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Integrating sine and cosine Maclaurin remainders

RUSSELL A. GORDON

In order to state our primary results, we must first establish some
notation. Let  and , then for each non-
negative integer , let

S−1 (x) = sin x C−1 (x) = cos x
n

Sn(x) = sinx − ∑
n

k =0

(−1)k

(2k + 1)!
x2k + 1   and   Cn(x) = cosx − ∑

n

k =0

(−1)k

(2k)!
x2k;

these are the remainders of the Maclaurin series for sine and cosine,
respectively. Note that  for each  and
for each . It is known that

Sn′ (x) = Cn(x) n ≥ −1 Cn′ (x) = −Sn −1 (x)
n ≥ 0

αn ≡ ∫
 ∞

0

Sn (x)
x2n + 3

dx =
(−1)n + 1

(2n + 2)!
 · 

π
2

 for n ≥ −1;

βn ≡ ∫
 ∞

0

Cn (x)
x2n + 2

dx =
(−1)n + 1

(2n + 1)!
 · 

π
2

 for n ≥ 0.

See [1] for several different proofs of the well-known fact that

α−1 ≡ ∫
 ∞

0

sin x
x

 dx =
π
2

;

the values of  and  for  then follow rather easily using induction
and integration by parts. (Details are provided in the Appendix.)

αn βn n ≥ 0

Our goal is to prove the following results, valid for all non-negative
integers , without requiring any ideas from complex analysis:n

In ≡ ∫
 ∞

0

(Sn (x))2

x4n + 4
dx =

1
2π

(4n + 3) ((2n + 1)!)2
= ∫

 ∞

0

(Cn (x))2

x4n + 4
dx ≡ Kn;

Jn ≡ ∫
 ∞

0

(Sn − 1 (x))2

x4n + 2
dx =

1
2π

(4n + 1) ((2n)!)2
= ∫

 ∞

0

(Cn (x))2

x4n + 2
dx ≡ Ln.

See [2] and [3] for two different methods for evaluating these integrals, both
of which use results from complex analysis. The computations presented
below to prove these facts are a little tedious, but all of the steps are
elementary and accessible to students.

We first establish the values of  and  using mathematical induction.
By direct computation, it is not difficult to show that . To
avoid clutter here, the details are provided later in the paper. (The reader
may wish to try evaluating these two integrals as an exercise; the value of

 plays a role in these computations.) Now suppose that

In Kn
I0 = 1

6π = K0

α−1

In − 1 =
1
2π

(4n − 1) ((2n − 1)!)2
= Kn − 1

for some positive integer . Combining the set of derivativesn

Sn′ (x) = Cn(x),  Sn″(x) = −Sn− 1(x),  S′′′ (x) = −Cn− 1 (x),  S′′′′ (x) = Sn− 2 (x)
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which are valid for each , along with the fact (sometimes called the
general Leibniz rule) that

n ≥ 1

(f g) ′′′′ = f g′′′′ + 4f ′g′′′ + 6f ″g″ + 4f ′′′g′ + f ′′′′g
and thus

(f 2) ′′′′ = 2f f ′′′′ = +8f ′f ′′′ + 6f ″f ″,
we find that

((Sn (x))2) ′′′′ = 2Sn (x) Sn − 2 (x) − 8Cn (x) Cn − 1 (x) + 6 (Sn − 1 (x))2 .
Simplifying two of the terms in this expression yields

Cn(x)Cn−1(x) = (Cn−1(x) −
(−1)n

(2n)!
x2n)Cn−1 (x) = (Cn−1(x))2 +

(−1)n+1

(2n)!
x2nCn−1 (x);

Sn(x)Sn−2 (x) = (Sn−1(x) −
(−1)n

(2n + 1)!
x2n+1)Sn−2 (x)

= Sn−1 (x)Sn−2 (x) +
(−1)n+1

(2n + 1)!
x2n+1Sn−2 (x)

= Sn−1 (x)(Sn−1(x) +
(−1)n−1

(2n − 1)!
x2n−1) +

(−1)n+1

(2n + 1)!
x2n+1Sn−2 (x)

= (Sn−1(x))2 +
(−1)n−1

(2n − 1)!
x2n−1Sn−1 (x) +

(−1)n+1

(2n + 1)!
x2n+1Sn−2 (x).

