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CONTINUOUS DEPENDENCE RESULTS FOR A CLASS
OF EVOLUTION INCLUSIONS

by NIKOLAOS S. PAPAGEORGIOU*

In this paper we examine the dependence of the solutions of an evolution inclusion on a parameter X. We
prove two dependence theorems. In the first the parameter appears only in the orientor field and we show that
the solution set depends continuously on it for both the Vietoris and Hausdorff topologies. In the second the
parameter appears also in the monotone operator. Using the notion of G-convergence of operators we prove
that the solution set is upper semicontinuous with respect to the parameter. Both results make use of a
general existence theorem which we also prove in this paper. Finally, we present two examples. One from
control theory and the other from partial differential inclusions.
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1. Introduction

In this paper we study the dependence of the solutions of a nonlinear evolution
inclusion on a parameter. Previous work in this direction was done by Stassinopoulos
and Vinter [11], Vasilev [14] and Lim [5] for differential inclusions in W and by
Tolstonogov [13] and Papageorgiou [8] for differential inclusions in a Banach space.
However, the systems considered by Tolstonogov [13] and Papageorgiou [8] did not
allow for the presence of unbounded operators and therefore did not cover the
important case of partial differential equations with multivalued terms. Very recently
Frankowska [17] and Papageorgiou [18] studied evolution inclusions in Banach spaces.
In both the above papers the systems considered were semilinear (i.e. the unbounded
operator A was linear and generated a compact semigroup; Frankowska [17] con-
sidered also alternative compactness hypotheses, see Corollary 2.6, p. 113). Also in both
the above works the unbounded operator was time independent. For such systems the
authors established relaxation results. Furthermore Frankowska [17] went on and
obtained useful estimates and variational inclusions governing the reachable sets, while
Papageorgiou [18] allowed the multivalued perturbation term F to depend on a control
variable u and for the resulting control system studied Lagrange and time optimal
control problems. In this paper we consider evolution inclusions with nonlinear and
time dependent unbounded operators. So instead of relying on semigroup theory as in
Frankowska [17] and Papageorgiou [18], we adopt the formalism of Lions [6] and
Zeidler [19] which involves "Gelfand or evolution triples" of spaces (see Section 2). For
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such systems we prove two continuous dependence results. In the first the parameter
appears only in the multivalued term (orientor field). For this type of systems, under
some appropriate continuity hypotheses, we prove that the solution set of the evolution
inclusion depends on the parameter continuously for both the Vietoris and Hausdorff
topologies. In the second result, we allow the parameter to appear in the operator which
models the partial differential term. Using the notion of G-convergence, we establish the
upper semicontinuity of the solution set on the parameter. Both continuous dependence
results make use of a general existence result which we also prove in this paper. In the
last section we present two examples, one from control theory and the other partial
differential inclusions.

2. Preliminaries

Let (Q, Z) be a measurable space and X a separable Banach space. We will be using
the following notation:

Pf(c)(X) = {A^X: nonempty, closed, (convex)}

and

Pk(c)(X) = {A^X: nonempty, compact, (convex)}.

A multifunction F:Q-*Pf(X) is said to be measurable, if for every zeX
co->d(z,F(co)) = in{{\\z — x\\:xeF(a>)} is measurable. A multifunction F:Q-*2X\{0) is
said to be graph measurable, if GrF = {(a>, x)eQx X:xeF(co)}e2, x B(X), with B(X)
being the Borel <r-field of X. For Py(X)-valued multifunctions, measurability implies
graph measurability, while the converse is true if there is a <r-finite measure fi(-) on
(Q, £), with respect to which £ is complete. For more details we refer to the survey
paper of Wagner [15]. By Sf(l^p^oo) we will denote the set of selectors of F() that
belong in the Lebesgue-Bochner space LP(X); i.e. S£ = {/eLF(X):f(a>)eF((o) /i-a.e.}.
Note that for a graph measurable multifunction F:Q-*2X\{0}, S£ is nonempty if and
only if co-»inf {||z||:zeF(<w)}eL^. In particular this is the case if a>-»|F(co)| = sup{||z||
:ze F(co)}e Lp+ and such a multifunction is usually called Lp-integrably bounded.

Let Y,Z be Hausdorff topological spaces, A multifunction G:Y-*2Z\{0} is said to be
upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)) if for every 1/gZ open
G+(U) = {yeY:G{y)zU] (resp. G~(U) = {ye Y:G(y)n t / # 0 } ) is open in Y. If Y,Z are
metric spaces, then the above definition of lower semicontinuity is equivalent to saying
that if yn-+y, then G(y)s\jmG(yn) = {zeZ:\imd(z, G(yn)) = Q} = {zeZ:z = \imzn, zneAn,
n^ 1}. Also if we assume additional structure on Y, Z and on the values of G(), then we
can also have other equivalent definitions of upper semicontinuity. For details we refer
to Delahaye and Denel [3] and Klein and Thompson [4]. A multifunction G: Y-»22\{0}
is said to be continuous, if it is both u.s.c. and l.s.c. Note that this is continuity of G()
from Y into 2Z\{0} with the Vietoris topology.

