T*T)U2 is nonnegative (cf. [8, Problem 135] ). Since every unitary 
operator is the product of 4 symmetries (cf. [8, Problem 143]; a symmetry 
is an operator which is both unitary and Hermitian), T is the product of 
5 Hermitian operators. The last assertion follows from Lemma 2.1. 

LEMMA 2.3. Let T = Nx . . . Nn, where 

dim ker Nt = dim ker N? for each i. 

If T is one-sided invertible (resp. one-sided Fredholm), then T is invertible 
(resp. Fredholm). 

Proof. We only prove for Fredholmness. Assume that T is left 
Fredholm. From T = Nx . . . Nn, we infer that Nn is left Fredholm. Since 
dim ker Nn = dim ker N%, Nn must be Fredholm. Let M be an operator 
such that NnM — 1 and MNn — 1 are compact. Then TM is left Fredholm 
and 

TM-NX...N„_X=NX... Nn-X(N„M - 1) 

is compact. Then we repeat the above arguments to obtain that Nn_{ 

is Fredholm. By induction, every N{ is Fredholm, so is T. If T is right 
Fredholm, consider T* instead. 

The next result characterizes operators expressible as the product of a 
finite number of normal operators among those with closed range. 

PROPOSITION 2.4. The following statements are equivalent for an operator 
T with ran T closed: 

(1) T is the product of finitely many normal operators\ 
(2) T is the product of finitely many Hermitian operators; 
(3) T = SP, where S is invertible and P is an orthogonal projection; 
(4) dim ker T = dim ker 7*. 

Proof. (3) => (2) by Lemma 2.2 and (2) =» (1) is trivial. To prove 
(1) => (4), assume that dim ker T < oo and T = Nx . . . Nn, where the JV/s 
are normal. Then T is left Fredholm and hence, together with N}, . . . , A ,̂ 
is Fredholm by Lemma 2.3. Thus 

ind T = ind Nx + . . . + ind Nn = 0. 

It follows that dim ker T = dim ker T*. If dim ker T* < oo, consider T* 
instead. 

Now we prove (4) =̂> (3). Let P be the orthogonal projection onto 
(ker 77)"1, let R be an invertible operator from ker T onto ker T*, and 
define S by 

S(x 4- y) = Rx + Ty for x G ker T and y G (ker T)x. 

Then S is invertible and T = SP. 
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Before passing on, a few remarks are in order. First, the equivalence of 
(3) and (4) in the preceding proposition, together with other equivalent 
conditions, has been obtained before (cf. [9, Theorem 3.2] ). Second, (1) or 
(2) may not imply (4) without the assumption on the closedness of ran T. 
Examples have been given by Radjavi and Williams [12, p. 180] and Gray 
[7]. It is also evident from our main theorem which we are going to take 
care of next. 

LEMMA 2.5. If ran T is not closed, then there exists a closed, infinite-
dimensional subspace K of H such that K n ran T = {0}. 

Proof The assertion follows from Dixmier's proof of a result of von 
Neumann (cf. [6, Theorem 3.6] ). Indeed, since TH is not closed, there 
exist unitary operators V and W on H and a dense operator range L 
which contains a closed, infinite-dimensional subspace, say, M such that 
L n VL = {0} and WTH Q L. It follows that L n VWTH = {0} and 
therefore (VW)~]L n TH = {0}. Hence K = (VW)~lM is a closed, 
infinite-dimensional subspace satisfying K Pi TH = {0}. 

PROPOSITION 2.6. If ran T is not closed, then T is the product of 3 normal 
operators and the product of 6 Hermitian operators. 

Proof In view of Lemma 2.2, we need only consider the case 
dim ker T ¥= dim ker T*. Since ran T is closed if and only if ran T* is, we 
may further assume that dim ker T > dim ker T*. Let P be the orthogonal 
projection onto (ker T) . We are going to construct an operator S with 
dim ker S = dim ker S* such that T = SP. 

Let ker T = Hx © H2, where dim Hx = dim ker 7*, and let K be 
a closed, infinite-dimensional subspace of ran T such that K Pi ran T = 
{0}. Note that ran T is not closed implies that ran T is infinite-
dimensional and hence such K exists by Lemma 2.5. Let S be an operator 
on H which maps Hx to {0}, maps H2 isometrically into K and equals T on 
(ker TT1. We first show that ker S = Hv Indeed, if 

S(xx + x2 + x3) = 0, 

where i , G //,, i 2 e F 2 and x3 G (ker T)1-, then 

Sx2 = ~Sx3 G K n ran T = {0}. 