It is an easy exercise to show that the function  behaves like
for large values of  and like  for values of  near 0, while the function

 behaves like  for large values of  and like  for values of
near 0; these facts justify the limits at  and 0 that are omitted in the
following computations involving improper integrals. Combining these
results and integrating by parts four times, we find that

(Sn (x))2 x4n + 2

x x4n + 6 x
(Cn (x))2 x4n x x4n + 4 x

∞

(4n + 3)!
(4n − 1)! ∫

∞

0

(Sn (x))2

x4n + 4
dx

= ∫
∞

0

((Sn (x))2)′′′′
x4n

dx

= ∫
∞

0

2Sn(x)Sn− 2 (x) − 8Cn(x)Cn− 1(x) + 6(Sn− 1 (x))2

x4n
dx

= 8 ∫
∞

0

(Sn− 1 (x))2

x4n
dx − 8 ∫

∞

0

(Cn− 1 (x))2

x4n
dx −

8(−1)n+ 1

(2n)! ∫
∞

0

Cn− 1(x)
x2n

dx

+
2(−1)n− 1

(2n − 1)! ∫
∞

0

Sn− 1 (x)
x2n+ 1

dx +
2(−1)n+ 1

(2n + 1)! ∫
∞

0

Sn− 2 (x)
x2n−1

dx.
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Using the induction hypothesis  and the integrals represented
by  and , we have

In − 1 = Kn − 1
αn βn

(4n + 3)!
(4n − 1)! ∫

 ∞

0

(Sn (x))2

x4n + 4
dx

=
8 (−1)n

(2n)!
βn − 1 −

2 (−1)n

(2n − 1)!
αn − 1 −

2 (−1)n

(2n + 1)!
αn − 2

=
8(−1)n

(2n)!
 · 

(−1)n

(2n − 1)!
 · 

π
2

−
2(−1)n

(2n − 1)!
 · 

(−1)n

(2n)!
 · 

π
2

−
2(−1)n

(2n + 1)!
 · 

(−1)n− 1

(2n − 2)!
 · 

π
2

= ( 8
(2n)!(2n − 1)!

−
2

(2n − 1)!(2n)!
+

2
(2n + 1)!(2n − 2)!) π

2

=
1
2π

((2n + 1)!) (6(2n + 1)(2n)(2n + 1) + 2(2n + 1)(2n)(2n − 1))

=
1
2π

((2n + 1)!) · 2n(2n + 1)(12n + 6 + 4n − 2)

=
1
2π

((2n + 1)!) · 4n(4n + 2)(4n + 1)

and thus

In = ∫
 ∞

0

(Sn (x))2

x4n + 4
=

1
2π

(4n + 3) ((2n + 1)!)2
.

Using the fact that

((Sn(x))2 + (Cn(x))2)′ = 2(Sn(x)Cn(x) − C (x)Sn −1 (x)) = 2Cn(x) · 
(−1)n +1

(2n + 1)!
x2n + 1

and the known value for , we obtainβn

In + Kn = ∫
 ∞

0

(S (x))2 + (C (x))2

x4n + 4
dx

=
1

4n + 3 ∫
∞

0

(((Sn (x))2 + (Cn (x))2)
x4n + 3

dx

=
2

4n + 3
 · 

(−1)n + 1

(2n + 1)! ∫
 ∞

0

Cn (x)
x2n + 2

dx

=
2

4n + 3
 · 

(−1)n + 1

(2n + 1)!
 · 

(−1)n + 1

(2n + 1)!
 · 

π
2

= 2In.
This shows that . Hence, the values for  and  for all
follow by induction.

Kn = In In Kn n ≥ 0

We now turn to the  and  integrals. The integrals  and  are easy
to evaluate (see the Appendix for details), while the value of  appears as

Jn Ln J0 L0
J1
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part (a) of Problem 105.H in the July 2021 issue of the Gazette. However,
these values all follow from the calculations below, which do not rely on
induction. Suppose that  is a nonnegative integer. Using the fact thatn

1
2 ((Sn (x))2) ″ = (Sn (x) Cn (x)) ′ = (Cn (x))2 − Sn (x) Sn − 1 (x)

= (Cn (x))2 − (Sn − 1 (x) −
(−1)n

(2n + 1)!
x2n + 1) Sn − 1 (x)

= (Cn (x))2 − (Sn − 1 (x))2 +
(−1)n

(2n + 1)!
x2n + 1Sn − 1 (x)

and the known values for  and , we obtain (using integration by parts)αn − 1 In

In =
1

(4n + 3) (4n + 2) ∫
 ∞

0

((Sn (x))2) ″
x4n + 2

dx

=
2

(4n + 3)(4n + 2) (∫ ∞

0

(Cn(x))2

x4n+2
dx − ∫

 ∞

0

(Sn−1 (x))2

x4n+2
dx +

(−1)n

(2n + 1)! ∫
 ∞

0

Sn−1 (x)
x2n+1

dx)
=

1
(4n + 3)(2n + 1) (Ln − Jn +

(−1)n

(2n + 1)!
 · 

(−1)
(2n)!