Let Z be a metric space. On P/(Z) we can define a (generalized) metric, known in the
literature as Hausdorff metric, by setting h(A,B) = max{supaey4d(a,B), s\ipbeBd(b,A)}. If
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Z is complete, then so is (P/Z), h). A multifunction G:Y->Pf(Z) is Hausdorff
continuous (/i-continuous), if it is continuous from the topological space Y into the
metric space (PjiZ), h). In general continuity and ^-continuity are disjoint notions
but they_ coincide if G() is Pt(Z)-valued. If {An}n^1z2z\{0}, then we
define Urn An = {zeZ:lim d(z, An) = 0} = {zeZ:z = lim znk, znk eAnk,nl < ^ < • • • < nk < • • • } .
When Z is a Banach space, we can also define vv-lim An = {z e Z:z =
w-limznk,znk£/lnk, «!<••• < « t < • • } , where w- denotes the weak topology on Z. Note
that lim An £ w — lim An.

Now let H be a separable Hilbert space and let X be a dense subspace of H carrying
the structure of a separable Hilbert space s.t. X c» H compactly. Then identifying H with
its dual (pivot space), we have X c* H c* X* with all embeddings being compact. To
have a concrete example in mind let H = L2(0,1), X = H%(0,1) and X* = H~m(0,1). The
classical Sobolev-Kondrachov embedding theorem tells us that X u H <^ X* compactly.
Such a triple of spaces is known in the literatures as a "Gelfand triple". By | | | | (resp.
| | , ||-||*) we will denote the norm of X (resp. of H,X*). Also by (•, •) we will denote the
inner produce of H and by <•,•> the duality brackets for the pair (X,X*).
The two are compatible in the sense that <•, -y\XxH = (',')• Let W(T) =
{x()el}(X):xel3{X*)} (the derivative here being the distributional derivative).
Furnished with the inner product (x,y)W{T) = lo(x(t),y(t))xdt + jb

o{x(t),y{t))x.dt, W(T)
becomes a Hilbert space. Furthermore, it is well known that W(T) c*. C{T,H), i.e. every
element of W(T) after possible modification on a Lebesgue null set is equal to an H-
valued continuous function. In addition, from Nagy [7], we know that the above
embedding is compact.

Let (X,H,X*) be a Gelfand triple as above and let {An,A}n^x s&{X,X*). Following
Zhikov, Kozlov and Oleinik [16], we make the following two definitions.

Definition 1. We say that the sequence {An}a^1 G-converges to A if and only if for
every n^l,A~\ A~1 e&(X*,X) exist and for every x*eX*A;lx* A A~*x* in X (and
hence also strongly in H) as n->oo.

Definition 2. We say that a sequence of operators Pn:W(T)^>l}(X*)x H PG-
converges to an operator P:W(T)-*l3(X*) x H as n-»oo, if for all « g l the operators
P;\P-1:I3{X*)XH^W{T) are defined and for any (/,x0)6L2{X*) x
H,P;\f,xo)^'\f,xo) in W{T) (which implies that for all teT,
Pn Kf, xo)(0 ^ P~'(/. xo)(t) in H).

In our case for every n ^ l Pn:xe W(T)-+(x(-) + An(-)x(-), x(0))eL2(X*) xH. So G-
convergence refers to the convergence of the solutions of a sequence of elliptic problems,
while PG-convergence refers to the convergence of the solutions of a sequence of
parabolic problems.

It must be noted that the notion of G-convergence of parabolic operators was first
introduced by Spagnolo [20], who later, in [21], obtained an important compactness
result for this mode of convergence. In [22] Colombini and Spagnolo obtained useful
conditions on the coefficients guaranteeing PG-convergence of the corresponding
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parabolic operators. The abstract theory of G and PG-convergence was developed in
Zhikov, Kozlov and Oleinik [16].

Finally if V is a Banach space and Ae2v\{0}, then by aA:V*-*U we denote the
support function of A, i.e. a A{v*) = s\xpaeA(v*, a).

3. Continuous dependence results

We will start with a general existence theorem.
So let T = [0, r] and (X, H, X*) a Gelfand triple of spaces as in Section 2. We consider

the following multivalued Cauchy problem on T:

x(t) + A(t,x(t))eF(t,x(t))a.e.
x(0) = xo

Here A:TxX->X* and F:Tx H->Pfc(H). By a solution of (*) we understand a map
x()e W(T) c, C(T,H) s.t. for some f(-)eS2

F(.iXH) we have that x(t) + A(t, x(t)) = f{t) a.e.,
x(0) = xo.