Hence Sx2 = Sx3 = 0 and therefore 

x2 = 0 and x3 G (ker T)^ n ker T = {0}, 

that is, x3 = 0. This shows that ker S = Hx. On the other hand, we 
certainly have ran S = ran T whence 

ker S* = r a n S ^ = ran 7 ^ = ker T*. 

It follows that 
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dim ker S = dim Hx = dim ker T* = dim ker S* 

as asserted. 
By Lemma 2.2, S is the product of 2 normal operators and the product 

of 5 Hermitian operators. Since T = SP, T is the product of 3 normal 
operators and the product of 6 Hermitian operators. 

Next we consider the product of nonnegative operators. Since any 
unitary operator is the product of 4 symmetries (cf. [8, Problem 143] ), we 
start with the nonnegative factorization of the latter. The proof of the next 
lemma depends on Ballantine's results on the product of positive finite 
matrices [1]. 

LEMMA 2.7. Every symmetry is the product of 6 positive invertible 
operators. 

Proof. Since any symmetry is unitarily equivalent to T = ( — 1 ) © 1 on 
H = Hx © H2, we distinguish three cases depending on the dimension 
oîHx: 

(1) Dim Hx is infinite. In this case, consider the operator — 1 on Hx as 

© . . . . 

Since each [Zl
0 _?] is the product of 5 positive matrices [1, Theorem 5], 

T is the product of 5 positive invertible operators. 
(2) Dim Hx is finite and even. Consider T as 

1 

' - 1 0 
© 

- 1 0" 
0 - 1 . 0 - 1 . 

1 

u 

1. 

Since the first summand has a positive determinant and is not a negative 
scalar matrix, it is the product of 4 positive matrices [1, Theorem 4]. The 
same is true for T. 

(3) Dim Hx is finite and odd. In this case, H2 must be infinite-
dimensional. Let n = dim Hx. We have T = TXT2, where 

~~-l 

Tx = 1 
1 0 0 
0 - 1 0 
0 1 1 

© 
-1 
0 
0 

0 0 
-1 0 

1 1 

and 
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1 

1 
- 1 0 

1 1 

- 1 0 0' 
1 1 0 0 . . . , 
0 0 - 1 . 

- 1 

- 1 0 0 
1 1 0 
0 0 - 1 

the first summands of Tx and T2 being of sizes (n + 2) X (n + 2) and 
(n -f 3) X (n -f 3), respectively. By [1, Theorem 3], each summand of 
Tx and T2 is the product of 3 positive matrices. Hence T is the product 
of 6 positive invertible operators. 

LEMMA 2.8. Every unitary operator is the product of 16 positive invertible 
operators. 

Proof. The proof in [8, Solution 143] of the Halmos-Kakutani result 
establishes that every unitary operator is the product of 4 symmetries each 
of which has 1 and — 1 as eigenvalues with infinite multiplicity. From the 
proof of Lemma 2.7, we deduce that each such symmetry is the product of 
4 positive invertible operators. Our assertion follows. 

PROPOSITION 2.9. If dim ker T = dim ker T*, then T is the product of 
17 nonnegative operators', if ran T is not closed, then T is the product of 18 
nonnegative operators. 

Proof The assertions follow from Lemma 2.8 and the proofs of Lemma 
2.2 and Proposition 2.6. 

COROLLARY 2.10. An operator is the product of finitely many positive 
operators if and only if it is one-to-one with dense range. In this case, 17 
positive operators suffice. 

Now we are ready to complete the proof of Theorem 1.1. 

Proof of Theorem 1.1. In view of what we have done so far and the fact 
that the equivalence of (5) and (6) follows easily from [5, Theorem 2] or 
[3, Theorem 3], we need only show that (5) implies (4). 

If ran T is not closed, then, as proved in Proposition 2.6, in case of 
dim ker T > dim ker T*, T = TXP, where 7j is such that dim ker Tx = 
dim ker Tf and ker Tx Q Ker T and P is the orthogonal projection onto 
(ker T)^. From the proof of Proposition 2.4, we have Tx = SXPX, where Sx 

is one-to-one with dense range and Px is the orthogonal projection onto 
(ker T^. Hence T = S^P) = SXP as required. 
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3. Miscellanies. In the previous two sections, we have characterized 
operators which are expressible as products of normal, Hermitian, non-
negative or positive operators. However, except in some trivial cases it is 
in general difficult to determine the minimum number of such operators 
which are required to form the product. For special classes of opera­
tors, this probably will be easier to handle. One such result is due to 
Radjavi [11]: Every normal operator is the product of 4 Hermitian op­
erators and 4 is the smallest such number. In this section, we present some 
results which reduce, for certain classes of operators, the number of 
normal or whatever operators needed. We start with the finite-rank 
operators. 

