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Abstract

Let d and n be positive integers such that n ≥ d + 1 and τ1, . . . , τn integers such that τ1 < · · · < τn.
Let Cd(τ1, . . . , τn) ⊂ Rd denote the cyclic polytope of dimension d with n vertices (τ1, τ

2
1, . . . , τ

d
1),

. . . , (τn, τ
2
n, . . . , τ

d
n). We are interested in finding the smallest integer γd such that if τi+1 − τi ≥ γd for

1 ≤ i < n, then Cd(τ1, . . . , τn) is normal. One of the known results is γd ≤ d(d + 1). In the present
paper a new inequality γd ≤ d2 − 1 is proved. Moreover, it is shown that if d ≥ 4 with τ3 − τ2 = 1, then
Cd(τ1, . . . , τn) is not very ample.
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1. Introduction

The cyclic polytope is one of the most distinguished polytopes and played the essential
role in the classical theory of convex polytopes [2]. Let d and n be positive integers
such that n ≥ d + 1 and τ1, . . . , τn real numbers such that τ1 < · · · < τn. The convex
polytope Cd(τ1, . . . , τn) which is the convex hull of the finite set

{(τ1, τ
2
1, . . . , τ

d
1), . . . , (τn, τ

2
n, . . . , τ

d
n)} ⊂ Rd

is called a cyclic polytope. It is known that Cd(τ1, . . . , τn) is a simplicial polytope of
dimension d with n vertices. The combinatorial type of Cd(τ1, . . . , τn) is independent
of the particular choice of real numbers τ1, . . . , τn.
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The present paper is devoted to the study on integral cyclic polytopes. A convex
polytope is called integral if all of its vertices have integer coordinates. The integral
convex polytope has established an active area of research between combinatorics and
commutative algebra [4, 9].

Let, in general, P ⊂ RN be an integral convex polytope, define P∗ ⊂ RN+1 to be the
convex hull of all points (1, α) ∈ RN+1 with α ∈ P and let AP = P∗ ∩ ZN+1 denote
the set of integer points in P∗. Let Z≥0 denote the set of nonnegative integers and
Q≥0 the set of nonnegative rational numbers.

We say that P is normal if

Z≥0AP = ZAP ∩ Q≥0AP.

Moreover, P is called very ample if the set

(ZAP ∩ Q≥0AP) \ Z≥0AP

is finite. One of the most fundamental questions on integral convex polytopes is to
determine whether a given integral convex polytope is normal [6].

On the other hand, we say that an integral convex polytope P ⊂ RN has the
integer decomposition property if, for each m = 1, 2, . . . and for each α ∈ mP ∩ ZN ,
there exist α1, . . . , αm belonging to P ∩ ZN such that α = α1 + · · · + αm. Here
mP = {mα : α ∈ P}. If P has the integer decomposition property, then P is normal.
However, the converse is false. For example, the tetrahedron T3 ⊂ R

3 with the
vertices (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) is normal, but cannot have the
integer decomposition property because (1, 1, 1) ∈ 2T3. If P ⊂ Rd is an integral
convex polytope of dimension d with Z(P∗ ∩ Zd+1) = Zd+1, then P has the integer
decomposition property if and only if P is normal. Lemma 2.6 says that every integral
cyclic polytope P ⊂ Rd satisfies Z(P∗ ∩ Zd+1) = Zd+1. In particular, it follows that
an integral cyclic polytope is normal if and only if it has the integer decomposition
property.

Let, as before, d and n be positive integers such that n ≥ d + 1. Given integers
τ1, . . . , τn with τ1 < · · · < τn, we wish to examine whether Cd(τ1, . . . , τn) is normal
or not. Thus our final goal is to classify the integers τ1, . . . , τn with τ1 < · · · < τn

for which Cd(τ1, . . . , τn) is normal. Even though it seems to be rather difficult to
find a complete classification, many fascinating problems naturally arise. As a first
step toward our goal, we are interested in finding the smallest integer γd such that if
τi+1 − τi ≥ γd for 1 ≤ i < n, then Cd(τ1, . . . , τn) is normal. Since the lattice length of
each edge conv({(τi, . . . , τ

d
i ), (τ j, . . . , τ

d
j )}) of Cd(τ1, . . . , τn) coincides with |τ j − τi|,

it follows immediately from [3, Theorem 1.3(b)] that γd ≤ d(d + 1). In the present
paper a new inequality γd ≤ d2 − 1 is proved (Theorem 3.1). Moreover, it is shown
that if d ≥ 4 with τ3 − τ2 = 1, then Cd(τ1, . . . , τn) is not very ample (Theorem 4.1).

A brief overview of the present paper is as follows. After preparing notation,
terminologies together with several lemmata in Section 2, a proof of Theorem 3.1
is achieved in Section 3. Section 4 is devoted to showing Theorem 4.1. An algebraic
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aspect of integral cyclic polytopes including toric rings of integral cyclic polytopes
will be studied in the forthcoming paper [5].

2. Preliminaries

In this section, we prepare notation and lemmas for our main theorem.
First of all, we review some fundamental facts on cyclic polytopes. Let d and n be

positive integers such that n ≥ d + 1. It is convenient to work with a homogeneous
version of the cyclic polytopes, hence, throughout the present paper, we consider
C∗d(τ1, . . . , τn) instead of Cd(τ1, . . . , τn). For n real numbers τ1, . . . , τn with τ1 <
· · · < τn, we set

vi := (1, τi, τ
2
i , . . . , τ

d
i ) ∈ Rd+1 for 1 ≤ i ≤ n.

In other words, C∗d(τ1, . . . , τn) = conv({vi : 1 ≤ i ≤ n}) ⊂ Rd+1. Unless stated otherwise,
we will always assume that the indices are ordered as τ1 < · · · < τn. See [10, Ch. 0] for
some basic properties of cyclic polytopes. We will use a well-known characterization
of their facets. (See, for example, [10, Theorem 0.7].)

