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Kernels in the Category of Formal Group
Laws

Oleg Demchenko and Alexander Gurevich

Abstract. Fontaine described the category of formal groups over the ring ofWitt vectors over a ûnite
ûeld of characteristic pwith the aid of triples consisting of themodule of logarithms, the Dieudonné
module, and themorphism from the former to the latter. We propose an explicit construction for the
kernels in this category in term of Fontaine’s triples. _e construction is applied to the formal norm
homomorphism in the case of an unramiûed extension of Qp and of a totally ramiûed extension
of degree less or equal than p. A similar consideration applied to a global extension allows us to
establish the existence of a strict isomorphism between the formal norm torus and a formal group
law coming from L-series.

Introduction

_e fundamental result of Cartier theory [Ca] provides a classiûcation of the formal
group laws over a commutative ring A by means of Cartier modules over the Cartier
ring Cart(A). A detailed exposition of this theory can be found in [Zi]. In general,
Cart(A) has a quite complicated structure; however, in the case where A = k is a
ûnite ûeld, it becomes rather simple. In this special case, another description was
suggested byDieudonné who assigned to a formal group law over k a certain module
(Dieudonné module). It can be shown that both theories are closely related. In the
casewhere A =W is the ring of theWitt vectors over k, Fontaine [Fo] associatedwith
a formal group law F over A a triple (L,M , ρ) where M is the Dieudonné module
of the reduction of F. It provides an alternative description of the category of formal
group laws. Similar results formulated in terms of the logarithm types were obtained
by Honda [Ho]. It turns out that the category of Fontaine’s triples is easier to work
with than the category of Cartier modules.

_e goal of this paper is to give an explicit construction of kernels in the category
of formal group laws over k and W in terms of Dieudonné modules and Fontaine’s
triples, respectively. _is construction can be applied, in particular, to the subcate-
gory of formal group laws of ûnite height, which is in turn equivalent to the category
of connected p-divisible groups. _e existence of kernels in the category of p-divisible
groups overW follows from the result about the extension of a p-divisible group over
the fraction ûeld ofW to a p-divisible group over W (the uniqueness of such exten-
sion is due to Tate [Ta] and the existence is due to Raynaud [Ra]). _e desired kernel
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can be obtained by applying this result to the kernel of the generic ûber of the mor-
phism of p-divisible groups. However, this construction is not explicit; in particular,
it does not allow one to calculateHonda’s type and the Dieudonnémodule of (the spe-
cial ûber of) the kernel. Our approach corrects this deûciency. Moreover, wemanage
to deduce some well-known results on kernels in two special cases: homomorphisms
between formal group laws of ûnite height and pure homomorphisms that are intro-
ducedwithin the scope of this note. _e dual problem related to explicit construction
of cokernels in the same categories is le� for future investigation.

_e technique developed is applied to the computation ofHonda’s type of the ker-
nel of the formal norm homomorphism on theWeil restriction of the multiplicative
formal group law with respect to an extension of Qp . When the extension is tamely
ramiûed, this homomorphism is pure, which allows one to obtain the result in terms
of the Jacobian matrix of the homomorphism. We also treat the case of a general to-
tally ramiûed extension of degree p that vividly demonstrates the power of our explicit
construction. Besides, a similar computation is performed for the formal norm ho-
momorphism with respect to the extension ofQ generated by q-th root of unity. _is
consideration implies themain result of Childress andGrant [CG], which establishes
a strict isomorphism between a formal norm torus and a formal group law coming
from L-series. Unlike [CG] where the global approach is exercised and heavy com-
putationswith formal power series are required, we easily deduce the existence of the
isomorphism from rather simple local arguments. Finally, given an algebraic torus
split over a tamely ramiûed extension, we consider the corresponding Galois action
on theWeil restriction and prove that σ − id is pure for any Galois group element σ .
_is result is closely related to the smoothness of the subscheme of the Néron model
for theWeil restriction of a split torus ûxed by σ and allows one to ûndHonda’s type
of its formal completion explicitly (see [DGX]).

_e outline of the paper is as follows. In Section 1, themain deûnitions related to
formal group laws are introduced, and the classiûcation results ofHonda and Fontaine
are recalled. Sections 2 is devoted to an explicit construction of kernels. _e formal
group laws of ûnite height are studied in Section 3. We show that in this case, the con-
struction of the kernels can be essentially simpliûed. In particular, kernel commutes
with the reduction modulo p. _e pure homomorphisms are studied in Section 4.
We prove that for such homomorphisms, Honda’s type of kernel can be found as a
submatrix of an appropriate conjugate of the type of the domain. As a consequence,
any kernel of a pure homomorphism is strong, i.e., coincides with the kernel in the
category of formal group schemes. Finally, a necessary and suõcient condition for a
homomorphism between formal group laws to be a (strong)monomorphism is given.
In Section 5, several applications to formal group laws coming from algebraic tori are
presented. _e section is divided into three subsections. _e ûrst one is devoted to
the formal normhomomorphism corresponding to extensions of local ûelds. For un-
ramiûed extensions ofQp and totally ramiûed extensions ofQp of degree less or equal
to p,Honda’s type of the formal norm torus is calculated explicitly. In the second sub-
section, the formal norm homomorphism is studied for the extension ofQ generated
by a root of unity, and the result of Childress and Grant [CG] is deduced. _e Galois
action associated with an algebraic torus is considered in the third subsection.
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_roughout the paper, the following notation is used. IfM is amodule and S ⊂ M,
the submodule ofM generated by S is denoted by ⟨S⟩. If N is a submodule ofM, then
redN ∶M → M/N is the reduction modulo N , i.e., redN(m) = m + N .

1 Formal Group Laws

Basic Definitions

Denote by X and Y the sets of variables x1 , . . . , xd and y1 , . . . , yd , respectively. A
d-dimensional formal group law over a ring A is a d-tuple of formal power series
F ∈ A[[X ,Y]]d such that
(a) F(X , 0) = X;
(b) F(X , F(Y , Z)) = F(F(X ,Y), Z);
(c) F(X ,Y) = F(Y , X).
_e one-dimensional additive formal group law and multiplicative formal group law
are deûned as Fa(x , y) = x + y and Fm(x , y) = x + y + xy, respectively.
Denote by A[[X]]0 the subalgebra of A[[X]] of formal power series without con-

stant term. Let F andG be d- and e-dimensional formal group laws overA. An e-tuple
of formal power series f ∈ A[[X]]e0 is a homomorphism from F to G if f (F(X ,Y)) =
G( f (X), f (Y)). _e category of formal group laws over A is denoted by FG(A).
A matrix D ∈ Me ,d(A) such that f (X) = DX mod deg 2 is called the Jacobian

matrix of the homomorphism f and denoted by J( f ). Formal group laws are strictly
isomorphic if there exists an isomorphism between them with identity Jacobian ma-
trix.
Denote by Ni lA the category of nilpotent commutative associative A-algebras. If

N ∈ Ni lA and F is a d-dimensional formal group law over A, the group of points
F(N) is an abelian group with underlying set equal to Nd and addition deûned by
F, i.e., a +F b = F(a, b) for a, b ∈ Nd . It is clear that any morphism ϕ∶N1 → N2 of
nilpotentA-algebras induces ahomomorphism F(ϕ)∶ F(N1)→ F(N2). Similarly, any
homomorphism f ∈ HomA(F ,G) of formal group laws induces a homomorphism
f (N)∶ F(N)→ G(N). It is clear that f (N2) ○ F(ϕ) = G(ϕ) ○ f (N1).

Yoneda lemma Let F and G be formal group laws over A. Suppose that for any
nilpotent A-algebra N , there is a homomorphism fN ∶ F(N) → G(N) such that for any
morphism ϕ∶N1 → N2 of nilpotent A-algebras, fN2 ○ F(ϕ) = G(ϕ) ○ fN1 . _en there
exists a unique f ∈ HomA(F ,G) such that f (N) = fN for any nilpotent A-algebra N.

A formal group law over a Q-algebra possesses a distinguished homomorphism
that plays an important role in the subsequent exposition.

Proposition 1.1 ([Ho, _eorem 1]) For any d-dimensional formal group law F over
aQ-algebra B, there exists a unique λ ∈ HomB(F , Fda ) such that J(λ) = Id .

If F is a formal group law over A and B is an A-algebra,we denote by FB the formal
group law over B obtained by the extension of scalars.
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Suppose that charA = 0. _en A⊗Z Q is a Q-algebra. If F is a formal group law
over A, then application of Proposition 1.1 to FA⊗ZQ yields a unique λ ∈ A⊗ZQ[[X]]d0
which is called the logarithm of F. Since F(X ,Y) = λ−1(λ(X)+λ(Y)), a formal group
law is uniquely deûned by its logarithm.

Proposition 1.2 ([Ho, Proposition 1.6]) If F, G are formal group laws over A with
logarithms λ, µ, respectively, and f ∈ HomA(F ,G), then f = µ−1 ○ J( f )λ.

Honda Theory

Honda theory [Ho] gives an explicit description up to strict isomorphism of formal
group laws over ûnite ûelds and their rings ofWitt vectors.