PROPOSITION 3.1. Every finite-rank operator is the product of 2 normal 
operators, 3 Hermitian operators or 4 nonnegative operators. Moreover, the 
numbers 2 and 3 are the smallest possible. 

Proof. Let T be a finite-rank operator. Since rank T = rank T* < oo 
implies that 

dim ker T = dim ker T* = oo, 

T is the product of 2 normal operators by Lemma 2.2. Here 2 is obviously 
the smallest. 

For the Hermitian product, we first write TasT = S © 0 on H = K© K. 
Then 

T = 
is o 0 s] [0 1] fl 0' 
[o o, s* oj li oj l0 0; 

expresses T as the product of 3 Hermitian operators. (This is due to 
Radjavi [11, p. 1423].) To prove the minimality of 3, let T = / © 0 on 
H = Hx® H2, where dim Hx = 1 and dim H2 = oo. Since o(T) = {/, 0} 
is not symmetric with respect to the real line, T cannot be the product of 
2 Hermitian operators (cf. [12, p. 179] ). 

To prove the assertion for the nonnegative product, write T = Tx © 0 on 
H = Hx © H2, where dim Hx < oo. Let Tx = UP be the polar 
decomposition of Tx, where £/is unitary and P = (TfTx)

xn ^ 0. Let z be a 
complex number such that z • det U > 0, and let 

S = U 
\z 0 ol 
0 1 0 
[0 4 ij 

and Q = P 
'0 0 ol 

® 0 0 0 
.0 0 Oj 

It is easily seen that det S > 0 and 0 belongs to the interior of the 
numerical range of S. By [1, Theorem 3], S is the product of 3 positive 
matrices. Hence T = (S © 0)(Q © 0) is the product of 4 nonnegative 
operators. 
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The next proposition deals with nonnegative factorization of Hermitian 
operators. 

PROPOSITION 3.2. Every Hermitian operator is the product of 7 non-
negative operators. 

Proof. Let T be a Hermitian operator. Then T can be written as T = 
Tx © r2, where Tx and — T2 are nonnegative. Hence 

r = (r,e(-r2)xi©(-i)) 
is the product of 7 nonnegative operators by Lemma 2.7. 

Recall that an operator T is idempotent if T — T, an involution if 
7" = 1, and nilpotent of index HIT = 0. 

PROPOSITION 3.3. (1) Every idempotent operator is the product of 2 non-
negative operators. 

(2) Every involution is the product of 2 Hermitian invertible operators and 
the product of 6 positive invertible operators. 

(3) Every nilpotent operator of index 2 is the product of 2 Hermitian 
operators and the product of 3 nonnegative operators. 

Proof (1) Let T be an idempotent operator. Then T = X~ PX, where 
X is invertible and P is an orthogonal projection. We have 

T = (X~]X~U)(X*PX) 

as the product of 2 nonnegative operators. 
(2) Let Tbe an involution. Then T = X~lSX, where Xis invertible and 

S is an operator of the form 1 © (— 1). We have 

T = (X~]X~]*)(X*SX) 

as the product of 2 Hermitian invertible operators. By Lemma 2.7, S is the 
product of 6 positive invertible operators, say, 

S = R}R2R3R4R5R6. 

Hence 

T = (X~lRxX~l*)(X*R2X)(X~lR3X~l*)(X*R4X) 

X (X~xR5X~l*)(X*R6X) 

is the product of 6 positive invertible operators. 
(3) Let T be nilpotent of index 2. Then T can be expressed as [Q Q] on 

ker T © ran T*, and 

' 0 S] 
mS* OJ 

is a product of 2 Hermitian operators. On the other hand, let r > \\S\\, 
and let 

T = 
1 0 
0 0 
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T\ = 
1 0 
0 0 

T2 = 
r S 

S* r 
and T3 = 

0 0 
0 1 

It is easily verified that T = TXT2T3 and these 7J-'s are nonnegative 
operators. 

We conclude this paper by remarking that, in a forthcoming joint paper 
with M.-D. Choi, we obtained some necessary or sufficient conditions 
for an operator expressible as the product of 2 normal operators. In 
particular, under the conditions of Theorem 1.1 the number of 3 (normal 
operators) cannot be lowered to 2 in general, thanks to an example 
pointed out to us by K. Davidson. 
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