Let [n] := {1, . . . , n} and let us say that a set S ⊂ [n] forms a facet of C∗d(τ1, . . . , τn)
if conv({vi : i ∈ S }) is its facet.

P 2.1 (Gale’s evenness condition). A set S ⊂ [n] with d elements forms a
facet of C∗d(τ1, . . . , τn) if and only if S satisfies the following condition: if i and j with
i < j are not in S , then the number of elements of S between i and j is even. In other
words,

2 | #{k ∈ S i < k < j},

where #X stands for the number of elements contained in a finite set X.

Henceforth, we will assume that τ1, . . . , τn are integers.
Let ∆i j := τ j − τi for i, j ∈ [n]. The proof of Proposition 2.1 yields a description of

the inequality of the supporting hyperplane defining each facet. Let S = {k1, . . . , kd} ⊂

[n] and consider the polynomial

d∑
i=0

cS ,it
i :=

∏
i∈S

(t − τi).

Then all d vectors vk1 , . . . , vkd vanish by the linear form

σS : Rd+1 3 (w0, w1, . . . , wd) 7→
d∑

i=0

cS ,iwi ∈ R,

thus it defines the hyperplane spanned by them. Note that we index the first coordinate
by 0. Hence, if the set S forms a facet F of P∗ = C∗d(τ1, . . . , τn), then σS is the linear
form defining F , which means that σS (x) ≥ 0 if x is in P∗ and σS (x) = 0 if x is in F .
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For every j ∈ [n] \ S , we have σS (v j) =
∏

i∈S ∆i j. This has a useful implication, that
is, if we write a vector x ∈ Zd+1 as x =

∑
i∈S λivi + λ jv j with rational coefficients λi,

then the denominator of λ j is a divisor of
∏

i∈S ∆i j, because σS (x) = λ j
∏

i∈S ∆i j is an
integer.

We introduce a special representation of cyclic polytopes which is sometimes
helpful. Write the vectors v1, . . . , vn as row vectors into a matrix, namely,

v1

v2
...

vn

 =


1 τ1 τ2

1 . . . τd
1

1 τ2 τ2
2 . . . τd

2
...

...
...

1 τn τ2
n . . . τd

n

 . (2.1)

L 2.2. The aforementioned matrix can be transformed to the following matrix by
using a unimodular transformation:

1 0 · · · · · · 0

1 ∆12 0
. . .

...

1 ∆13 ∆13∆23
. . .

...
...

...
...

. . . 0

1 ∆1,d+1 ∆1,d+1∆2,d+1 . . .

d∏
k=1

∆k,d+1

...
...

...
...

1 ∆1,n ∆1,n∆2,n . . .

d∏
k=1

∆k,n



. (2.2)

In particular, the convex hull of the row vectors of this matrix is unimodularly
equivalent to C∗d(τ1, . . . , τn).

A proof of the above lemma is essentially the same as a proof of the well-known
Vandermonde determinant identity. Note that Lemma 2.2 is valid for any ordering of
the parameters τ1, . . . , τn, that is, any ordering of v1, . . . , vn.

Let us identify a special case where the polytopes are indeed unimodularly
equivalent.

L 2.3. An integral cyclic polytope C∗d(τ1, . . . , τd) is unimodularly equivalent
to C∗d(−τn, . . . , −τ1). Moreover, for any integer m, C∗d(τ1, . . . , τd) is unimodularly
equivalent to C∗d(τ1 + m, . . . , τn + m).

P. The replacement τi 7→ −τi corresponds to a multiplication with −1 in every
column of (2.1) with an odd exponent. This is a unimodular transformation. The
second statement is immediate from Lemma 2.2, because the matrix (2.2) depends
only on the differences ∆i j = τ j − τi. �
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We define a certain class of vectors which we will use in what follows. Let
S = {i1, . . . , iq} ⊂ [n] be a nonempty set, where i1 < · · · < iq. Then we define

bS :=
∑
i∈S

1∏
j∈S \{i} ∆i j

vi =

q∑
k=1

(−1)k+1∏
j∈S \{ik} |∆ik j|

vik ,

where bS = vi1 when q = 1, that is, #S = 1. If S is small, we will sometimes omit the
brackets around the elements, thus we write, for example, bi j = b{i, j}. However, the
vector does not depend on the order of the indices.

E 2.4. Let us write down bS for small sets S . Assume that 1 ≤ i < j < k < l ≤ n.
Then

bi = vi,

bi j =
1

∆i j
vi −

1
∆i j

v j,

bi jk =
1

∆i j∆ik
vi −

1
∆i j∆ jk

v j +
1

∆ik∆ jk
vk,

bi jkl =
1

∆i j∆ik∆il
vi −

1
∆i j∆ jk∆ jl

v j +
1

∆ik∆ jk∆kl
vk −

1
∆il∆ jl∆kl

vl.

The sign changes are due to a reordering of the indices since ∆i j = −∆ ji. If vi, v j, vk, vl

are given in the form (2.2), that is, if
vi

v j

vk

vl

 =


1 0 · · · · · · · · · · · · 0

1 ∆i j 0
. . . · · · · · ·

...

1 ∆ik ∆ik∆ jk
. . . · · · · · ·

...
1 ∆il ∆il∆ jl ∆il∆ jl∆kl 0 · · · 0

 ,
then bi = (1, 0, . . . , 0), bi j = (0, −1, 0, . . . , 0), bi jk = (0, 0, 1, 0, . . . , 0) and bi jkl = (0, 0,
0, −1, 0, . . . , 0). In general, b1, b12, . . . , b12···d+1 look like (0, . . . , 0, ±1, 0, . . . , 0)
when v1, . . . , vd+1 are of the form (2.2).