Let K be a ûnite unramiûed extension ofQp with residue ûeld k, integer ring OK ,
and Frobenius automorphism ∆. Let ▲∶K[[X]]0 → K[[X]]0 be a Qp-algebra map
deûned by▲(x i) = x p

i , 1 ≤ i ≤ d and▲(a) = ∆(a), a ∈ K. Denote by E = OK[[▲]]
a non-commutativeQp-algebra of formal power series in▲ with multiplication rule
▲a = ∆(a)▲ for a ∈ OK . _en K[[X]]0 has a le� E-module structure that induces a
le� Md(E)-module structure on K[[X]]d0 .

If u ∈ Md(E), u ≡ pId mod ▲, and λ ∈ K[[X]]d0 , J(λ) = Id are such that uλ ∈
pOK[[X]]d0 , we say that λ is of type u. It is obvious that the logarithm of the additive
formal group law λa(x) = x is of type p. If u ∈ Md(E), u ≡ pId mod ▲, then
(u−1p)(X) ∈ K[[X]]d0 is of type u.

_e following are themain results ofHonda theory.

(1) If λ ∈ K[[X]]d0 is of type u, then λ is the logarithm of a formal group law overOK .

(2) If λ ∈ K[[X]]d0 is of type u and vλ ∈ pOK[[X]]d0 for some v ∈ Me ,d(E), then there
exists w ∈ Me ,d(E) such that v = wu. In particular, if u, v are types of λ, then
there is w ∈ Md(E) such that v = wu.

(3) For any formal group law F over OK with logarithm λ ∈ K[[X]]d0 , there exists
u ∈ Md(E) such that λ is of type u.

(4) Any formal group law over k is the reduction of a formal group law over OK .

(5) Let F, G be d- and e-dimensional formal group laws over OK with logarithms
λ, µ of types u, v, respectively, and D ∈ Me ,d(OK). _en µ−1 ○ Dλ ∈ OK[[X]]d if
and only if there exists w ∈ Me ,d(E) such that vD = wu. In this case, µ−1 ○ Dλ ∈
HomOK (F ,G) and any homomorphism between F andG can be obtained in this
way. In particular, formal group lawswith logarithms of the same type are strictly
isomorphic.

(6) Let F,G be d- and e-dimensional formal group laws overOK with logarithms λ, µ
of types u, v, respectively, andw ∈ Me ,d(E). _en µ−1○wλ ∈ OK[[X]]d if and only
if there exists t ∈ Me ,d(E) such that vw = tu. In this case the reduction modulo p
of µ−1 ○wλ belongs to Homk(Fk ,Gk), and any homomorphism between Fk and
Gk can be obtained in this way.

https://doi.org/10.4153/CJM-2015-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-024-7


338 O. Demchenko and A. Gurevich

Dieudonné Modules

Our exposition of the theory of Dieudonné modules follows an explicit approach of
Fontaine [Fo, Chap. V, § 2] based on results ofHonda.

Let F be a d-dimensional formal group law over OK . Denote

M(F) = { l ∈ K[[X]]0 ∶ ∂l/∂x i ∈ OK[[X]], 1 ≤ i ≤ d ,

l(F(X ,Y)) − ( l(X) + l(Y)) ∈ pOK[[X]]0} .

One can show that M(F) is an E-submodule of K[[X]]0, and pOK[[X]]0 is an E-
submodule of M(F). _en M(F) = M(F)/pOK[[X]]0 depends only on Fk and is
called its Dieudonnémodule. It possesses the following properties:
(a) M(F) is a ûnitely generated E-module;
(b) ▲∶M(F)→ M(F) is injective;
(c) pM(F) ⊂▲M(F).
Let

L(F) = { l ∈ K[[X]]0 ∶ ∂l/∂x i ∈ OK[[X]], 1 ≤ i ≤ d , l(F(X ,Y)) = l(X) + l(Y)} .

_en L(F) is a free OK-module of rank d. Denote by ρ(F)∶L(F)→ M(F) the com-
position of the inclusion of L(F) in M(F) and the reduction modulo pOK[[X]]0. It
is an OK-morphism, and the inducedmorphism L(F)/pL(F)→ M(F)/▲M(F) is
an isomorphism.

If F, G are formal group laws over OK and f ∈ Hom(F ,G), deûne M( f )(l) =
l ○ f ∈ M(F) for l ∈ M(G). _en f induces morphisms M( f )∶M(G) → M(F),
L( f )∶L(G)→ L(F) such that ρ(F) ○L( f ) = M( f ) ○ ρ(G).
Denote by C the category of ûnitely generated E-modules M such that▲∶M → M

is injective and pM ⊂▲M. Deûne by CT the category of triples (L,M , ρ) such that
(a) L is a free OK-module of ûnite rank;
(b) M ∈ C;
(c) ρ∶L→ M is anOK-morphismwhich induces an isomorphismL/pL→ M/▲M.
_e ûnite-generatedness of M implies that M is a complete topological E-module in
▲-adic topology; i.e., for any sequence {m i} in M there exists∑▲im i ∈ M.
A morphism from (L′ ,M′ , ρ′) to (L,M , ρ) is a pair (ψ,Ψ), where ψ∶L′ → L is

an OK-morphism, Ψ∶M′ → M is an E-morphism, and Ψ ○ ρ′ = ρ ○ ψ.

_eorem ([Fo, Chap. III, Prop. 6.1 and Chap. IV,_. 1])
(i) For any formal group law Φ over k there exists a formal group law F over OK

such that Φ = Fk . _e correspondenceΦ ↦ M(F) is an anti-equivalence between
FG(k) and C;

(ii) _e correspondence F ↦ (L(F),M(F), ρ(F)) is an anti-equivalence between
FG(OK) and CT;

(iii) _e reduction functor fromFG(OK) toFG(k) corresponds to the forgetful functor
from CT to C, i.e., to the functor (L,M , ρ)↦ M.
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Let F be a d-dimensional formal group law over OK with logarithm λ of type u.
DeûneH(F) = (OdK ,Ed/Edu, κ),where κ∶OdK → Ed/Edu is induced by the inclusion
of OdK into Ed . One can easily show that H(F) is an object in the category CT. If
F ,G ∈ FG(OK) and f ∈ Hom(F ,G), J( f ) = D, then the mapping l ↦ lD, l ∈ OeK
induces amorphismH(G)→H(F) in CT, which deûnes a functor from FG(OK) to
CT.

Let F be a d-dimensional formal group law F over OK with logarithm λ =
(λ1 , . . . , λd). _e correspondence (a1 , . . . , ad) ↦ (a1λ1 , . . . , adλd) induces a mor-
phism H(F) → (L(F),M(F), ρ(F)) in CT. One can see that it gives a natural iso-
morphism between H and Fontaine functor (L,M , ρ).

Kernels inFG(k) have very easy construction. _e proof of the following theorem
is straightforward.

_eorem 1.3 Let M ,M′ ∈ C, Ψ ∈ Hom(M′ ,M), and

M▲ = {m ∈ M ∶ ▲hm ∈ ImΨ for some h ≥ 0}.

_en M/M▲ ∈ C along with redM▲
∶M → M/M▲ is a cokernel of themorphism Ψ.

2 Kernels in FG(OK)
Let (ψ,Ψ) be amorphism from (L′ ,M′ , ρ′) to (L,M , ρ) in the category CT. Deûne
L0 = {l ∈ L ∶ al = ψ(l ′) for some a ∈ OK , a ≠ 0 and l ′ ∈ L′}. _en L = L/L0 is a
torsion-free and therefore free OK-module.

Let M0 = ⟨ρ(L0)⟩ ⊂ M. Clearly, ImΨ ⊂ M0. For the quotient module
M = M/M0, there is a uniquely deûned OK-homomorphism ρ∶L → M such that
ρ ○ redL0 = redM0 ○ρ. Notice that▲may or may not be injective on M.

Let T = E⊗̂OKL and iT ∶L → T be the canonical inclusion, iT(l) = 1 ⊗ l . De-
ûne homomorphisms α∶T → M by α(∑▲k ⊗ lk) = ∑▲kρ(lk) and jT ∶T → L by
jT(∑▲k ⊗ lk) = l0. Clearly, α is surjective.

M
redM0 // M

L

ρ

OO

redL0

// L

ρ

OO

iT
// T

α
__

Denote J = {m ∈ T ∶ ▲hα(m) = 0 for some h ≥ 0} and J0 = jT(J). _en J
is a submodule of T containing Ker α, and J0 is a submodule of L. Notice that ▲ is
injective on T/J.

Lemma 2.1 pL ⊂ J0.

Proof _e properties of the triple (L,M , ρ) imply that pρ(L) ⊂ ▲M. Hence
pρ(L) ⊂ ▲M, i.e., α ○ iT(pl) ∈ ▲M for any l ∈ L. Since α is surjective, iT(pl) ∈
Ker α +▲T . As Ker α ⊂ J, we have pl ∈ J0.
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Lemma 2.1 implies that T/J ∈ C. However, the triple (L, T/J , redJ ○iT) may or
may not belong to CT. _us, one needs to modify T/J.