We will need the following hypotheses on the data of (*).

H(A): A:TxX^X* is an operator s.t.

(1) t-*A(t, x) is measurable,

(2) x->A(t, x) is hemicontinuous, monotone,

(3) ||vt(r,x)||,gfl(l+||x||) a.e. with a>0,

(4) (A(t,x),x)^c\\x\\2 a.e. with c>0.

H(F): F:Tx H->Pfc(H) is a multifunction s.t.

(1) F(-, •) is graph measurable,

(2) F(t,•) has a sequentially closed graph in HxHw, where # w denotes the Hilbert
space H with the weak topology,

(3) \F(t,x)\^a(t) + b\x\ a.e. with a{-)sL\, b>0.

Theorem 3.1. / / hypotheses H(A), H(F) hold and xoeH then (*) admits a solution.

Proof. First we will derive some a priori bounds for the solutions of (*). So let
x ( ) e W(T) be such a solution. By definition we have

with /i(-)eS|(._,,.),. Multiply the above evolution equation with x(). We get:
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(t), x(t)> + <A(t, x(t)), x(t)} = (h(t), x(t)) a.e.

r)||2 ^2\h(t)\-\x(t)\a.c.

+ 2c\\\x(s)\\2ds^2\\h(s)\\-\x(s)\ds + \x0\
2

0 0

^\(2a{s)2+2b2\x(s)\2)ds + \\
o o

=> | x(t) I g M for some M > 0 and for all l e T (Gronwall's inequality).

Then we have:

\ \ , teT
0

=> \\x(-)\\L2m^M 1 for some M1>0.

Finally let p(-)eL2(X). We have

\<x(s),p(s)>ds^\\\A(s,x(s))\\>-\\p(s)\\ds + \\\h(s)\\4
0 0 0

where ((-,-))o denotes the duality brackets for the pair (l3(X), lI(X*)). Hence

Define F:Tx H-*Pfc(H) by
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>(t,x) if \x\£M

Observe that F(t,x) = F(t,pM(x)), where pM is the M-radial retraction. Recalling that
pM{-) is Lipschitz continuous, it is easy to check that F ( v ) has the same measurability
and continuity properties as F(-,) (i.e. it satisfies hypotheses H(F) (1) and (2)) and
furthermore \P(t,x)\^a{t) + bM = a(t) a.e. with a(-)eL2

+.
Now set V = {hel}(H):\h(t)\^a(t) a.e.} and define p:V-+W(T) to be the map that to

each heV, assigns the unique solution of the evolution equation

x(0) = x0

(see Theorem 4.2, p. 167 of Barbu [1] and also Theorem 1.2, p. 162 of Lions [6]).
Our claim is that p() is sequentially weakly continuous. To this end let hn^*h in

FsL2(H). Set xn = p(hn)e W(T). From our a priori estimation in the beginning of the
proof, we know that {xn()}n g l is bounded in W(T), hence relatively sequentially weakly
compact in that space. Thus by passing to a subsequence if necessary, we may assume
that xn -^ x in W(T). We have:

Multiply the above equation with xn(t) — x(t). We get

<xn(r), xn(t) -x(t)> + <A(t, xn(0), xn(t) -x(t)> = (hn(t), xn{t) -x(t)) a.e.

=> ] <xn(t), xn(t) -x(t)> dt + ] (A{t, xn(t)), xn(t)-x(t)} dt = ] (hn(t), xn(t) -x(t)) dt.
0 0 0

From Lemma 5.5.1, p. 151 of Tanabe [12], we have

<xn(t)-x((), xn(t)-x(t)> = 1 1 \xjit)-x(t)\2 a.e.

J <xn(t),
0
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So we get

i k W -*(r)|2 +1 <*(t), xn(t) -x(t)> A +1 <X(t, xn(t)), xn(r)
0 0

Since W(T) c* C(T,H) compactly (see Section 2), we may also assume that x n -^x in
C(T,H). So we have

](x(t),xn(t)-x(t)ydt-*O
o

and

](hn(t),xn(t)-x(t))dt^O.
o

Therefore if A:l3(X)-*l}(X*) is the Nemitsky operator corresponding to A(t,x) (i.e.
= ,4(£,x(t))), we have

lim((Axn,xn-x))o = 0.

Note that {^4xn}ngl is bounded in L2(X*) (hypothesis H(A) (3)) and so by passing to a
subsequence if necessary, we may assume that Axn ^* w in L2(X*). Furthermore, it is
easy to see that A() is hemicontinuous and monotone. Hence invoking Proposition 2.5,
p. 179 of Lions [6], we get that w = Ax, i.e. Axn ^* Ax in L2(X*).

Then for every p(-)el}(X), we have

P))o = (C'.P))o as n-*oo.

t,x(t)) = h(t) a.e., x(0) = xo.