The following proposition collects the basic properties on these vectors.

P 2.5.

1. For any nonempty set S ⊂ [n], we have bS ∈ Z
d+1.

2. Let S ⊂ [n] and a, b ∈ S with a , b. Then we have a recursion formula

bS =
1

∆ba
bS \{a} +

1
∆ab

bS \{b}.

3. For any distinct d + 1 indices i1, . . . , id+1 ∈ [n] (not necessarily ordered), the
vectors

bi1 , bi1i2 , bi1i2i3 , . . . , bi1···id+1

form a Z-basis for Zd+1.
4. If #S ≥ d + 2, then bS = 0.
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P. The second statement can be verified by elementary computations, using
∆i j + ∆ jk = ∆ik for i, j, k ∈ [n].

To prove the first statement, we consider the components of bS as rational functions
in τi, i ∈ S . By induction on #S , we prove the following statement. The components
of bS are symmetric polynomials in τi, i ∈ S , and their coefficients depend only on #S .

If #S = 1, then bS = bi = vi = (1, τi, τ
2
i , . . . , τ

d
i ), thus the claim holds. Now consider

a set S with at least two distinct elements a, b. Let

f j(τa, τi, i ∈ S ), f j(τb, τi, i ∈ S )

be the jth components of bS \b, bS \a, respectively. Then the difference between these
polynomials is zero if we set τa = τb, hence the quotient

f j(τa, τi, i ∈ S ) − f j(τb, τi, i ∈ S )

τa − τb

is a polynomial as claimed. It is obviously symmetric in a and b. Since we are free
to choose any two elements of S , it is symmetric in all variables. The coefficients
of the polynomial depend only on #S , so the claim is proven. Note that the degree
of the polynomial decreases by one by taking the quotient. Since the degree of the
components of vi is at most d + 1, we conclude that bS = 0 for #S ≥ d + 2.

To prove the third statement, we first note that the vertices vi1 , . . . , vid+1 are linearly
independent. Take an element x ∈ Zd+1 and write it as x =

∑
λ jvi j . By considering

σ{i1,...,id}(x), we can say that the coefficient λid+1 is of the form

λid+1 =
k∏d

j=1 ∆i jid+1

for an integer k. Thus, x + (−1)dkbi1...id+1 ∈ Z
d+1 is a vector in the subspace spanned by

vi1 , . . . , vid . These vectors define a (d − 1)-dimensional cyclic polytope again, so we
can proceed by induction and obtain a representation of x as a Z-linear combination of
the bi1 , bi1i2 , . . . , bi1...id+1 . �

We apply this construction to prove another useful fact on cyclic polytopes.

L 2.6. For an integral cyclic polytope P ⊂ Rd of dimension d,

ZAP = Zd+1.

P. First, we notice that ZAP ⊂ Zd+1 is obvious. To prove the reverse inclusion,
we construct a basis of Zd+1 from d + 1 points in AP. We choose d + 1 vertices
v1, . . . , vd+1 of P∗ and consider the vectors

bid+1 , bid+1 + bid id+1 , bid+1 + bid id+1 + bid−1id id+1 , . . . ,

d+1∑
l=1

bil...id+1 .
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Let us denote them by c j :=
∑d+1

l= j bil...id+1 for j = 1, . . . , d + 1. By Proposition 2.5(3),
they constitute a Z-basis of Zd+1. Hence, if each c j is contained in P∗, then our claim
follows. For this, let us consider the coefficient of a vertex vik in the sequence of

bid , bid id+1 , bid−1id id+1 , . . . , bi1...id+1 .

The coefficient of vik appears first in bik ...id+1 , where it has a positive sign. After that,
its sign is alternating and the absolute value is nonincreasing since the denominators
increase. Hence, the sum of those coefficients and thus the coefficient in c j is
nonnegative. So, c j is a convex combination of the vertices of P∗. �

Finally, we discuss the normality of integral cyclic polytopes.

L 2.7. Let P be an integral cyclic polytope of dimension d. If any simplex of
dimension d whose vertices are chosen from those of P is normal, then P itself is also
normal.

P. Let v1, . . . , vn be the vertices of P∗. The proof is by a direct application of
Carathéodory’s theorem (see, for example, [8, Section 7]). Let x ∈ ZAP ∩ Q≥0AP.
Now, Carathéodory’s theorem guarantees that there exist d + 1 vertices vi1 , . . . , vid+1

of P∗ such that x ∈ ZAQ ∩ Q≥0AQ, where Q = conv({vi1 , . . . , vid+1}). Here we use the
fact that ZAP = Zd+1 = ZAQ by Lemma 2.6. If Q is normal, then we have x ∈ Z≥0AQ,
in particular, x ∈ Z≥0AP. This implies that P is normal. �

3. Normal cyclic polytopes

Our goal in this section is to prove the following theorem.

T 3.1. With the same notation as in Section 2, if ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ n − 1,
then P = Cd(τ1, . . . , τn) is normal. In particular, γd ≤ d2 − 1.

Most of this section is devoted to proving the simplex case. In fact, once we know
that P is always normal when n = d + 1 and ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ d, Theorem 3.1
follows immediately from Lemma 2.7.

Before giving a proof, we state and prove two lemmas. For the first of these, we
begin by proving the following proposition.

P 3.2. Let (r1, r2, . . . , rd+1) ∈ Qd+1 satisfying

0 ≤ r1 ≤ r2 ≤ · · · ≤ rd+1 ≤ 1 and
d+1∑
i=1

ri = m.