Lemma 2.2 Let A be anOK-module and let B be its submodule. Let C be amaximal
submodule among the submodules C′ of B satisfying the condition

a ∈ A, pa ∈ C′ Ô⇒ a ∈ C′ .
_en for any b ∈ B, there exists c ∈ C such that b − c ∈ pA.

Proof Put C′ = C +OKb. If C′ = C, then b ∈ C, and we are done. Otherwise, there
is a ∈ A∖ C′ such that pa = c + tb for some c ∈ C , t ∈ OK . If t = pt′ for t′ ∈ OK then
c = p(a − t′b). It gives a − t′b ∈ C, i.e., a ∈ C′, a contradiction. _erefore, t ∈ O∗

K and
b + t−1c ∈ pA, as required.

Let L+ be a submodule of J0 such that
(a) for any l ∈ J0 there exists l1 ∈ L+ with l − l1 ∈ pL;
(b) if l ∈ L, pl ∈ L+ then l ∈ L+.
_e latter condition implies that there exists a submoduleL− ofL such thatL+⊕L− =
L.

Lemma 2.2 proves the existence of L+. An equivalent andmore explicit construc-
tion can be given as follows. Let r∶L → L/pL be the reduction modulo p. Let
y1 , . . . , yn be an Fp-basis of r(J0). Choose any l1 , . . . , ln ∈ J0 such that r(lk) = yk , 1 ≤
k ≤ n. _en L+ = ⟨l1 , . . . , ln⟩.
Deûne an endomorphism τ0∶L→ L by

τ0(l) =
⎧⎪⎪⎨⎪⎪⎩

pl , l ∈ L+ ,
l , l ∈ L− .

Lemma 2.3 τ0(J0) = pL.

Proof For any l ∈ J0, there is l1 ∈ L+ such that l − l1 ∈ pL, which gives τ0(l) ∈ pL.
In order to prove the inclusion pL ⊂ τ0(J0), we consider separately two cases: l ∈ L+

and l ∈ L−. If l ∈ L+, then l ∈ J0 and pl = τ0(l) ∈ τ0(J0). If l ∈ L− then pl = τ0(pl) ∈
τ0(J0) by Lemma 2.1.

Extend τ0 to τ ∈ End T so that τ ○ iT = iT ○ τ0. Denote Mτ = T/τ(J) and ρτ =
redτ(J) ○iT . Since α is surjective and Ker α ⊂ J, there is a unique homomorphism
τ∗∶M → Mτ such that τ∗ ○ α = redτ(J) ○τ.

J �
�

// T τ //

α
��

T

redτ(J)
��

M
τ∗

// Mτ

Proposition 2.4 (L,Mτ , ρτ) ∈ CT.
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Proof Only the following properties are not obvious:
(1) ▲ is injective on Mτ . Let ▲m = τ(m1) for m ∈ T ,m1 ∈ J. _en m1 = ▲m2

and m = τ(m2) for some m2 ∈ T . Since m1 = ▲m2 ∈ J, it follows that m2 ∈ J. _us,
m ∈ τ(J), as required.

(2) pMτ ⊂ ▲Mτ . If l ∈ L, then pl ∈ τ0(J0) by Lemma 2.3, i.e., piT(l) =
τ(m1) +m2 for m1 ∈ J ,m2 ∈▲T , which gives the desired conclusion.

(3) _e inducedhomomorphismL/pL→ Mτ/▲Mτ is injective. If iT(l)−τ(m) ∈
▲T for l ∈ L,m ∈ J, then l = jT ○ iT(l) = jT ○ τ(m) = τ0 ○ jT(m) ∈ τ0(J0) = pL by
Lemma 2.3.

_e commutativity of the ûve inner diagrams implies that the outer diagram is
also commutative, i.e., (τ0 ○ redL0 , τ∗ ○ redM0) is a morphism from (L,M , ρ) to
(L,Mτ , ρτ).

M
redM0 // M τ∗ // Mτ

T

α
__

τ // T

redτ(J)

>>

L

ρ

OO

redL0 // L

iT
??

ρ

OO

τ0 // L

iT
``

ρτ

OO

_eorem 2.5 _e triple (L,Mτ , ρτ) alongwith (τ0 ○redL0 , τ∗ ○redM0) is a cokernel
of themorphism (ψ,Ψ).

Proof Let (ϕ,Φ) be amorphism from (L,M , ρ) to a triple (L̃, M̃ , ρ̃) ∈ CT such that
ϕ ○ ψ = 0,Φ ○ Ψ = 0. One needs to show that there exists a uniquemorphism (ξ, Ξ)
from (L,Mτ , ρτ) to (L̃, M̃ , ρ̃) such that (ϕ,Φ) = (ξ, Ξ) ○ (τ0 ○ redL0 , τ∗ ○ redM0).

M̃

M′ Ψ // M

Φ

55

redM0

// M
Φ̃

??

τ∗ // Mτ

Ξ

``

L′

ρ′

OO

ψ
// L

ρ

OO

redL0 //

ϕ
))

L

ρ

OO

τ0 //

ϕ̃

��

L

ρτ

OO

ξ
~~

L̃

ρ̃

OO

Since ϕ ○ ψ = 0, one has ϕ(L0) = 0, and there is a homomorphism ϕ̃∶L → L̃ such
that ϕ = ϕ̃ ○ redL0 . Similarly, ϕ(L0) = 0 implies Φ(M0) = 0, hence there is a homo-
morphism Φ̃∶M → M̃ such that Φ = Φ̃ ○ redM0 and Φ̃ ○ ρ = ρ̃ ○ ϕ̃.

Let l ∈ L+ ⊂ J0. _en iT(l)−m ∈▲T for somem ∈ J. It gives ρ̃○ ϕ̃(l) = Φ̃○ρ(l) =
Φ̃ ○ α ○ iT(l) ∈ ▲M̃. From the properties of (L̃, M̃ , ρ̃), we conclude that ϕ̃(l) ∈ pL̃,

https://doi.org/10.4153/CJM-2015-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-024-7


342 O. Demchenko and A. Gurevich

which enables us to deûne a homomorphism ξ∶L→ L̃ by

ξ(l) =
⎧⎪⎪⎨⎪⎪⎩

l1 for ϕ̃(l) = pl1 , l ∈ L+ ,
ϕ̃(l), l ∈ L− .

Clearly, ϕ̃ = ξ ○ τ0.
We next construct a homomorphism Ξ∶Mτ → M̃. For m = ∑▲k iT(lk) ∈ T , put

Ξ(m + τ(J)) = ∑▲k ρ̃ ○ ξ(lk). If∑▲k iT(lk) ∈ τ(J), then

∑▲k iT(lk) = τ(∑▲k iT(l ′k)) =∑▲k iT ○ τ0(l ′k)

for∑▲k iT(l ′k) ∈ J. It implies lk = τ0(l ′k), k ≥ 0 and▲hα(∑▲k iT(l ′k)) = 0 for some
h ≥ 0.

Oneneeds to prove that∑▲k ρ̃○ξ(lk) = 0. Since Φ̃○α○iT = Φ̃○ρ = ρ̃○ϕ̃ = ρ̃○ξ○τ0,
one gets∑▲k ρ̃○ξ(lk) = ∑▲k ρ̃○ξ○τ0(l ′k) = ∑▲kΦ̃○α○iT(l ′k) = Φ̃○α(∑▲k iT(l ′k)).
_erefore,▲h(∑▲k ρ̃ ○ ξ(lk)) = 0 and∑▲k ρ̃ ○ ξ(lk) = 0, as required. It shows that
Ξ is well deûned.
Clearly, Ξ ○ redτ(J) ○iT = ρ̃ ○ ξ, i.e., (ξ, Ξ) is a morphism from (L,Mτ , ρτ) to

(L̃, M̃ , ρ̃).
Note that

Ξ ○ redτ(J) ○τ(∑▲k iT(lk)) = Ξ ○ redτ(J)(∑▲k iT ○ τ0(lk))

=∑▲k ρ̃ ○ ξ ○ τ0(lk) =∑▲kΦ̃ ○ α ○ iT(lk)

= Φ̃ ○ α(∑▲k iT(lk)) .

Finally, ϕ = ϕ̃○redL0 = ξ○τ0 ○redL0 , and since α is surjective, the equality Φ̃○α =
Ξ○redτ(J) ○τ = Ξ○τ∗○α implies Φ̃ = Ξ○τ∗,which givesΦ = Φ̃○redM0 = Ξ○τ∗○redM0 .

What remains is to show the uniqueness of (ξ, Ξ). Suppose that there are homo-
morphisms ξ′∶L → L̃ and Ξ′∶Mτ → M̃ such that Ξ′ ○ ρτ = ρ̃ ○ ξ′, ϕ = ξ′ ○ τ0 ○ redL0

and Φ = Ξ′ ○ τ∗ ○ redM0 . Clearly, ξ′ ○ τ0 = ϕ̃ = ξ ○ τ0, which gives ξ′ = ξ.
Now, Ξ′ ○ redτ(J) ○iT = Ξ ○ redτ(J) ○iT and Ξ′ ○ redτ(J) = Ξ ○ redτ(J), hence Ξ′ =

Ξ.