Also from Theorem 3.1 of Papageorgious [9], we have

h(t) e conv w — lim {hn(t)}n ^, s con v w - Iim F(t, xn(t))

for all ieT\Af/j(JV)=O (here //(•) denotes the Lebesgue measure on T). Let teT\N and
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vew—hmF(t,xn(t)). Then by definition (see Section 2) we can find {xnk:k^l, n1<n2<
•••<«*<•••} and vHkeP{t,xnk(t)) s.t. v^^v in H. Note that (xnk(t),VJBGT F(t,) and
the hitter is sequentially weakly closed in HxHw. So (x(t), v)eGr F(t, )=>veF(t, x(t))=>
w-lm\F(t,x/t))^F(t,x(t)) for all teT\N, fi(N) = 0, =>con\w-hmF(t,xn(t))cF(t,x(t))
a.e. =>h(t) e F(t, x(t)) a.e. =>heSp{. iX(.)r Hence we deduce that x = p(h) and so indeed p ( )
is sequentially weakly continuous as claimed.

Next let R:V^Pfc(V) be defined by

Our claim is that /?(•) is u.s.c. on V endowed with the relative weak L2(//)-topology
(denoted henceforth by Vw). Note that Vw is compact metrizable. So in order to show
that R() is u.s.c, it is enough to show that GrR is sequentially closed in Vwx Vw. So let
{(&„>/»)}„& i - G r / ? and assume that (hn,fn)-^ (h,f) in VwxVw. Then we know that
p(hn)() ^p(h)(-) in W(T)=>p(hM)(t) **p(h)(t) in H for all te T. Using Theorem 4.2 of [9],
we get

in L2(H)

=> (KfleGiR

=> R() is u.s.c. as claimed.

Apply the Katutani-KyFan fixed point theorem to get heV s.t. heR(h). Then
x=p(h)eW(T) solves (*) with the orientor field F(t,x). But as in the beginning of the
proof, we can get that \x(t)\^M=>F(t,x(t)) = F(t,x(t)) te T=>x() solves (*). •

Remark. It is clear from the above proof that the solution set S of (*) belongs in
Pk(C(T,H)) (recall that W(T) c, C{T,H) compactly; see Section 2).

In the proof of our first continuous dependence result we will need the following two
lemmata.

Lemma «: / / F:TxH-*Pfc(H) is a multifunction s.t. t->F(t,x) is measurable,
x->F(t,x) is h-continuous and v:T->H is measurable then (t,x)-*u(t,x) = proj(u(t); F(t,x))
is a Caratheodory map; i.e. measurable in t, continuous in x (here proj(-,-,F(r,x)) is the
metric projection on F(t, x)).

Proof. Note that Gru(-,x) = {(*,z)eTxH:d(v(t),F(t,x)) = \v(t)-z\}. Let r,:TxH-*U
be defined by n(t,z) = d(v(t),F(t,x))-\v(t)-z\. Then Gru(-,x) = {(t,z)6 7'xff:ij(t,z) = 0}.
Observe that n(-,) is a Caratheodory function, hence jointly measurable. Thus
Gr«(-,x) = {(t,z)eTx H:n(t,z) = 0}eB(T) x B(H)=>t-*u(t,x) is measurable.

Next let xn->x in H=>F(t,xn)-^F(t,x)=>F(t,xn)
J^U F(t,x)=>u(t, •) is continuous. D
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Lemma /J. IfZ is a metric space, V is a Banach space, F:Z-*Pk(V) is a multifunction
s.t.for every K s K nonempty, compact we have that F\K is u.s.c, then F(-) is u.s.c.

Proof. We will show that for every CzV nonempty, closed, F~(C) = {zeZ:F(z)n
C^0} is closed in Z. So let {zn}n^1cf~(C) and assume zn-*z. Set K = {zn,z}a^l. Then
K is compact and by hypothesis F|K(-) is u.s.c. Also since by hypothesis F() is
P^PO-valued, from Theorem 7.4.2 of Klein and Thompson [4], we have that
F(K)ePk(V). Let yneF{zn)nC,n^l. Then {yn}n*i^F(K) and so by passing to a
subsequence if necessary we may assume that yn->yeC. Also, since F\K is u.s.c. we have
\m\F{zn)zF(z) (see Delahaye and Denel [3])=>yeF(z)=>.yeF(z)nC=>zeF~(C)=>F~(C)
is closed =>F() is u.s.c. •

Now we are ready for our first continuous dependence result. Assume A is a metric
space (the parameter space).

The multivalued Cauchy problem under consideration is the following:

x(t) + A(t,x(t))eF(t,x(t),X) a.e.

We will denote the solution set (*)x by S(A). From Theorem 3.1 (see also the remark
following it), we know that S(X)ePk(C(T,H)) for all AeA.

We will need the following hypotheses on the parametrized orientor field F(t, x, k) and
the parametrized initial data:

t: F-.TxHx A-+P/c(H) is a multifunction s.t.