Then

(a)
∑ j

i=1 ri ≤
jm

d+1 ,

(b)
∑ j

i=1 rd+2−i ≥
jm

d+1 ,

for any integer j with 1 ≤ j ≤ d + 1.
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P. The proof is by induction on j.
First, we show that r1 ≤ m/(d + 1). Suppose that r1 > m/(d + 1). Then ri >

m/(d + 1) for all 1 ≤ i ≤ d + 1 by r1 ≤ r2 ≤ · · · ≤ rd+1. Thus, m =
∑d+1

i=1 ri > (d + 1) ·
m/(d + 1) = m, a contradiction. Similarly, we also have rd+1 ≥ m/(d + 1).

We now assume that assertions (a) and (b) hold for any integer j′ with 1 ≤ j′ < j,
where j is some integer with 2 ≤ j ≤ d + 1. Let d + 1 = k j + q, where k is a positive
integer and 0 ≤ q ≤ j − 1, that is, k (respectively, q) is a quotient (respectively, a
remainder) of d + 1 divided by j. Suppose that

∑ j
i=1 ri > jm/(d + 1). Then

j∑
i=1

r(k−1) j+i ≥

j∑
i=1

r(k−2) j+i ≥ · · · ≥

j∑
i=1

ri >
jm

d + 1
.

Moreover, by the induction hypothesis,
∑d+1

i=k j+1 ri =
∑q

i=1 rd+2−i ≥ mq/(d + 1) when
q , 0. Hence,

m =

d+1∑
i=1

ri > k ·
jm

d + 1
+

mq
d + 1

= m ·
k j + q
d + 1

= m,

a contradiction. Therefore, assertion (a) also holds for j. Similarly, we also have
assertion (b) for j, as required. �

L 3.3. Let d be a positive integer and (r1, r2, . . . , rd+1) ∈ Qd+1 satisfying 0 ≤ r1 ≤

r2 ≤ · · · ≤ rd+1 ≤ 1 and such that
∑d+1

i=1 ri is an integer greater than 1. Then

max
1≤i1<i2<···<il≤d+1,

2≤l≤d

{ l∑
j=1

ri j :
l−1∑
j=1

ri j ≤ 1
}
≥ 1 +

1
d + 1

. (3.1)

P. Let m =
∑d+1

i=1 ri. When m > d, we must have ri = 1 for 1 ≤ i ≤ d + 1 and
m = d + 1 by our assumption. Thus, we may assume that 2 ≤ m ≤ d. Let M denote
the value of the left-hand side of (3.1).

First step. Assume that m − 1 > b(d + 1)/2c. Then, by Proposition 3.2, rd + rd+1 ≥

2m/(d + 1), while rd ≤ 1. Hence,

M ≥ rd + rd+1 ≥
2m

d + 1
>

2
d + 1

(⌊d + 1
2

⌋
+ 1

)
≥

2
d + 1

(d
2

+ 1
)

= 1 +
1

d + 1
.

Second step. Assume that m − 1 ≤ b(d + 1)/2c and let d + 1 = km + q, where k is a
positive integer and 0 ≤ q ≤ m − 1, that is, k (respectively, q) is a quotient (respectively,
a remainder) of d + 1 divided by m.

If we suppose that
∑k−1

j=0 r jm+q+1 > 1, then

1 <
k−1∑
j=0

r jm+q+1 ≤

k−1∑
j=0

r jm+q+2 ≤ · · · ≤

k−1∑
j=0

r jm+q+m.
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Thus, m =
∑d+1

i=1 ri ≥
∑d+1

i=q+1 ri > m, a contradiction. Hence,

k−1∑
j=0

r jm+q+1 ≤ 1.

Third step. If we assume that q , m − 1, that is, 0 ≤ q ≤ m − 2, then
∑k−2

j=0 r jm+q+2 ≤

(d − q − m + 1)/(d − q). Suppose, to the contrary, that
∑k−2

j=0 r jm+q+2 > (d − q −
m + 1)/(d − q). Then

d − q − m + 1
d − q

<

k−2∑
j=0

r jm+q+2 ≤

k−2∑
j=0

r jm+q+3 ≤ · · · ≤

k−2∑
j=0

r jm+q+m+1.

Thus,
∑(k−1)m+q+1

i=q+2 ri > m(d − q − m + 1)/(d − q). Moreover, since
∑d+1

i=q+2 ri =

m −
∑q+1

i=1 ri, we also have
∑d+1

i=(k−1)m+q+2 ri ≥ (m − 1)(m −
∑q+1

i=1 ri)/(d − q) by Proposi-
tion 3.2. Hence,

m −
q+1∑
i=1

ri =

d+1∑
i=q+2

ri >
m(d − q − m + 1)

d − q
+

(m − 1)(m −
∑q+1

i=1 ri)

d − q

=
m(d − q)

d − q
−

(m − 1)
∑q+1

i=1 ri

d − q
≥ m −

q+1∑
i=1

ri,

a contradiction. Here, since m − 1 ≤ b(d + 1)/2c ≤ (d + 1)/2 and 0 ≤ q ≤ m − 2 < d, we
have m + q ≤ 2m − 2 ≤ d + 1, which means that (m − 1)/(d − q) ≤ 1. Thus,

k−2∑
j=0

r jm+q+2 ≤
d − q − m + 1

d − q
.

Similarly, if we assume that q = m − 1, then

k−1∑
j=0

r jm+1 ≤
d − m + 2

d + 1
.

Fourth step. In this step, we prove that

k−1∑
j=0

r jm+q+1 + rd+1 ≥ 1 +
1

d + 1
.

We assume that 0 ≤ q ≤ m − 2. Suppose, to the contrary, that
∑k−1

j=0 r jm+q+1 + rd+1 <

1 + 1/(d + 1). Then
∑k−1

j=1 r jm+q+1 + rd+1 < 1 + 1/(d + 1) − rq+1 < 1 + 1/(d − q) − rq+1.
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Thus,

1 +
1

d − q
− rq+1 >

k−1∑
j=1

r jm+q+1 + rkm+q ≥

k−1∑
j=1

r jm+q + rkm+q−1 ≥ · · ·

≥

k−1∑
j=1

r jm+q+1−(m−2) + rkm+q−(m−2) =

k−2∑
j=0

r jm+q+3 + r(k−1)m+q+2.