Corollary 2.6 Let F ,G ∈ FG(OK) and f ∈ Hom(F ,G). If (F0 , f0) is a kernel of f ,
then dim F0 = dim F − rkK J( f ) and rkK J( f0) = dim F0.

Example Let F be a 3-dimensional formal group law over Zp with logarithm

λ(x1 , x2 , x3) = (x1 , x2 , x3 − x p
1 /p − x p2

2 /p).

_en f = (0 0 p)λ for f (x1 , x2 , x3) = px3 − x p
1 − x p2

2 , which implies f ∈ Hom(F , Fa).
Consider a 2-dimensional formal group lawH overZp with logarithm µ(y1 , y2) =

(y1 − yp
2 /p, y2). Since λ ○ h = Dµ for

h(y1 , y2) = ( py1 − yp
2 , y2 , ((py1 − yp

2 )p + yp2

2 )/p) and D =
⎛
⎜
⎝

p 0
0 1
0 0

⎞
⎟
⎠
,
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we obtain that h ∈ Hom(H, F) and f ○ h = 0.
In order to show that (H, h) is a kernel of the homomorphism f , we use the con-

struction from_eorem 2.5. _e logarithms λ and µ are of types u and v, respectively,
where

u =
⎛
⎜
⎝

p 0 0
0 p 0
▲ ▲2 p

⎞
⎟
⎠

and v = (p ▲
0 p) .

Let La be a free Zp-module with generator d; L be a free Zp-module with gener-
ators d1 , d2 , d3 and ψ(d) = pd3. Moreover,

M = ⟨ ρ(d1), ρ(d2), ρ(d3)⟩/⟨ pρ(d1), pρ(d2), pρ(d3) +▲ρ(d1) +▲2ρ(d2)⟩ .

It is clear that L0 is generated by d3, thus L = ⟨d 1 , d2⟩, where d j = redL0 d j , 1 ≤
j ≤ 2, and

M ≅ ⟨ ρ(d 1), ρ(d2)⟩/⟨ pρ(d 1), pρ(d2),▲ρ(d 1) +▲2ρ(d2)⟩ .

Denoting D j = iT(d j), 1 ≤ j ≤ 2, we have T = ⟨D1 ,D2⟩. Moreover,
J = ⟨D1 +▲D2 , pD1 , pD2⟩ = ⟨D1 +▲D2 , pD2⟩,

since▲α(D1 +▲D2) = α(pD1) = α(pD2) = 0. Notice that (L, T/J , redJ ○iT) is not
an object in CT, since L/pL is a Z/pZ-module of rank 2, while (T/J)/▲ (T/J) is a
Z/pZ-module of rank 1 generated by the image of D2+ J. We have J0 = ⟨d 1 , pd2⟩, and
we can choose L+ = ⟨d 1⟩, L− = ⟨d2⟩. In this situation, τ0(d 1) = pd 1 , τ0(d2) = d2.
_erefore,

τ(J) = ⟨pD1 +▲D2 , pD2⟩ and Mτ = T/τ(J) = ⟨D1 ,D2⟩/⟨pD1 +▲D2 , pD2⟩.
_us, the logarithm of a kernel is of type v and the Jacobian matrix of the corre-

sponding homomorphism is equal to D.

In some cases, the construction of kernel in the category FG(OK) can be signiû-
cantly simpliûed as the following proposition shows.

Proposition 2.7 _e following conditions are equivalent:
(i) pρ(L0) ⊂▲M0;
(ii) ▲ is injective on M;
(iii) J = Ker α;
(iv) J0 = pL;
(v) τ is identical.

Proof Implications (ii)⇒ (iii) and (iv)⇔ (v) are clear.
(i)⇒ (ii) Let▲m ∈ M0 for some m ∈ M. _en▲m = ρ(l0) +m1, where l0 ∈ L0,

m1 ∈ ▲M0. Evidently, l0 = pl and l ∈ L0. It gives ▲m ∈ ▲M0; thus, m ∈ M0, as
required.

(ii)⇒ (i) If pρ(l) = ▲m for l ∈ L0 ,m ∈ M, then ▲m̃ = 0 for m̃ = redM0 m. It
gives m̃ = 0, i.e., m ∈ M0.

(iii) ⇒ (ii) If ▲m̃ = 0 for m̃ ∈ M, then for m ∈ T , m̃ = α(m) one gets m ∈ J,
whence m̃ = 0.
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(iii)⇒ (iv) If l ∈ J0, then iT(l) = m1 + m2, where m1 ∈ Ker α, m2 ∈ ▲T . It gives
ρ(l) = α(m2) ∈▲M, which in turn implies l ∈ pL.

(iv)⇒ (iii) It suõces to show that any m ∈ J can be represented as m = m1 +m2,
wherem1 ∈▲T andm2 ∈ Ker α. Since J0 = pL, one has m− iT(pl) ∈▲T for some l ∈
L. Furthermore, ρ(pl) ∈▲M, whence iT(pl) −m2 ∈▲T for some m2 ∈ Ker α.

If one of the equivalent conditions of Proposition 2.7 is satisûed, then Mτ = M and
ρτ = ρ.

Corollary 2.8 Let (L′ ,M′ , ρ′), (L,M , ρ) ∈ CT and (ψ,Ψ) is a morphism between
them. IfM▲ = M0, then▲ is injective on M andM/M▲ ≅ Mτ .

Proof If m ∈ M and▲m ∈ M0 = M▲, then▲h(▲m) ∈ ImΨ for some h ≥ 0. _us,
m ∈ M▲ = M0, as required. _e last statement is clear.

Notice that for themultiplication by p in Fa , one has M0 = M,M▲ = 0, and▲ is in-
jective on M,which shows that the conditions of Proposition 2.7 can be satisûed even
if M▲ ≠ M0. In addition, it provides an example where the reduction of the kernel is
not isomorphic to the kernel of the reduction (cf. Corollary 3.7 and Corollary 4.4).

3 Formal Group Laws of Finite Height

A module M ∈ C or a triple (L,M , ρ) ∈ CT are of ûnite height if M is torsion-free
as OK-module. Correspondingly, a formal group law F over k or OK has ûnite height
if M(F) is torsion-free as OK-module. A matrix u ∈ Md(E) is of ûnite height if it
satisûes one of the following equivalent conditions ([De, Proposition 10]).
(a) _ere exist w ∈ Md(E) and an integer h such that wu ≡▲h Id mod p.
(b) _ere exist w ∈ Md(E) and an integer h such that uw ≡▲h Id mod p.
(c) If su ≡ 0 mod p for s ∈ Me ,d(E), then s ≡ 0 mod p.
(d) If us ≡ 0 mod p for s ∈ Md ,e(E), then s ≡ 0 mod p.

Lemma 3.1 A formal group law over OK is of ûnite height if and only if its type is of
ûnite height.

Proof Let u be a type of a formal group law corresponding to the triple (L,M , ρ) ∈
CT. For a basis l1 , . . . , ld of L one has u(ρ(l1), . . . , ρ(ld))T = 0. Let m ∈ M and
pm = 0. If m = ∑di=1 t iρ(l i), t1 , . . . , td ∈ E,Honda theory implies that p(t1 , . . . , td) =
(s1 , . . . , sd)u for some s1 , . . . , sd ∈ E. Since u is of ûnite height, one gets s i = ps̃ i , 1 ≤
i ≤ d. _us (t1 , . . . , td) = (̃s1 , . . . , s̃d)u, which gives m = 0.

Suppose M is torsion-free and su ≡ 0 mod p for s ∈ Me ,d(E). One can assume
that e = 1, s = (s1 , . . . , sd) and (s1 , . . . , sd)u = p(t1 , . . . , td). _en ∑di=1 t iρ(l i) =
0 which gives (t1 , . . . , td) = (̃s1 , . . . , s̃d)u for s̃1 , . . . , s̃d ∈ E. _us (s1 , . . . , sd)u =
p(̃s1 , . . . , s̃d)u, whence (s1 , . . . , sd) = p(̃s1 , . . . , s̃d) as u ∈ GLd(E⊗ k).

Lemma 3.2 For (L,M , ρ) ∈ CT of ûnite height
(i) M/pM is a ûnite dimensional vector space over k;
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(ii) there exists h > 0 such that▲hM ⊂ pM.

Proof Let u be a type of a formal group law corresponding to (L,M , ρ). If l1 , . . . , ld
is a basis of L, then u(ρ(l1), . . . , ρ(ld))T = 0. _e type u is of ûnite height by
Lemma 3.1; thus, there exist w ∈ Mn(E) and an integer h such that wu ≡ ▲h In
mod p. It yields ▲h(ρ(l1), . . . , ρ(ld))T ∈ pMd , whence the set {▲ jρ(l i)} 1≤i≤d

0≤ j≤h−1

spans M/pM.