(1) t->F(t,x, X) is measurable,

(2) x-*F(t,x,X) is /i-Lipschitz with constant kx(-)eLl+ and kB(-) = supXeBkx(-)eLl+ for
every B s A compact,

(3) X-*F{t,x,X) is continuous,

(4) \F{t,x,X)\^ax(i) + bx\x\ a.e. with ax(-)eL2
+, bx>0 and aB{-) = supXeBax()eL2

+bB =
for every BQA compact.

Ho: xo:A-*H is continuous.

Theorem 3.2. / / hypotheses H{A), H{F)l and Ho hold, then S:A^Pk(C(T,H)) is
continuous and h-continuous.

Proof. First we will show that S() is l.s.c. From Section 2, we know that it is
enough to show that for Xn-*l in A, we have S(A)slimS(An).

Soletx()eS(A). We have

x(t) + A(t,x{t)) = f{t) a.e., JC(0) = XO = XO with / eS|(., „.,, X).

Define v(t, A) = proj (f(t); F(t, x(t), ?.„)) and u(t, z, Xn) = proj {v{t, An); F(t, z, A.)). Observe
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that u(t, x{t), Xn) = v(t, ln). Also from Lemma a, we know that t-*u(t,z,Xn) is measurable
and z-*u{t, z, kn) is continuous.

For every n ^ 1, consider the following evolution equation:

xB(t) + A(t, xn(t)) = u(t, xB(0, AB) a.e.

n(0) = xo(AB)

From Theorem 3.1 we know that the above Cauchy problem has at least one solution
xJL-)eW(T). We have:

<x(0 - xn(t), x(t) - xB(t)> + <A(t, x(t)) - A(t, xJLt)), x(t) - xB(0>

={f{t) - u{t, xn{t), A.), x{t) - xjit)) a.e.

=> |x( t )-xB(0 | 2^J( / (s)-u(s ,xB(s) ,AB) ,x(s)-xB(s))^ + |xo-xo(An) |2

) - u{s, x{s), AB)| + \u(s, x(s), AB) - u{s, xB(s), AB)|) • |x(s) -xB(s) | ds + |x0 - xo{Xn)\
2

0

= \{d{f{s), F{s,x{s),Xn)) + d{v{s, A,), F{s,xB(s), A,))) • \x{s)-xn{s)\ds + \x0-x0{Xn)\
2

^ J (h(F(s, x(s), X), F(s, x(s), Xn)) + h(F(s, x(s), Xn)F(s, xn(s), Xn)). \ x(s) - xn(5) | ds
0

+ |xo-xo(An) |2 .

From the proof of Theorem 3.1 we know that for every n^. 1 |xn(t) |^M(in) te T and
for B = {An,A}ngl MB = supA6BM(A)<oo (see the proof of Theorem 3.1 and hypothesis
//(F)!). Also because of hypothesis H(F)(3), we have h(F(s, x(s), k), F(s, x(s), An))->0 as
n-yco. So from the dominated convergence theorem, given £>0, for n ^ l large enough
we will have

J h(F(s, x(s), X), F(s, x(s), kn)) • \x(s) - xn(s)\ ds ̂  \ 2MBh(s, x(s), k), F(s, x(s), Xn)) ds < E.
0 0

Also from hypothesis H(F){2) we have that

j h(F(s, x(s), ln), F(S, xn(s), A J) • |x(s) - xn(s)\ ds ̂  j kB(s) • |x(s) - xn(s)|2 ds.
0 0
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So finally, for n ^ 1 large enough, we have

Invoking Gronwall's inequality, we get

|x(t) — xn(0|2 ^ £ exp ||/CBH! fo ra l l t eT , => xn ±* x in C(T,H).

Clearly xn(-)eS(Xn). So we have shown that

limS(>ln) => S()isl.s.c. (1)

Next we will show that S() is u.s.c. From Lemma /?, we know that it is enough to
show that if Xn-*X in A, then

L e t x e l i m S ( l n ) . T h e n w e find xnkeS{Xnk)nl < n 2 < ••• < n k < ••• s.t. x n k ^ x i n C(T,H). W e
have xnk(t) + A(t,xnk(t)) = fnk(t) a.e., xnk(0)1 = xo(XJ with / n ^ S j , . , ^ . , , ^ , . From the proof
of Theorem 3.1 and hypothesis H(F)l we know that Hx . J l ^^gMj i r , H^nJIt'ix*)
^M2B; where B' = {Xnk,X\, M1B- = supAeB-JVf!(l)<oo and M2B. = supAEB.M2(A)<oo. So
{xnk}kziZW(T) is relatively sequentially weakly compact and thus by passing to a
subsequence if necessary we may assume that xttk^*x in W(T). Also we know (see the
proof of Theorem 3.1), that Axnk^* Ax in l3(X*), while because of hypothesis H(F)(4),
and by passing to a subsequence if necessary, we may assume that fnk +̂ / in l3(H).
Then for every v e L?(H) we have

r

(fnk, V)LHH) ^ ffsj. (V) = J CTF(I,Xn>(I), ^ 0
• « •>) 0

(see the proof of Theorem 4.2 in Papageorgiou [9]). Also

xn.(r), XnkMt)) ~ a fit. x(t). xM
0

^ 1 kB, (t)\xnk(t)-x(t)\ • \v(t)\ dt + ] h(F(t, x(t), XJ, F(t, x(t), X))\v(t)\ A
0 0