Moreover, by the third step, we also have
∑k−2

j=0 r jm+q+2 ≤ (d − q − m + 1)/(d − q).
Hence,

m −
q+1∑
i=1

ri =

d+1∑
i=q+2

ri < m − 1 +
m − 1
d − q

− (m − 1)rq+1 +
d − q − m + 1

d − q

= m − (m − 1)rq+1 ≤ m − (q + 1)rq+1 ≤ m −
q+1∑
i=1

ri,

a contradiction. Similarly, when q = m − 1, if we suppose that
∑k

j=1 r jm + rkm+m−1 <
1 + 1/(d + 1), then

1 +
1

d + 1
>

k∑
j=1

r jm + rkm+m−1 ≥

k∑
j=1

r jm−1 + rkm+m−2 ≥ · · · ≥

k−1∑
j=0

r jm+2 + rkm+1

and
∑k−1

j=0 r jm+1 ≤ (d − m + 2)/(d + 1) by the third step, so we obtain m =
∑d+1

i=1 ri <
m − 1 + (m − 1)/(d + 1) + (d − m + 2)/(d + 1) = m, a contradiction.

Fifth step. Thanks to the second and fourth steps,

M ≥
k−1∑
j=0

r jm+q+1 + rd+1 ≥ 1 +
1

d + 1
,

as desired. �

L 3.4. Let l be an integer with l ≥ 2 and i1, . . . , il distinct integers. We set

Zl( j) =

∏ j−1
k=1 ∆iki j∏

1≤k≤l,k, j |∆iki j |
p j +

∏ j−1
k=1 ∆iki j+1∏

1≤k≤l,k, j+1 |∆iki j+1 |
p j+1 + · · · +

∏ j−1
k=1 ∆ikil∏

1≤k≤l,k,l |∆ikil |
pl

for 2 ≤ j ≤ l. Then, for any 2 ≤ j ≤ l − 1,

Zl( j) =

∏ j−1
k=1 ∆iki j∏

1≤k≤l,k, j |∆iki j |
p j +

1
∆i ji j+1

Zl( j + 1) −
1

∆i ji j+1∆i ji j+2

Zl( j + 2)

+ · · · + (−1)l− j+1 1∏l
k= j+1 ∆i jik

Zl(l).
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A proof is given by elementary computations.
Now, Lemma 3.4 says that if Zl( j + 1), . . . , Zl(l) are integers, then there exists an

integer p j such that Zl( j) becomes an integer. In fact, since

1
∆i ji j+1

Zl( j + 1) − · · · + (−1)l− j+1 1∏l
k= j+1 ∆i jik

Zl(l) =
P
C
,

where P is some integer and C =
∏l

k= j+1 |∆i jik |, and the numerator (respectively, the

denominator) of
∏ j−1

k=1 ∆iki j/
∏

1≤k≤l,k, j |∆iki j | is either 1 or −1 (respectively, C), it is
obvious that there exists an integer p j such that Zl( j) becomes an integer.

Let Q ⊂ RN be an integral convex polytope of dimension d. In general, when
ZAQ = ZN+1, in order to prove that Q is normal, it suffices to show that for any
α = (m, α1, . . . , αN) ∈ ZAQ ∩ Q≥0AQ = Q≥0AQ ∩ Z

N+1 with m ≥ 2, we find α′ ∈ Q∗ ∩
ZN+1 and α′′ ∈ Q≥0AQ ∩ Z

N+1 with α = α′ + α′′. (This is equivalent to proving that
Q satisfies the integer decomposition property.) In particular, when Q is a simplex,
since there exists a unique (r1, . . . , rd+1) ∈ Qd+1 such that α =

∑d+1
i=1 riui and

∑d+1
i=1 ri =

m, where u1, . . . , ud+1 are the vertices of Q∗, we may find (r′1, . . . , r′d+1) ∈ Qd+1

with
∑d+1

i=1 r′i ui ∈ Q
∗ ∩ ZN+1 and (r′′1 , . . . , r′′d+1) ∈ Qd+1 with

∑d+1
i=1 r′′i ui ∈ Q≥0AQ ∩ Z

N+1

satisfying r′i + r′′i = ri for 1 ≤ i ≤ d + 1.
Hence, it is enough to show that for any α =

∑d+1
i=1 riui ∈ Q≥0AQ ∩ Z

N+1 with∑d+1
i=1 ri ≥ 2, there exists (r′1, . . . , r′d+1) ∈ Qd+1 such that

d+1∑
i=1

r′i = 1, 0 ≤ r′i ≤ ri for 1 ≤ i ≤ d + 1 and
d+1∑
i=1

r′i ui ∈ Z
N+1.

We are now in a position to verify the normality of integral cyclic polytopes in
the case where n = d + 1 and ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ d. Let P be such a cyclic
polytope. Let m ≥ 2 be an integer and α an element in ZAP ∩ Q≥0AP = Q≥0AP ∩ Z

d+1

with first coordinate m. Since P∗ is a simplex of dimension d, there exists a unique
(r1, . . . , rd+1) ∈ Qd+1, where

∑d+1
i=1 ri = m, such that α =

∑d+1
i=1 rivi. Then what we must

do is to show that there exists (r′1, . . . , r′d+1) ∈ Qd+1 such that

d+1∑
i=1

r′i = 1, 0 ≤ r′i ≤ ri for 1 ≤ i ≤ d + 1 and
d+1∑
i=1

r′i vi ∈ Z
d+1. (3.2)

First step. If there exists ri with ri ≥ 1, say, r1, then we may set r′1 = 1 and
r′2 = · · · = r′d+1 = 0. Moreover, when m ≥ d + 1, since

∑d+1
i=1 ri = m and ri ≥ 0, there

is at least one ri with ri ≥ 1. Thus, we may assume that

2 ≤ m ≤ d and 0 ≤ ri ≤ 1 for 1 ≤ i ≤ d + 1.