Lemma 3.3 For squarematrices a and d, if amatrix ( a pb
c d ) is of ûnite height, then

a and d are also of ûnite height.

Proof If a is not of ûnite height then there exists a matrix s /≡ 0 mod p such that
sa ≡ 0 mod p. _en

(s 0)(a pb
c d ) ≡ 0 mod p,

a contradiction. A similar argument shows that d is also of ûnite height.

Proposition 3.4 Let F ,G be d and e-dimensional formal group laws over OK , F be
of ûnite height and f ∈ Hom(F ,G). _en there are integers 0 ≤ s1 < ⋅ ⋅ ⋅ < sk , matrices
C1 ∈ GLe(OK),C2 ∈ GLd(OK) and a type u = {u i j}1≤i , j≤k+1 of the logarithm of F for
u i j ∈ Mn i ,n j(OK) such that

C1 J( f )C2 =
⎛
⎜⎜⎜
⎝

ps1 In1

⋱
psk Ink

0

⎞
⎟⎟⎟
⎠

and
(i) u i ,k+1 = 0 for 1 ≤ i ≤ k,
(ii) u i , j ≡ 0 mod ps j−s i for 1 ≤ i < j ≤ k,
(iii) u i , i is of ûnite height for 1 ≤ i ≤ k + 1.

Proof Consider the corresponding situation in the category CT. Let (ψ,Ψ) be a
morphism from (L′ ,M′ , ρ′) to (L,M , ρ) and (L,M , ρ) be of ûnite height. In some
bases of L′ and L thematrix of ψ has Smith normal form

⎛
⎜⎜⎜
⎝

ps1 In1

⋱
psk Ink

0

⎞
⎟⎟⎟
⎠

Let the lower-right zero submatrix belong to Mnk+1 ,n′k+1
(OK). For notation simplicity,

put n′j = n j for 1 ≤ j ≤ k. Denote by ψn the OK-morphism from L′n to Ln induced
by ψ. Let l ′j ∈ L′n′j , 1 ≤ j ≤ k + 1 and l j ∈ Ln j , 1 ≤ j ≤ k + 1 be tuples of vectors
whose components form the corresponding Smith normal bases in L′ and L such
that ψn j(l ′j) = ps j l j , 1 ≤ j ≤ k, and ψn′k+1

(l ′k+1) = 0.
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_ere are a i j ∈ Mn′i ,n
′

j
(OK), 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1 such that ∑k+1

j=1 a i jρ′(l ′j) = 0,
1 ≤ i ≤ k, and

a i j ≡
⎧⎪⎪⎨⎪⎪⎩

0 mod ▲ if i ≠ j,
pIn j mod ▲ if i = j,

_en ∑k
j=1 ps ja i jρ(l j) = 0, 1 ≤ i ≤ k. Since M is torsion-free, in particular we get

∑k
j=1 ps j−s1a1 jρ(l j) = 0.
_ere are b i j ∈ Mn i ,n j(OK), 2 ≤ i ≤ k + 1, 1 ≤ j ≤ k + 1 such that∑k+1

j=1 b i jρ(l j) = 0,
2 ≤ i ≤ k + 1, and

b i j ≡
⎧⎪⎪⎨⎪⎪⎩

0 mod ▲ if i ≠ j,
pIn j mod ▲ if i = j,

_en

⎛
⎜⎜⎜
⎝

a1,1 ps2−s1a1,2 ⋅ ⋅ ⋅ psk−s1a1,k 0
b2,1 b2,2 ⋅ ⋅ ⋅ b2,k b2,k+1
⋮ ⋮ ⋮ ⋮

bk+1,1 bk+1,2 ⋅ ⋅ ⋅ bk+1,k bk+1,k+1

⎞
⎟⎟⎟
⎠

is a type of F and thus is of ûnite height by Lemma 3.1.
We show by induction on m that there exists a type u(m) = {u i j}1≤i , i≤k+1 of F such

that u i ,k+1 = 0 for 1 ≤ i ≤ m and u i , j ≡ 0 mod ps j−s i for 1 ≤ i ≤ m, i + 1 ≤ j ≤ k.
_e existence of u(1) is already proved. Suppose that u(m) exists. By Honda theory
the equality∑k

j=1 ps jam+1, jρ(l j) = 0 yields

(ps1am+1,1 ps2am+1,2 ⋅ ⋅ ⋅ psk am+1,k 0) = (w1 w2 ⋅ ⋅ ⋅ wk+1)u(m)

for some w j ∈ Mn j(OK), 1 ≤ j ≤ k + 1.
Prove by induction on t that wt , . . . ,wk+1 ≡ 0 mod ps t for 1 ≤ t ≤ m + 1. Suppose

the assumption holds for all integers not exceeding the given t ≤ m. In particular, it
implies that w i ≡ 0 mod ps i for any 1 ≤ i ≤ t. _en

k+1

∑
i=t+1

w iu i j = ps jam+1, j −
t

∑
i=1

w iu i j ≡ 0 mod ps t+1

for t + 1 ≤ j ≤ k + 1. Since {u i j} 1≤i≤t
t+1≤ j≤k+1

≡ 0 mod p, Lemma 3.3 implies that
{u i j}t+1≤i , j≤k+1 is of ûnite height, therefore the congruence

{w i}t+1≤i≤k+1{u i j}t+1≤i , j≤k+1 ≡ 0 mod ps t+1

yields w i ≡ 0 mod ps t+1 , t + 1 ≤ i ≤ k + 1.
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Now, ifw i = ps i ŵ i for 1 ≤ i ≤ m,w i = psm+1ŵ i form+1 ≤ i ≤ k+1 andu i j = ps j−s i û i j
for 1 ≤ i ≤ m, i + 1 ≤ j ≤ k, one gets

0 =
k

∑
j=1

ps jam+1, jρ(l j) =
m

∑
j=1

ps jam+1, jρ(l j) +
k

∑
j=m+1

ps jam+1, jρ(l j)

=
m

∑
j=1

k+1

∑
i=1

w iu i jρ(l j) +
k

∑
j=m+1

ps jam+1, jρ(l j)

=
m

∑
i=1

w i

m

∑
i=1

u i jρ(l j) +
k+1

∑
i=m+1

w i

m

∑
j=1

u i jρ(l j) +
k

∑
j=m+1

ps jam+1, jρ(l j)

= −
m

∑
i=1

w i

k

∑
j=m+1

u i jρ(l j) +
k+1

∑
i=m+1

w i

m

∑
j=1

u i jρ(l j) +
k

∑
j=m+1

ps jam+1, jρ(l j).

Dividing by psm+1 , we obtain

−
m

∑
i=1

k

∑
j=m+1

ps j−sm+1ŵ i û i jρ(l j) +
k+1

∑
i=m+1

ŵ i

m

∑
j=1

u i jρ(l j)

+
k

∑
j=m+1

ps j−sm+1am+1, jρ(l j) = 0.

Since û i j ≡ 0 mod ▲, all the coeõcients here other than am+1,m+1 are congruent to 0
modulo▲. _us, one can replace the (m+1)-th line of u(m) with these coeõcients. It
remains to observe that the coeõcient at ρ(lk+1) equals 0 and the coeõcients at ρ(l j)
are congruent to 0 modulo ps j−sm+1 for m + 2 ≤ j ≤ k.

Denote Mp = {m ∈ M ∶ am = Ψ(m′) for some a ∈ OK , a ≠ 0 and m′ ∈ M′}.

Proposition 3.5 Let (ψ,Ψ) be a morphism from (L′ ,M′ , ρ′) to (L,M , ρ) in the
category CT.
(i) If (L,M , ρ) has ûnite height, then pρ(L0) ⊂▲M0;
(ii) If both (L,M , ρ) and (L′ ,M′ , ρ′) have ûnite height then M▲ = M0 = Mp .

Proof (i) Apply Proposition 3.4. It suõces to notice that L0 equals to the span of
the components of l0 , . . . , lk .

(ii) SinceL is of ûnite rank, there is an element a ∈ OK , a ≠ 0 such that aL0 ⊂ Imψ.
_en aM0 ⊂ ImΨ, which implies M0 ⊂ Mp .

Now let m ∈ Mp , i.e., am = Ψ(m′) for some a ∈ OK , a ≠ 0 andm′ ∈ M′. According
to Lemma 3.2 there is h ≥ 0 and m′′ ∈ M′ such that▲hm′ = am′′. It implies▲hm =
(a/a∆h)Ψ(m′′) ∈ ImΨ, and thus Mp ⊂ M▲.
Finally,▲ is injective on M by Proposition 2.7. So if m ∈ M▲, i.e.,▲hm ∈ ImΨ ⊂

M0 for some h ≥ 0, then m ∈ M0. _us, M▲ ⊂ M0, and we are done.

Corollary 3.6 If (ψ,Ψ) is a morphism in CT from (L′ ,M′ , ρ′) to (L,M , ρ) and
(L,M , ρ) is of ûnite height, then (L,M , ρ) along with (redL0 , redM0) is a cokernel of
(ψ,Ψ).
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Proof _e proof follows from _eorem 2.5 and Proposition 2.7.