So in the limit we have
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r

= aS2 . (u) t> £ L2( tf)

Then x(t) + /l(r,x(t)) = / ( 0 a.e., x(O) = xo(A) and /eS|(.jX(.)>A)=>x(-)6S(A)=>iImS(All)e
S(X). Therefore we deduce that

S(-) is u.s.c. (2)

From (1) and (2) above we conclude that S() is continuous (for the Vietoris topology
on Pk(C(T, //))). But from Corollary 4.2.3, p. 41 of Klein and Thompson [4] we know
that on Pk(C(T,H)) the Vietoris and Hausdorff topologies coincide. So S() is also
/j-continuous. •

Now we allow operator A(t, x) to depend on the parameter X. We will assume a quite
general A-dependence and for that we need to assume that A(t, •) is linear.

So the multivalued Cauchy problem is now the following

x{t) + A{t,X)x{t)eF{t,x(t),X)
\ )x

We will need the following hypothesis on A(t, k)x.

H(A),: A:rxA-»£f{X,X*) is an operator s.t.

(1) t->A{t,X)x is measurable for every xeX,

(2) \\A(t, X)x\\m^c(A)\\x\\ a.e. with c ( i )>0 and c(-) is bounded on compact sets,

(3) </!((,/t)x, x>^c1(A)||x||2 a.e. with c1(l)>0 and l/c^-) is bounded on compact sets,

(4) if An->A in A, then A(t, Xn) ^* A(t, X) and given e > 0 there exists

<5(e)>0s.t. sup \\A(t + x,Xn)-A(t,kn)^<e f o r O < r < ^ .

Theorem 3.3. If hypotheses H(A)U H(F)l and Ho hold

then S:A->Pk(C(T,H)) is u.s.c.

Proof. According to Lemma /?, we need to show that if Xn-+X in A, then

So let x ( ) e limS(An). By definition we can find jcBk e S(ABk), nt <n2< ••• <nk<--- s.t.
x -U x in C(T, H). For every k^ 1, we have
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with MOeSjj,.,,^,.,,^,. Since by hypothesis / / (F)^) {/injn§1 .is bounded, by passing
to a further subsequence if necessary, we may assume that hnk -^ h in L2(H). As in the
proof of Theorem 3.2, using the support function, we can show that JieS£,.,*,.>;,.

Next fix ye Wr(T)= ={zeW(T):z(r) = 0} and set

*. (2)

Let {><nk}fe&! £ W(T) be the solutions of the Cauchy problems

-ynk(t) + A(tJJ*ynk(t)=g(t) a.e., ynk(r) = 0.

From Theorem 7 of Zhikov, Kozlov and Oleinik [16] we know that

So

(Theorem 10 of Zhikov, Kozlov and Oleinik [16]). Hence invoking Lemma 3 of [16],
we have that ynk -^ y in C(T, H).

Multiply equation (1) with ynk(-), equation (2) with *„„() and then subtract the new
equation (2) from the new equation (1) and integrate over T. We get

j <*„&), ynk(t)} it + } (yjt), xjt)> dt + j (A{t, AJxJ(t),
0 0 0

-] <A(t,XJ*y,JLt),xnJLt)>dt

= j <hjt), yj.t)> dt - J <g(t), xnk(t)> dt. (3)
0 0

Using Lemma 5.5.1 of Tanabe [12], we can perform integration by parts on the
second integrand of the left-hand side and get

1 <WO, xjt)> dt = (ynk(r), xnk(r))-(ynk(0), xJO)) - ] <ynk(t), xjt)} dt
o o
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= - 0 U 0 ) , x(0, XJ)-J <yjt), xnk(t)} dt. (4)
o

Substituting (4) in (3) we get

-(ynk(O),x(O,lnk)) = i <hJt),ynk(t)}dt-$ <g(t), xjt)} dt
0 0

-S (g(t),x(t)ydt
0

= J <h(t),y(t)>dt-$ <-y
O 0

= J <h(t),y(t)ydt-(y(O),x(O,X))-$ {y{t),x{t)>dt
o o

| (y{t),A{t,))x{t)ydt
o

=> } <x(t) + A(t, l)x(t),

O 0

Since y(-)eWr(T) was arbitrary and Wr(T) is dense in l3(X), we conclude that

a.e.,

S() is u.s.c. •

4. Applications

In this section we present two examples illustrating the applicability of our work.
The first example is from control theory. So let Z be a bounded domain in IR" with

smooth boundary dZ = T. We consider the following nonlinear parabolic distributed
parameter control system, in divergence form:
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~+ £ (-l)MDxAa(t,z,r,(x(z))) = f(t,z,x(t,z),?.)u(t,z) on TxZ