Second step. By Lemma 3.3, there exist ri1 , . . . , ril among (r1, . . . , rd+1) such that∑l
j=1 ri j ≥ 1 + 1/(d + 1) and

∑l−1
j=1 ri j ≤ 1, where 0 ≤ ri1 ≤ · · · ≤ ril ≤ 1 and 2 ≤ l ≤ d,
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although we do not know whether 1 ≤ i1 < · · · < il ≤ d + 1. However, we assume that
0 ≤ ril ≤ ril−1 ≤ · · · ≤ ri1 ≤ 1, that is,

l∑
j=2

ri j ≤ 1 and
l∑

j=1

ri j ≥ 1 +
1

d + 1
.

Let D = d2 − 1. Thus, |∆i j| ≥ D for any 1 ≤ i , j ≤ d + 1. We now set ε(l) =

(l − 1)/D for 2 ≤ l ≤ d. Then it is easy to see that ε(l) enjoys the following properties:

ε(l) ≥
l∑

a=2

1
Da−1

,
1

d + 1
= ε(d) > ε(d − 1) > · · · > ε(2), (3.3)

ε(l) −
l − j + 1

D j−1
> ε( j − 1) for 3 ≤ j ≤ l.

In the following two steps, by induction on l, we prove that if
∑l

j=1 ri j ≥ 1 + ε(l) and∑l
j=2 ri j ≤ 1, then there exists (r′1, . . . , r′d+1) ∈ Qd+1 satisfying (3.2). Once we know

this, we obtain the required assertion from 2 ≤ l ≤ d and 1/(d + 1) = ε(d) ≥ ε(l).

Third step. Assume that l = 2, that is, ri1 + ri2 ≥ 1 + 1/D, where 0 ≤ ri2 ≤ ri1 ≤ 1.
Let p be a nonnegative integer satisfying

p
|∆i1i2 |

≤ ri2 <
p + 1
|∆i1i2 |

.

Then it is clear that there exists such a unique nonnegative integer p. Let r′i2 =

p/|∆i1i2 |, r′i1 = 1 − r′i2 and r′j = 0 for any j with j ∈ [d + 1] \ {i1, i2}. Thus,
∑d+1

i=1 r′i = 1
and 0 ≤ r′i2 ≤ ri2 . Moreover, since ri2 ≤ 1, we have r′i1 = 1 − r′i2 ≥ 1 − ri2 ≥ 0. In
addition, by ri1 + ri2 ≥ 1 + 1/D and |∆i1i2 | ≥ D, we also have

ri1 − r′i1 = ri1 − 1 +
p
|∆i1i2 |

≥
1
D
− ri2 +

p
|∆i1i2 |

≥
p + 1
|∆i1i2 |

− ri2 > 0.

On the other hand, by Proposition 2.2, we may consider vi1 and vi2 as vi1 =

(1, 0, . . . , 0) and vi2 = (1, ∆i1i2 , 0, . . . , 0). Obviously,
∑d+1

i=1 r′i vi ∈ Z
d+1.

Fourth step. Assume that l ≥ 3. For each j with 2 ≤ j ≤ l, we define each
nonnegative integer p j as follows. Let pl be a nonnegative integer which satisfies

pl∏l−1
k=1 |∆ikil |

≤ ril <
pl + 1∏l−1
k=1 |∆ikil |

,

and for 2 ≤ j ≤ l − 1, let p j be an integer which satisfies Zl( j) ∈ Z and

p j∏
1≤k≤l,k, j |∆iki j |

≤ ri j <
p j +

∏l
k= j+1 |∆i jik |∏

1≤k≤l,k, j |∆iki j |
,
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where Zl( j) is as in Lemma 3.4. Thanks to Lemma 3.4, if Zl( j + 1), . . . , Zl(l) ∈ Z, then
there exists an integer p j with Zl( j) ∈ Z and each p j is uniquely determined by the
above inequalities. Remark that we do not know whether p j is nonnegative except for
pl. However, in our case, we may assume that p2, . . . , pl−1 are all nonnegative because
of the following discussions. Suppose, to the contrary, that there is j′ with p j′ < 0.
Let q j′ ∈ Z≥0 be a minimal nonnegative integer satisfying∏ j′−1

k=1 ∆iki j′∏
1≤k≤l,k, j′ |∆iki j′

|
q j′ +

1
∆i j′ i j′+1

Zl( j′ + 1) −
1

∆i j′ i j′+1∆i j′ i j′+2

Zl( j′ + 2)

+ · · · + (−1)l− j′+1 1∏l
k= j′+1 ∆i j′ ik

Zl(l) ∈ Z.

In particular, it follows from the minimality of q j′ that 0 ≤ q j′ <
∏l

k= j′+1 |∆i j′ ik |. By our
assumption, q j′/

∏
1≤k≤l,k, j′ |∆iki j′

| > ri j′
. Thus,

ril ≤ · · · ≤ ri j′
<

q j′∏
1≤k≤l,k, j′ |∆i j′ ik |

<

∏l
k= j′+1 |∆i j′ ik |∏

1≤k≤l,k, j′ |∆iki j′
|
=

1∏ j′−1
k=1 |∆iki j′

|
≤

1
D j′−1

,

so
∑l

j= j′ ri j < (l − j′ + 1)/D j′−1. From
∑l

j=1 ri j ≥ 1 + ε(l) and (3.3),

j′−1∑
j=1

ri j > 1 + ε(l) −
l − j′ + 1

D j′−1
> 1 + ε( j′ − 1)

when j′ ≥ 3. Hence, we may skip this case by the induction hypothesis. When j′ = 2,
we have ri1 > 1 + ε(l) − (l − 1)/D = 1, a contradiction.