Corollary 3.7 In the category of formal group laws of ûnite height, kernel commutes
with the reduction modulo p.

Proof _is follows from Corollary 2.8.

Corollary 3.8 A kernel of a homomorphism between formal group laws of ûnite height
is also of ûnite height.

Proof Remark that M = M/M0 = M/Mp is torsion-free.

4 Pure Homomorphisms

Lemma 4.1 For D ∈ Me ,d(OK) the following conditions are equivalent:
(i) rkK D = rkk(D ⊗ k);
(ii) If x ∈ OdK , y ∈ OeK satisfy the equality Dx = py, then there exists x′ ∈ OdK such that

Dx′ = y;
(iii) If x ∈ OeK , y ∈ OdK satisfy the equality xD = py, then there exists x′ ∈ OeK such that

x′D = y;
(iv) _ere exist 0 ≤ r ≤ min(e , d) and Q ∈ GLd(OK) such that DQ = (D′ 0),

where D′ ∈ Me ,r(OK) and CD′ = Ir for some C ∈ Mr ,e(OK);
(v) _ere exist 0 ≤ r ≤ min(e , d) and Q ∈ GLe(OK) such that QD = (D

′

0 ), where
D′ ∈ Mr ,d(OK) and D′C = Ir for some C ∈ Md ,r(OK).

Proof _e matrix D has the Smith normal form, i.e., there are invertible matrices
C1 and C2 such that

C1DC2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1 0 ⋅ ⋅ ⋅ 0
0 ⋱ 0

pr
⋮ 0 ⋮

⋱
0 0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where p1 , . . . , pr are non-decreasing p-powers. It is easy to see that all the conditions
of the lemma are equivalent to the fact that p1 = ⋅ ⋅ ⋅ = pr = 1.

Let ψ∶L1 → L2 be a homomorphism of free OK-modules of ûnite rank. _en the
p-divisible closure of Imψ in L2 coincides with Imψ (i.e., if al2 ∈ Imψ for some
a ∈ OK , a ≠ 0, and l2 ∈ L2, then l2 ∈ Imψ) if and only if the matrix of ψ in some
(and therefore in any) free OK-bases of L1 and L2 satisûes the equivalent conditions
of Lemma 4.1. In this case, we say that ψ is pure.
A homomorphism of formal groups laws over OK is called pure, if its Jacobian

matrix satisûes the equivalent conditions of Lemma 4.1. A morphism (ψ,Ψ) in the
category CT is called pure, if ψ is pure. Clearly, the notions of purity in FG(k) and CT
agree in the sense of Fontaine’s correspondence.

https://doi.org/10.4153/CJM-2015-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-024-7


Kernels in the Category of Formal Group Laws 349

Proposition 4.2 If (ψ,Ψ) is a pure morphism in the category CT from (L′ ,M′ , ρ′)
to (L,M , ρ), then pρ(L0) ⊂▲M0 andM▲ = M0.

Proof Since L0 = Imψ we have M0 = ImΨ, and hence M0 ⊂ M▲. In order to
show that pρ(L0) ⊂ ▲M0 let l ∈ L0, i.e., l = ψ(l ′) for some l ′ ∈ L′. _en pρ′(l ′) =
∑k≥1▲kρ′(l ′k), l ′k ∈ L′. It yields

pρ(l) = pρ ○ ψ(l ′) = Ψ(pρ′(l ′)) =∑
k≥1

▲kΨ ○ ρ′(l ′k) =∑
k≥1

▲kρ(ψ(l ′k)) ∈▲M0 .

Now Proposition 2.7 implies that▲ is injective on M. Finally, ifm ∈ M▲, i.e.,▲hm ∈
ImΨ = M0 for some h ≥ 0, then m ∈ M0. _us, M▲ ⊂ M0.

sloppyNotice that for a puremorphism (ψ,Ψ),Mp may or may not coincidewith
M▲ = M0. Indeed, for the zero endomorphism of the additive formal group law,
M▲ = M0 = 0 holds, whereas Mp = M (cf. Proposition 3.5).

Corollary 4.3 If (ψ,Ψ) is a pure morphism in CT from (L′ ,M′ , ρ′) to (L,M , ρ),
then (L,M , ρ) along with (redL0 , redM0) is a cokernel of (ψ,Ψ).

Proof _is follows from _eorem 2.5 and Proposition 2.7.

Corollary 4.4 For a pure homomorphism in FG(OK), kernel commutes with the
reduction modulo p.

Proof _is follows from Corollary 2.8.

Proposition 4.5 Let F ,G be d- and e-dimensional formal group laws over OK , the
logarithm of F be of type u and f ∈ Hom(F ,G). Suppose that f is pure. In particular,
there exists Q ∈ GLd(OK) such that J( f )Q = (D′ 0), where D′ ∈ Me ,r(OK) and
CD′ = Ir for some C ∈ Mr ,e(OK). _en there is a kernel of f represented by a (d−r)-di-
mensional formal group law H and h ∈ Hom(H, F) such that the logarithm of H is
of type equal to the lower-right (d − r) × (d − r)-submatrix of Q−1uQ and J(h) =
Q(0 Id−r)T .

Proof Consider the formal group law F′(X ,Y) = Q−1F(QX ,QY) with the loga-
rithm of type u′ = Q−1uQ and the homomorphism f ′(X) = f (QX) ∈ Hom(F′ ,G)
with J( f ′) = J( f )Q. _enH(F′) = (OdK ,Ed/Edu′ , κ). _e ûrst component ofH( f ′)
is themapping ψ∶OeK → OdK ,ψ(m) = mJ( f ′) for which, in the case under considera-
tion, Imψ is the subset of the elements ofOdK with the last d−r coordinates equal to 0.
Indeed, for any m ∈ OeK , we have ψ(m) = mJ( f )Q = (mD′ 0), and for any y ∈ Or

K ,
we get ψ(yC) = (yCD′ 0) = (y 0). Since ψ is pure, L0 = Imψ and hence M0 =
⟨κ(Imψ)⟩. _us, by Corollary 4.3, the triple (OdK/ Imψ, (Ed/Edu′)/⟨κ(Imψ)⟩, κ̂)
gives a kernel of f ′, where κ̂ is induced from κ by factoring modulo Imψ. It corre-
sponds to a formal group law H with the logarithm of the required type and a homo-
morphism h′ ∈ Hom(H, F′) with J(h′) = (0 Id−r)T . A kernel of f can be given by
H and h = Qh′, and we are done.
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Let a group G act on a formal group law F, i.e., there is a ûxed homomorphism
G→ AutOK (F). We say that (H, h) is a universal ûxed pair for (F ,G) if H is a formal
group law over OK , h ∈ Hom(H, F) is such that σ ○ f = f for any σ ∈ G, and for any
pair (H′ , h′) satisfying the above properties, there exists a unique g ∈ Hom(H′ ,H)
such that h′ = h ○ g.

Corollary Let F be a d-dimensional formal group law over OK provided with an ac-
tion of a ûnite group G. Suppose that there exists 0 ≤ r ≤ d and Q ∈ GLd(OK) such that
for any σ ∈ G one has J(σ)Q = (D′σ 0), where D′σ ∈ Md ,r(OK) and∑σ∈G CσD′σ = Ir
for some Cσ ∈ Mr ,d(OK). _en there exists a universal ûxed pair (H, h) for (F ,G) such
that a type of the logarithm of H equals the lower-right (d − r) × (d − r)-submatrix of
Q−1uQ and J(h) = Q(0 Id−r)T , where u is a type of the logarithm of F.

Proof Let G = {σ(1) , . . . , σ(m)} and let G be the direct sum of m copies of F. For
f = (σ(1) , . . . , σ(m)) ∈ Hom(F ,G) one has

J( f ) =
⎛
⎜
⎝

J(σ(1))
⋮

J(σ(m))

⎞
⎟
⎠
.

_en J( f )Q = (D′ 0) and CD′ = Ir for

D′ =
⎛
⎜
⎝

D′σ(1)
⋮

D′σ(m)

⎞
⎟
⎠

and C = (Cσ(1) ⋅ ⋅ ⋅Cσ(m)). According to Proposition 4.5 there exists a kernel (H, h)
of f that satisûes the required conditions. Clearly, (H, h) is a universal ûxed pair for
(F ,G).

_e above corollary is essentially [DGX,_eorem 3.5].
Let F, G be formal group laws over OK . A homomorphism f ∈ Hom(F ,G) is a

strong monomorphism if for any N ∈ Ni lOK , the morphism f (N)∶ F(N) → G(N) is
amonomorphism.
A pair (H, h), where H ∈ FG(OK), h ∈ Hom(H, F), is called a strong kernel

of f if for any N ∈ Ni lOK the homomorphism h(N) is injective and the subgroup
h(N)(H(N)) of F(N) coincides with the kernel of f (N). _e Yoneda lemma im-
plies that any strong kernel is a kernel and, therefore, any strong monomorphism is a
monomorphism.