D"x(t,z) = 0 on TxT for | j |

x(0,z) = xo(z,A)

J|w(r,z)\2dz-^r(t,A)2 a.e. with u ( v ) measurable

• * * \

Here rj(x(z)) = {Dxx(zy.\a.\^m} (i.e. the tuple of all partial derivatives up to order m
including x(-)).

We denote the set of trajectories of (***) by S(A)<=C{T,l3{Z)).
We will need the following hypotheses on the data of (***)i-

H(A)2: Aa:TxZxnn{m)^n(n(m) = (-?^P\ are maps s.t.
y n\m\ J

(1) (t, z)-*Ax(t, z, r\) are measurable,

(2) t\->Ax(t,z,r]) are continuous,

(3) \Aa(t,z,ti)\^<t>{t,z) + c\\4*.z. with <£(•,

(4) Zl«lsm(^c(^2, f/J->l(t,z,f72))(f7ia-V2

(5) lMgm'4I(t,z,>/>?t t^c0|M|2 c o >0.

H(f): /:TxZxRxA-.Risamaps.t.

(1) (t,z)->/((, x, z, A) is measurable,

(2) | / ( t ,z ,x, A)- / ( t , z ,y , A)|^/cB(t ,z)^-) '! a.e. for all A e B g A compact and /cB(%-

(3) A->/(t, z, x, A) is continuous,

(4) \f(t,z,x,X)\^aB(t,z) + bB(z)\x\ a.e. for all A e B s A compact and with
aB(;)eL2

+(TxZ)bB(-)eL2
+{Z).

H(r): r[-,k)eL^,r(t,-) is continuous and supAeB||r(-, A)||00 = M B < oo for all flsA
compact.

Ho: xo(-, A)eL2(Z) and A->xo(-,A) is continuous from A into L2(Z).

In this case X = //S(Z), H = L2{Z) and A-* = / /-m(Z). Then (X,tf,X*) is a Gelfand
triple of spaces with all embedding being compact (Sobolev-Kondrachov embedding
theorem).

Consider the time varying Dirichlet formula a:T x H%(Z) xH$(Z)->M corresponding
to the elliptic operator of our system and defined by
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a(t,x,y)= I iAx(t,z,r,(x(z)))D"y(z)dz, x,

A simple argument involving the Cauchy-Schwartz and Holder inequalities tells us
that

\a(t, x, y)| £ 2 • [\\ct>t, O I U Z ^ I M I H B W I ' IMI»8"<z>

with c>0. So we can find a generally nonlinear operator A(t, •):H%(Z)-*H~m(Z) s.t.

Clearly by Fubini's theorem r-></l(t,x),y> is measurable => /l(-,x) weakly measur-
able and since X* is separable, by Pettis' theorem, we conclude that t-*A(t, x) is
measurable. Also for every xn ^* x in H%(Z), we have

\<A(t,xm)-A(t,x),y>\£ f (Ax(t, z, r,(xn(z))) - A.(t, z, n{x{z)))D*y{z) dz

because of hypotheses //(v4)1(l), (2) and (3). Thus A(t, •) is demicontinuous, hence
hemicontinuous too.

Also it is easy to see that because of H(y4)x(4), A(t, •) is monotone, while from
H(X)!(5) we have that </i(t,x),x>^co||x||Hm(Z) with c>0. So we have satisfied hypothe-
sis H(A).

Next let / : T x l3{Z) x A-L2(Z) be defined by

i.e., / ( • , - , ) is the Nemitsky (superposition) operator corresponding to / . Then for every
yel3(Z), we have (f(t, x, X), y)L2iZ)=jz f(t, z, x(z), X)y{z) dz^>t-y(f(t, x, k), y)Li(Z) is mea-
surable (Fubini's theorem) =>/(-,*, X) is weakly measurable and since I}{Z) is separable,
again by Pettis' theorem, we conclude that f(-,x,k) is measurable.

Also

\\f(t, x, X)-?{t, y, k)\\2
LHZ) = | \f(t, z, x(z), l)-f(t, z, y(z), X)\2 dz

z

^\kB(t,z)2\x{z)-y(z)\2dz
z

=>/(t, -,X) is Lipschitz continuous. Furthermore through the dominated convergence
theorem we can check that /(£, x, •) is continuous.
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Next let U:TxA^>Pfc{l}{Z)) be defined by

U{t, X) = {ue L2(Z):||M||L2(Z) g r(t, X)}.