 · 
π
2 )

=
1

(4n + 3)(2n + 1)
(Ln − Jn) +

1
2π

(4n + 3)((2n + 1)!)2

=
1

(4n + 3)(2n + 1)
(Ln − Jn) + In.

This shows that  for all . Paralleling our previous work, using
the fact that

Ln = Jn n ≥ 0

((Sn − 1(x))2 + (Cn(x))2)′ = 2(Sn − 1(x)Cn − 1(x) − Cn (x)Sn − 1 (x)) = 2Sn − 1(x) · 
(−1)n

(2n)!
x2n

and the known value for , we obtain (using integration by parts yet
again)

αn − 1

Jn + Ln = ∫
∞

0

(Sn − 1 (x))2 + (Cn (x))2

x4n + 2
dx

=
1

4n + 1 ∫
 ∞

0

((Sn − 1 (x))2 + (Cn (x))2) ′
x4n + 1

dx

=
2

4n + 1
 · 

(−1)n

(2n)! ∫
 ∞

0

Sn − 1 (x)
x2n + 1

dx

=
2

4n + 1
 · 

(−1)n

(2n)!
 · 

(−1)n

(2n)!
 · 

π
2

.

It follows that

Jn =
1
2π

(4n + 1) ((2n)!)2
= Ln

for all non-negative integers .n
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To find  and , we must evaluate the integralsI0 K0

∫
 ∞

0

(sin x − x)2

x4
dx and  ∫

 ∞

0

(cos x − 1)2

x4
dx,

respectively. With  and , we find
that

f (x) = (sin x − x)2 g (x) = (cos x − 1)2

f (x) = sin2 x − 2x sin x + x2; g(x) = cos2x − 2 cosx + 1;
f ′ (x) = sin (2x) − 2 sinx − 2x cosx + 2x; g′ (x) = − sin (2x) + 2 sin x;
f ″(x) = 2 cos(2x) − 4 cosx + 2x sinx + 2; g″(x) = −2 cos(2x) + 2 cosx.

Note that the Maclaurin series for  has the form
while the Maclaurin series for  has the form .
Using integration by parts and the value of , while omitting the
evaluation of some simple limits at  and 0 (using both the explicit series
forms for each of the functions), it follows that

f f (x) = 1
36x6 − 1

360x8 +…
g g (x) = 1

4x4 − 1
24x6 +…

α−1
∞

I0 = ∫
 ∞

0

f (x)
x4

dx = ∫
 ∞

0

f ′ (x)
3x3

dx = ∫
 ∞

0

f ″ (x)
6x2

dx

=
1
3 ∫

 ∞

0

cos (2x) − 2 cos x + 1
x2

dx +
1
3 ∫

 ∞

0

sin x
x

dx

=
1
3 ∫

 ∞

0

−2 sin (2x) + 2 sin x
x

dx +
1
3 ∫

 ∞

0

sin x
x

dx

= −
2
3 ∫

 ∞

0

2 sin (2x)
x

dx +
2
3 ∫

 ∞

0

sin x
x

dx +
1
3 ∫

 ∞

0

sin x
x

dx

=
π
6

and

K0 = ∫
 ∞

0

g (x)
x4

dx = ∫
 ∞

0

g′ (x)
3x3

dx = ∫
 ∞

0

g″ (x)
6x2

dx

=
1
3 ∫

 ∞

0

− cos (2x) + cos x
x2

dx

=
1
3 ∫

 ∞

0

2 sin (2x) − sin x
x

dx

=
2
3 ∫

 ∞

0

sin (2x)
x

dx −
1
3 ∫

 ∞

0

sin x
x

dx

=
π
6

.