Proposition 4.6 Let F ,G ∈ FG(OK) and let f ∈ Hom(F ,G). If f is pure, then any
kernel of f is strong.

Proof Let Q ∈ GLd(OK) be such that J( f )Q = (D′ 0) where D′ ∈ Me ,r(OK)
and CD′ = Ir for some C ∈ Mr ,e(OK). Consider F′(X ,Y) = Q−1F(QX ,QY) and
f ′(X) = f (QX). _en f ′ ∈ Hom(F′ ,G), J( f ′) = (D′ 0) and Proposition 4.5
implies that there is a kernel of f ′ represented by a (d − r)-dimensional formal group
law H′ and h′ ∈ Hom(H′ , F′) such that J(h′) = (0 Id−r)T .
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Now it suõces to prove that this kernel is strong. Obviously, h′(N) is injective for
N ∈ Ni lOK . Pick any α ∈ N r , β ∈ Nd−r satisfying f ′(α, β) = 0. Let h′ = (h1 , h2) for
h1 ∈ OK[[x1 , . . . , xd−r]]r , h2 ∈ OK[[x1 , . . . , xd−r]]d−r . _en J(h2) = Id−r , and there-
fore one can ûnd γ ∈ Nd−r such that h2(γ) = β.
Denote ψ(Z) = C f ′(Z , β) for Z = (z1 , . . . , zr). _en J(ψ) = Ir and ψ is invertible.

_e equality ψ(α) = C f ′(α, β) = 0 = C f ′(h1(γ), h2(γ)) = ψ(h1(γ)) gives α = 0 =
h1(γ), as required.

We complete this sectionwith necessary and suõcient conditions on a homomor-
phism in FG(OK), which guarantees that it is a (strong) monomorphism.

Let D be an m × n-matrix with entries in a ring A. By abuse of notation, KerD
stands for the sub-A-module of An given by all a = (a1 , . . . , an) ∈ An such that
DaT = 0.

Proposition 4.7 Let F ,G ∈ FG(OK), f ∈ Hom(F ,G), and D = J( f ) ∈ Me ,d(OK).
_en
(i) f is amonomorphism if and only if KerD = {0};
(ii) f is a strong monomorphism if and only if Ker(D ⊗ k) = {0}.

Proof (i) _is follows from Corollary 2.6.
(ii) First, suppose that f is a strong monomorphism. Consider k as anOK-algebra

with zero multiplication and scalar multiplication induced by the reduction map.
_en F(k) = kd , G(k) = ke and f (k) is a multiplication by D ⊗ k. Since f (k) is
amonomorphism, Ker(D ⊗ k) = {0}.
Conversely, suppose that Ker(D ⊗ k) = {0}. _en KerD = {0} and the zero

homomorphism gives a kernel of f . Since rkOK KerD = dimk Ker(D ⊗ k) = 0, this
kernel is strong by Proposition 4.6. It shows that f is a strong monomorphism.

5 Formal Group Laws Coming From Tori

We present some applications of the above results to formal group law homomor-
phisms associated with homomorphisms of algebraic tori.

Let B be an algebra over a ring A and e1 , . . . , en be a free basis of B as an A-module.
For a one-dimensional formal group law F over B, theWeil restriction with respect to
B/A and e1 , . . . , en is deûned as an n-dimensional formal group law R = (R1 , . . . , Rn)
over A such that∑n

i=1 R i e i = F(∑n
i=1 x i e i ,∑n

i=1 y i e i). Similarly, theWeil restriction of
a d-dimensional formal group law can be deûned (see [DGX, Section 4] for details).

Local Norm Homomorphism

Let L/K be a ûnite extension and let e1 , . . . , en be a free OK-basis of OL . Let
R denote the Weil restriction of Fm with respect to OL/OK and e1 , . . . , en . Put
P(X) = NL/K(1 +∑n

i=1 x i e i) − 1, where NL/K stands for the norm map. _en P ∈
HomOK (R, Fm).

Proposition 5.1 If L/K is tamely ramiûed, then P is pure.
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Proof We have P(X) ≡ ∑n
i=1(trL/K e i)x i mod deg 2. If all the entries of J(P) are

divisible by p, then trL/K OL ⊂ pOK ,which is impossible, since L/K is tamely ramiûed.

Let (H, h) denote a kernel of P.

Corollary If L/K is tamely ramiûed, then Im h(N) = Ker P(N) for any nilpotent
OK-algebra N.

Proof _is follows from Proposition 4.6.

_is corollary can be interpreted as a consequence of a result on an integer model
for the Weil restriction of the multiplicative group scheme with respect to a tamely
ramiûed extension. Indeed, R can be identiûed with the formal completion of

W = SpOK
OK[x0 , x1 , . . . , xn]/x0NL/K( 1 +

n

∑
i=1

x i e i) − 1.

Further, if L/K is tamely ramiûed, T = SpOK
OK[X]/P(X) is smooth. Denote by H′

its formal completion, and by h′ the completion of themorphism ι∶T →W, which is
the kernel of thenormmap fromW to themultiplicative group scheme overOK . Since
T is aõne, for any nilpotentOK-algebra N , one has Im h′(N) = Im ι(N) = Ker P(N),
and hence (H′ , h′) is also a kernel of P. _is implies the required statement.

We proceed with the computation ofHonda’s type of H in three special cases. _e
base ûeld K = Qp .

I. Unramiûed case.
Let L be an unramiûed extension ofQp of degree n. According to the normal basis

theorem, there is ζ ∈ Fpn such that

ζ , ζ
p
, . . . , ζ

pn−1

are linearly independent overFp . If ζ ∈ OL is theTeichmüller representative of ζ , then
δ = trL/Qp ζ = ζ + ζ p + ⋅ ⋅ ⋅ + ζ pn−1 ∈ Z∗p . Put e i = ζ p i−1

.
_e logarithm of R is of type pIn −V▲, where V = {v i , j}1≤i , j≤n , v i , j = 1 if j = i − 1

or j = i + n − 1 and v i , j = 0 otherwise ([DGX, Proposition 7.2]), and the Jacobian
matrix J(P) = (δ, . . . , δ). Take Q = {q i , j}1≤i , j≤n with q i , j = 1 if j = i, q i , j = −1 if
i = 1, j > 1, and q i , j = 0 otherwise. _en Q−1 = {q′i , j}1≤i , j≤n , where q′i , j = 1 if j = i or
i = 1, and q′i , j = 0 otherwise:

Q =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 −1 ⋅ ⋅ ⋅ −1
0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟
⎠

, Q−1 =

⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 ⋅ ⋅ ⋅ 1
0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Proposition 4.5 implies that there is a kernel (H, h) of P such that the logarithm of H
is of type pIn−1 − S▲, where S = {s i , j}1≤i , j≤n−1, s i , j = 1 if j = i − 1, s i , j = −1 if i = 1,
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and s i , j = 0 otherwise, and J(h) = Q̃ = {q̃ i , j}1≤i≤n ,1≤ j≤n−1, where q̃ i , j = 1 if j = i − 1,
q̃ i , j = −1 if i = 1, q̃ i , j = 0 otherwise:

S =

⎛
⎜⎜⎜⎜⎜
⎝

−1 −1 −1 ⋅ ⋅ ⋅ −1
1 0 0 ⋅ ⋅ ⋅ 0
0 1 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟
⎠

, Q̃ =

⎛
⎜⎜⎜⎜⎜
⎝

−1 −1 ⋅ ⋅ ⋅ −1
1 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟
⎠

.

II. Totally ramiûed case of degree less than p.
Let L be a totally ramiûed extension of Qp of degree n ≤ p − 1. One can choose a

uniformizer t ∈ OL such that tn + a = 0, where a ∈ Zp , νp(a) = 1. Put e i = t i−1 , 1 ≤
i ≤ n. _e logarithm of R is of type pIn − V▲, where V = {v i , j}1≤i , j≤n , v i , j = 1 if
j = i = 1, and v i , j = 0 otherwise ([DGX, Proposition 7.2]), and the Jacobian matrix
J(P) = (n, 0, . . . , 0). Proposition 4.5 implies (Q = In) that there is a kernel (H, h) of
P such that the logarithm of H is of type pIn−1 and J(h) = (0 In−1)T . _is means
that H is isomorphic to the direct sum of n − 1 copies of Fa .

III. Totally ramiûed case of degree equal to p.
Let L be a totally ramiûed extension of Qp of degree p. One can choose a uni-

formizer t ∈ OL such that tp + a1 tp−1 + ⋅ ⋅ ⋅ + ap = 0, where a i ∈ Zp , νp(a i) ≥ 1 for any
1 ≤ i ≤ p and νp(ap) = 1. Put e i = t i−1 , 1 ≤ i ≤ p.
Denote by Λ = (Λ0 , . . . ,Λp−1) the logarithm of R. _en log(1 + ∑p−1

i=0 x i t i) =
∑p−1

i=0 Λ i t i ([DGX, Proposition 4.3]). Our ûrst purpose is to calculateHonda’s type of
Λ.
For any α ∈ OL there are {α}0 , . . . , {α}p−1 ∈ Zp such that α = ∑p−1

j=0{α} j t j .
Similarly, for any λ ∈ OL[[x]] there are {λ}0 , . . . , {λ}p−1 ∈ Zp[[x]] such that λ =
∑p−1

j=0{λ} j t j .