Then because of hypothesis H(r) it is easy to check that U(-,X) is measurable, U{t,-)
is continuous and \U{t, A)|i£||r(-, A ) ^ .

Now let F: T x l3(Z) x A->P/c(L
2(Z)) be defined by

P(t,x,X) = ?(t,x,X)U(t,X).

Then

/j(F(t, x, X), P(t, y, X)) ^ \\f{t, x, X)-f(t, y, X)\\LHz)\\r(-, X)^ \\kB(t, •)|iL«(Z)||x -y\\LHZ)MB.

Also if Xn-*X in A we have

h(F(t, x, Xn), F(t, y, X)) ^ h(?(t, x, Xn)U(t, Xn), J(t, x, X)U(t, Xn))

+ h(f(t,x,X)U(t,Xn)J(t,x,X)U{t,X))

S\\?(t,x,Xn)-?(t,x,X)\\mz)-MB(here B = {Xn,X}^^A)

+ \\nt,x,X)\\LHZ)h(U(t,Xn),U(t,X))-*O.

=> F{t,x,-) is ^-continuous. So we have satisfied hypothesis H(F)l.
Then consider the following evolution inclusion:

(x(r) + A(t,x(t))eF(t,x{t),X) a.e.")

A straightforward argument involving Aumann's selection theorem shows that (***)r

is equivalent to the following abstract control problem

x(t) + A(t, x(t)) = ?(t, x(t), X)u(t) a.e."

x(0) = xo(X), u(t) e U(t, X) a.e.

«(•) is measurable

From all the previous work, we know that (***)i» is equivalent to (***V
Note the problem {***)r has the form of (*)x and we saw it is equivalent to (***)i. So

invoking Theorem 3.2 we get:

Theorem 4.1. If hypotheses H(A)2. H(f), H(r) and Ho hold, then S:A-Pt(C(T, l3(Z)))
is continuous and h-continuous.
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Also let R(t,X) = {x(t,-)el}(Z):xeS(X)} be the reachable set at time teT. Then, since
R(t,X) = e,(S{X)) where et is the evaluation map at teT, we have:

Theorem 4.2. If hypotheses H(A)2, H{f), H(r) and Ho hold, then R{t,-):A-+Pk(L
2(Z))

is continuous and h-continuous.

Our second example is from parabolic partial differential inclusions. Such inclusions
arise in the study of obstacle problems and of partial differential equations with
discontinuous noninearities (see Chang [2]). Here let Z = [0,1] (i.e. n = l).

So we consider the following initial-boundary value problem on T x Z = [0, b~] x [0,1]:

— -4- («(*, A)) — 6 F(t, z, x(t, x), X) onTxX
OZ OZ

(***)2

= 0, x(0, z)=xo{z,,

Denote its solution set by S{X)£C(T, £{Z)).
We will need the following hypotheses on the data of (***)2.

H(A)3: 0<mlB?^u(z,X)^m2B for XeBQA compact and if Xn->X, then

u(-,Xn) u(-,X)

H(F)2: F(t,z,x,X) = [vi(t,z,x,X), v2{t,z,x,X)~], where v^.Tx Zx U x A->R i = 1,2 are
maps s.t. vl ^v2

(1) (t,z)-+vi(t,z,x,X) are measurable,

(2) \vi(t,z,x,X) — vi(t,z,y,X)\-^kB(t,z)\x — y\ a.e. for all XeB^A compact and
kB(;)eL°(TxZ),

(3) \vj(t,z,x, X)\^aB(t,z) + bB(z) \x\ a.e. for all XeBsA compact and with

Here the Gelfand triple is Z = //J(Z), H=l3(Z) and X* = H~\Z). All embeddings are
compact.

As in the first example, through the Dirichlet form corresponding to the elliptic
operator of our problem, we can define a map A:A-y^{Ho(Z), H~l(Z)) s.t.

Because of hypothesis H(A)3 and using Tartar's theorem (see Sokolowski [10, Lemma
3, p. 289]), we have that if 4 - A in A, then A(Xn) ^ A(X).
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Also let F: T x l3(Z) x A->P/c(L
2(Z)) be defined by

F(t, x, X) = iv.it, x, !)(•), v2(t, x, !)(•)] = {weLHzy.v^t, x, X){z) ^ w(z)

gt)2(r,x,/)(z) a.e.}

where vt i = l , 2 are the Nemitsky operators corresponding to the functions u, i= l ,2 .
Using hypothesis H(F)2 it is easy to check that F(t,x,X) defined as above satisfies H(F)X.

Then (***)2 is equivalent to the following evolution inclusion:

(***)2.

Invoking Theorem 3.3 we have:

Theorem 4.3. If hypotheses H(A)3, H(F)2 and Ho hold, then S:A-*Pk(C(T,l3(Z))) is
u.s.c.
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