By using the above p j, we define r′1, . . . , r′d+1 by setting

r′a =



p j∏
1≤k≤l,k, j |∆iki j |

if a = i j ∈ {i2, . . . , il},

1 −
l∑

j=2

r′i j
if a = i1,

0 otherwise.

In particular,
∑d+1

a=1 r′a = 1. By definition of r′i2 , . . . , r′il , we have 0≤ r′i j
≤ ri j for 2 ≤ j ≤ l.

Moreover, from
∑l

j=2 ri j ≤ 1, we also have r′i1 = 1 −
∑l

j=2 r′i j
≥ 1 −

∑l
j=2 ri j ≥ 0. In

addition, from
∑l

j=1 ri j ≥ 1 + ε(l) and (3.3), we also have

ri1 − r′i1 = ri1 − 1 +

l∑
j=2

p j∏
1≤k≤l,k, j |∆iki j |

≥ ε(l) −
l∑

j=2

ri j +

l∑
j=2

p j∏
1≤k≤l,k, j |∆iki j |

≥

l∑
j=2

( p j∏
1≤k≤l,k, j |∆iki j |

+
1

D j−1
− ri j

)
≥

l∑
j=2

( p j +
∏l

k= j+1 |∆i jik |∏
1≤k≤l,k, j |∆iki j |

− ri j

)
> 0.
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Finally, we verify that
∑d+1

i=1 r′i vi ∈ Z
d+1. Again, by Proposition 2.2, we may consider

vi1 , . . . , vil as follows:


vi1
vi2
...

vil

 =



1 0 · · · · · · · · · 0 · · · 0

1 ∆i1i2 0
. . .

. . .
...

...

1 ∆i1i3 ∆i1i3∆i2i3
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

1 ∆i1il ∆i1il∆i2il · · ·

l−1∏
k=1

∆ikil 0 · · · 0


.

Hence, it is easy to check that

d+1∑
i=1

r′i vi =

l∑
j=1

r′i j
vi j = (1, Zl(2), Zl(3), . . . , Zl(l), 0, . . . , 0) ∈ Zd+1,

proving the assertion.

R 3.5. Since each lattice length of an edge conv({vi, v j}) of P∗ coincides with
∆i j, where i < j, it follows immediately from [3, Theorem 1.3(b)] that P is normal
if ∆i,i+1 ≥ d(d + 1) for 1 ≤ i ≤ n − 1. (We are grateful to Gábor Hegedüs for drawing
[3, Theorem 1.3(b)] to our attention.) Thus, our constraint ∆i,i+1 ≥ d2 − 1 on integral
cyclic polytopes is better than the general case, but this bound is still very rough.
For example, C3(0, 1, 2, 3) is normal, while ∆12 = ∆23 = ∆34 = 1 < 8. Similarly,
C4(0, 1, 3, 5, 6) is also normal, although ∆12 = ∆45 = 1 and ∆23 = ∆34 = 2.

4. Cyclic polytopes that are not very ample

Our goal in this section is to prove the following theorem.

T 4.1. Let d and n be positive integers satisfying n ≥ d + 1 and d ≥ 4. If ∆12 = 1
or ∆n−2,n−1 = 1, then Cd(τ1, . . . , τn) is not very ample.

We obtain Theorem 4.1 as a conclusion of Proposition 4.2 and Corollary 4.3 below.

P 4.2. Let P = C4(τ1, . . . , τn). If ∆23 = 1 or ∆n−2,n−1 = 1, then P is not very
ample.

P. Thanks to Lemma 2.3, by symmetry, we assume that ∆23 = 1. Consider the set

AP,3 := {x − v3 : x ∈ P∗ ∩ Z5}.

We will prove that the monoid Z≥0AP,3 is not normal, thus there exists a vector
p ∈ ZAP,3 ∩ Q≥0AP,3 = Q≥0AP,3 ∩ Z

5 such that p < Z≥0AP,3. Then, for every integer
k ≥ 1, we have kv3 + p ∈ (ZAP ∩ Q≥0AP) \ Z≥0AP; see [1, Exercise 2.23]. Hence, P
is not very ample.
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In the following, we denote the facet of P∗ spanned by the vertices vi, v j, vk and vl

by Fi jkl. Moreover, we denote the corresponding linear form by σi jkl. Note that every
facet of P∗ containing v3 also defines a facet of Q≥0AP,3.

The following vector has the required properties:

p := b23 + b134 + b12345

=
∆12∆15 + 1

∆12∆13∆14∆15
v1 +

1
∆23

(
1 −

1
∆12∆24∆25

)
v2 −

1
∆23

(
1 +

∆23∆35 − 1
∆13∆34∆35

)
v3

+
∆24∆45 − 1

∆14∆24∆34∆45
v4 +

1
∆15∆25∆35∆45

v5.

First, we have p ∈ Z5 from Proposition 2.5(1). Then, by the second representation of
p, it is a positive linear combination of the vectors v1 − v3, v2 − v3, v4 − v3 and v5 − v3.
Thus, p ∈ Q≥0AP,3. Moreover, since we assume that ∆23 = 1, the coefficient of v3 is
less than −1. Hence, p lies beyond the facet F1245 which is a facet of P∗ by Gale’s
evenness condition (Proposition 2.1). Thus, p <AP,3.