We have thus found the values of all four collections of integrals using
elementary ideas and concepts along with the familiar value of .α−1

An observant reader may have noticed that there are two more
collections of integrals involving the functions  and  with
denominators involving integer powers of . These integrals are more

(Sn (x))2 (Cn (x))2

x
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difficult to evaluate; details can be found in [3]. However, for completeness,
we record the values of these integrals below. Using the notation

 for the harmonic numbers, we find thathk = ∑
k

j = 1

1
j

∫
 ∞

0

(Sn (x))2

x4n+5
dx =

2
(4n + 4)! (24n+2 ln2 − 24n+2h4n+4 + ∑

2n+ 1

k =n + 1
( )h2k + 1);
4n + 4
2k + 1

∫
 ∞

0

(Cn(x))2

x4n+3
dx =

2
(4n + 2)! (24n ln2 − 24nh4n+2 + ∑

2n+ 1

k =n+ 1
( )h2k).4n + 2

2k

It is rather intriguing that the values of these integrals are more complicated
than those of the previous four collections.

Appendix
We want to prove that

∫
 ∞

0

Sn (x)
x2n + 3

dx =
(−1)n + 1

(2n + 2)!
 · 

π
2

 and  ∫
 ∞

0

Cn (x)
x2n + 2

dx =
(−1)n + 1

(2n + 1)!
 · 

π
2

,

where the sine equation is valid for all  and the cosine equation is
valid for all . The sine case for  is a well-known result
(referred to as  in the body of this paper). When , we find that
(using integration by parts and evaluating the required limits at  and 0
implicitly) that

n ≥ −1
n ≥ 0 n = −1

α−1 n = 0
∞

∫
 ∞

0

S0 (x)
x3

dx = ∫
 ∞

0

sin x − x
x3

dx = ⎡⎢⎣
sin x − x

−2x2
⎤⎥⎦

 ∞

 0
+ ∫

 ∞

0

cos x − 1
2x2

dx

= ∫
 ∞

0

cos x − 1
2x2

dx =
1
2 ∫

 ∞

0

C0 (x)
x2

dx

= ⎡⎢⎣
cos x − 1

−2x
⎤⎥⎦

∞

0
− ∫

 ∞

0

sin x
x

dx

= −
π
4

.

Note that this set of equations gives the desired result for both the  integral
and the  integral. Now assume that the sine and cosine integral results
hold for some non-negative integer . We then have (once again using
integration by parts and evaluating the required limits implicitly)

S0
C0

n

∫
 ∞

0

Sn + 1 (x)
x2n + 5

dx = ⎡⎢⎣
Sn + 1 (x)

− (2n + 4) x2n + 4
⎤⎥⎦

∞

0
+

1
2n + 4 ∫

 ∞

0

Cn + 1 (x)
x2n + 4

dx

=
1

2n + 4 ∫
 ∞

0

Cn + 1 (x)
x2n + 4

dx

=
1

2n + 4 (⎡⎢⎣ Cn + 1 (x)
− (2n + 3) x2n + 3

⎤⎥⎦

∞

0
+

1
2n + 3 ∫

 ∞

0

−Sn (x)
x2n + 3

dx)
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=
−1

(2n + 4) (2n + 3) ∫
 ∞

0

Sn (x)
x2n + 3

dx

=
−1

(2n + 4) (2n + 3)
 · 

(−1)n + 1

(2n + 2)!
 · 

π
2

=
(−1)n + 2

(2n + 4)!
 · 

π
2

and (looking inside the above equation)

∫
 ∞

0

Cn + 1 (x)
x2n + 4

dx =
(−1)n + 2

(2n + 3)!
 · 

π
2

.

The results for both sets of integrals now follow by induction.
To evaluate the values for  and  directly, we use integration by parts

and the value of  to compute
J0 L0

α−1

J0 = ∫
 ∞

0

sin2 x
x2

dx = ⎡⎢⎣
sin2 x

−x
⎤⎥⎦

∞

0
+ ∫

 ∞

0

sin (2x)
x

dx =
π
2

and

L0 = ∫
 ∞

0

(cos x − 1)2

x2
dx = ∫

 ∞

0

cos2 x − 2 cos x + 1
x2

dx

= ∫
 ∞

0

2 − 2 cos x − sin2 x
x2

dx = ∫
 ∞

0

4 sin2 (1
2x) − sin2 x

x2
dx

= 2 ∫
 ∞

0

sin2 (1
2x)

(1
2x)2

 · 
dx
2

− ∫
 ∞

0

sin2 x
x2

dx = 2J0 − J0 =
π
2

.
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