It remains to show that p cannot be written as a sum
∑

w j with w j ∈ AP,3.
Suppose that we have such a representation. Then we remark that p has at least two
summands. Consider a facet F1234. Then σ1234(p) = 1/(∆15∆25∆35∆45)σ1234(v5) = 1.
Since σ1234(w j) ≥ 0, σ1234(w j) = 0 for every summand w j except one. Choose one
w j , 0 with σ1234(w j) = 0 and denote it by w. Further, we set w′ := p − w ∈ Z≥0AP,3

the remaining sum. By Carathéodory’s theorem, there exist vertices vi1 , . . . , vi4 of P∗

and nonnegative numbers λ j ≥ 0 such that w′ =
∑4

j=1 λ j(vi j − v3). Let i4 be the greatest
of those indices. Since σ1234(w′) = 1 and σ1234(vi4 ) = ∆1i4∆2i4∆3i4∆4i4 , we conclude
that

λ4 ≤
1

∆1i4∆2i4∆3i4∆4i4
.

But the vertices vi1 , . . . , vi4 and v3 define an integral cyclic polytope, thus the
denominator of the coefficient of vi4 has to be a divisor of ∆i1i4∆i2i4∆i3i4∆3i4 . This
is only possible if {i1, i2, i3} = {1, 2, 4}. Thus, w′ lies in the cone generated by
v1 − v3, v2 − v3, v4 − v3 and vi4 − v3. Note that σ1234(w) = 0 implies that w lies in the
cone generated by v1 − v3, v2 − v3 and v4 − v3. Thus we can replace the polytope P∗

by the polytope Q∗ whose vertices are v1, . . . , v5 and vi4 . The reason for doing this is
that we know the facets of Q∗. Here, i4 = 5 is possible.

We consider the representation

w = a1b3 + a2b23 + a3b123 + a4b1234

with integer coefficients a1, a2, a3, a4. This is possible from Proposition 2.5(3). Since
w is in the cone generated by v1 − v3, v2 − v3 and v4 − v3, we have a1 = 0. Now
consider a facet F123i4 of Q∗. We compute

σ123i4 (p) =
1

∆45
(∆24∆45 − 1)∆4i4 +

1
∆45

∆5i4 = ∆24∆4i4 − 1.
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Moreover, σ123i4 (w) = −a4∆4i4 . From 0 ≤ σ123i4 (w) ≤ σ123i4 (p), we conclude that 0 ≤
−a4 ≤ ∆24 − 1. Here we used the fact that a4 is an integer. Next, consider a facet F2345.
We compute σ2345(w) = a3∆14∆15 + a4∆15 and σ2345(p) = ∆12∆15 + 1. As before, we
conclude that 0 ≤ a3∆14 + a4 ≤ ∆12. However, these two constraints can only be
satisfied by a3 = a4 = 0, because ∆14 = ∆12 + ∆24 and ∆15 > 1. Finally, we consider
a facet F134i4 . By computing σ134i4 (w) = a2∆12∆24∆2i4 and σ134i4 (p) = ∆12∆24∆2i4 − 1,
we conclude that a2 = 0. But this means that w = 0, in contradiction to w , 0. �

Using this proposition, we also obtain the following corollary.

C 4.3. Let P = Cd(τ1, . . . , τn), where d ≥ 5. If there is some i with 2 ≤ i ≤
n − 2 such that ∆i,i+1 = 1, then P is not very ample.

P. We prove this by induction on d.
When d = 5, let Fi = conv({v1, vi, vi+1, vi+2, vi+3}) for 2 ≤ i ≤ n − 3 and Fn−2 =

conv({vn−4, vn−3, vn−2, vn−1, vn}). By Gale’s evenness condition, each Fi is a facet of
P∗. When ∆i,i+1 = 1 for some i with 2 ≤ i ≤ n − 2, it then follows from Proposition 4.2
that Fi is not very ample. Thus, P itself is not very ample either. (See [7, Lemma 1].)

Now let d ≥ 6. For 2 ≤ i ≤ n − d + 2, we set

Fi =

conv({v1, vi, . . . , vi+d−2}) when d is odd,

conv({vi−1, vi, . . . , vi+d−2}) when d is even.

Again, Gale’s evenness condition guarantees that each Fi is a facet of P∗. When
∆i,i+1 = 1 for some i with 2 ≤ i ≤ n − 2, since each facet is also an integral cyclic
polytope of dimension d − 1, either Fi or Fd−n+2 is not very ample by the induction
hypothesis. Therefore, P is not very ample. �

In the case where d = 2, it is well known that there exists a unimodular triangulation
for every integral convex polytope of dimension two. Therefore, integral convex
polytopes of dimension two are always normal.

In the case where d = 3, exhaustive computational experience leads us to give the
following conjecture.

C 4.4. All cyclic polytopes of dimension three are normal.

Moreover, by computational experience together with Proposition 4.2, we also
conjecture a complete characterization of normal cyclic polytopes of dimension four.

C 4.5. A cyclic polytope of dimension four is normal if and only if

∆23 ≥ 2 and ∆n−2,n−1 ≥ 2.

By considering the foregoing two conjectures and Theorem 3.1, the following
statement seems natural to us.

C 4.6. If P = Cd(τ1, . . . , τn) is normal and P′ = Cd(τ′1, . . . , τ
′
n) satisfies

τ′j − τ
′
i ≥ ∆i j for all 1 ≤ i < j ≤ n, then P′ is also normal.
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Finally, we also state the following conjecture.

C 4.7. If an integral cyclic polytope is very ample, then it is also normal.

Actually, it often happens that a very ample integral convex polytope is also normal,
that is to say, the normality of an integral convex polytope is equivalent to what it is
very ample. Hence, the above conjecture occurs naturally. On the other hand, it is
also known that there exists an integral convex polytope which is not normal but very
ample. See [1, Exercise 2.24].
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