Lemma 5.2 νp({tn} j) ≥ [ n+p−1− j
p ] for any 0 ≤ j ≤ p − 1, n ≥ 0.

Proof _e proof is by induction on n. If n ≤ p − 1, then {tn} j = 0 for n ≠ j and
{tn} j = 1 for n = j. In both cases the inequality in question is evident. If n ≥ p, then
∑p−1

i=0{tn} j t j = (−∑p−1
i=0 ap−i t i)∑p−1

k=0{tn−p}k tk yields

{tn} j = −
p−1

∑
i ,k=0

ap−i{tn−p}k{t i+k} j

= − ∑
i+k= j

ap−i{tn−p}k − ∑
i+k≥p

ap−i{tn−p}k{t i+k} j .

_e induction assumption implies that νp({tn−p}k) ≥ [ n−1−k
p ] ≥ [ n−1− j

p ] for i + k = j
and νp({tn−p}k{t i+k} j) ≥ [ n−1−k

p ] + 1 ≥ [ n−1− j
p ] for i + k ≥ p.
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Proposition 5.3 If p ≠ 2, then Λ is of type

u =

⎛
⎜⎜⎜⎜⎜
⎝

p −▲ −z▲2 0 ⋅ ⋅ ⋅ 0
0 p 0 ⋅ ⋅ ⋅ 0
0 0 p ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ p

⎞
⎟⎟⎟⎟⎟
⎠

,

where z = ap
p (1 − ap−1

p ▲)−1.

Proof According to the formula for Λ mentioned above, we have

Λ j = ∑
n0+⋅⋅⋅+np−1=pk

k≥0

1
pk (

pk

n0 ⋅ ⋅ ⋅ np−1
){tn1+2n2+⋅⋅⋅+(p−1)np−1} j xn0

0 ⋅ ⋅ ⋅ xnp−1
p−1 .

We make use of an estimate for p-valuation of multinomial coeõcients (Lemma 1.4
of [De])

νp ((
pk

n0 ⋅ ⋅ ⋅ np−1
)) ≥ k − min

0≤i≤p−1
νp(n i).

Consider the summand

1
pk (

pk

n0 ⋅ ⋅ ⋅ np−1
){tn1+2n2+⋅⋅⋅(p−1)np−1} j xn0

0 ⋅ ⋅ ⋅ xnp−1
p−1

for any p-tuple (n0 , . . . , np−1) other than (pk , 0, . . . , 0). _e inequality

νp(
1
pk (

pk

n0 ⋅ ⋅ ⋅ np−1
){tn1+2n2+⋅⋅⋅(p−1)np−1} j) ≥

− min
0≤i≤p−1

νp(n i) + [
n1 + 2n2 + ⋅ ⋅ ⋅ + (p − 1)np−1 + p − 1 − j

p
]

shows that its coeõcient is p-integer, since νp(n) ≤ [ n
p ] for any n ≥ 1. In particular, it

gives pΛ j ≡ 0 mod p, 1 ≤ j ≤ p − 1, i.e., pΛ j ∈ pZp[[x0 , . . . , xp−1]]0.
If j = 0, then

[
n1 + 2n2 + ⋅ ⋅ ⋅ + (p − 1)np−1 − 1

p
] ≥ min νp(n i)

unless (n0 , . . . , np−1) = (pk − p, p, 0 . . . , 0).
If j = 1, then

[
n1 + 2n2 + ⋅ ⋅ ⋅ + (p − 1)np−1 − 2

p
] ≥ min νp(n i)

unless (n0 , . . . , np−1) = (pk − p, p, 0, . . . , 0) or (pk − 1, 1, 0, . . . , 0).
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_erefore, one has

Λ0 ≡ ∑
k≥0

1
pk x

pk

0 +∑
k≥1

1
pk (

pk

p
){tp}0x pk

−px p
1

≡ ∑
k≥0

1
pk x

pk

0 −
ap

p ∑k≥1
x pk

−px p
1 mod p

and

Λ1 ≡ ∑
k≥0

x pk
−1

0 x1 +∑
k≥1

1
pk (

pk

p
){tp}1x pk

−px p
1

≡ ∑
k≥0

x pk
−1

0 x1 −
ap−1

p ∑
k≥1

x pk
−px p

1 mod p.

In both congruences, the fact that (pk

p ) ≡ pk−1 mod pk is used. Denote

l = ∑
k≥0

x pk
−1

0 x1 .

_en Λ1 ≡ l − ap−1

p ▲ l mod p whence l ≡ (1− ap−1

p )−1Λ1 mod p. On the other hand,

Λ0 ≡ ∑
k≥0

1
pk x

pk

0 −
ap

p
▲ l mod p,

which results in

(p −▲)Λ0 ≡ −
ap

p
(p −▲)▲ l ≡

ap

p
▲2 l ≡

ap

p
( 1 −

ap−1

▲ )
−1
▲2 Λ1 mod p,

as required.

_e Jacobian matrix J(P) = (p,−pb1 , . . . ,−pbp−1) for b i = −p−1 trL/Qp t i , 1 ≤ i ≤
p− 1. According to Newton’s identities, the numbers b1 , . . . , bp−1 satisfy the following
recurrent relations: b1 = p−1a1, b i = ip−1a i −∑i−1

l=1 a lb i−l , 2 ≤ i ≤ p − 1. In particular,
b i ∈ Zp and b i ≡ ip−1a i mod p, 1 ≤ i ≤ p − 1.

Proposition 5.4
(i) If νp(a i) ≥ 2 for any 2 ≤ i ≤ p − 1, then there is a kernel (H, h) of P such that

the logarithm of H is of type pIp−1 and

J(h) =

⎛
⎜⎜⎜⎜⎜
⎝

pb1 b2 ⋅ ⋅ ⋅ bp−1
p 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟
⎠

.
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(ii) If there is 2 ≤ j ≤ p − 1 such that νp(a j) = 1, then there is a kernel (H, h) of P
such that the logarithm of H is of type

⎛
⎜⎜⎜⎜⎜
⎝

p z▲ 0 ⋅ ⋅ ⋅ 0
0 p 0 ⋅ ⋅ ⋅ 0
0 0 p ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋅ ⋅ ⋅ p

⎞
⎟⎟⎟⎟⎟
⎠

,

where z is as in Proposition 5.3, and

J(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

p/b j −b1/b j ⋅ ⋅ ⋅ −b j−1/b j −b j+1/b j ⋅ ⋅ ⋅ −bp−1/b j
0 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof Denote Fontaine’s triples corresponding to the formal group laws Fm and
R by (L′ ,M′ , ρ′) and (L,M , ρ), respectively. Let (ψ,Ψ) be the morphism from
(L′ ,M′ , ρ′) to (L,M , ρ) corresponding to P. One can choose a generator d of L′

and generators d1 , . . . , dp of L so that ψ(d) = pd1 − pb1d2 − ⋅ ⋅ ⋅ − pbp−1dp . _en

M = ⟨ ρ(d1), . . . , ρ(dp)⟩/⟨ pρ(d1) −▲ρ(d1) − z▲2 ρ(d2), pρ(d2), . . . , pρ(dp)⟩

and L0 is generated by d1 − b1d2 − ⋅ ⋅ ⋅ − bp−1dp . Denote d i = redL0 d i ∈ L, D i =
iT(d i) ∈ T , 1 ≤ i ≤ p.

(i) If νp(a i) ≥ 2 for any 2 ≤ i ≤ p − 1, then νp(b i) ≥ 1 for any 2 ≤ i ≤ p − 1. In this
case L = ⟨d2 , . . . , d p⟩, T = ⟨D2 , . . . ,Dp⟩, and

M ≅ ⟨ ρ(d2), . . . , ρ(d p)⟩/⟨−(b1 ▲+z▲2)ρ(d2), pρ(d2), . . . , pρ(d p)⟩ .

Now if νp(b1) ≥ 1,

M ≅ ⟨ ρ(d2), . . . , ρ(d p)⟩/⟨−z▲2 ρ(d2), pρ(d2), . . . , pρ(d p)⟩

and J = ⟨D2 , pD3 , . . . , pDp⟩, since z is invertible. If νp(b1) = 0, then b1 + z▲ is
invertible in E and again J = ⟨D2 , pD3 , . . . , pDp⟩.
Further, J0 = ⟨d2 , pd3 , . . . , pd p⟩, τ0(d2) = pd2, τ0(d i) = d i , 3 ≤ i ≤ p. Finally,

Mτ = ⟨D2 , . . . ,Dp⟩/⟨pD2 , . . . , pDp⟩ which implies that there is a kernel (H, h) of P
such that the logarithm of H is of type pIp−1. Since

τ0 ○ redL0(d i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pb1d2 + b2d3 + ⋅ ⋅ ⋅ + bp−1d p if i = 1,
pd2 if i = 2,
pd i if 3 ≤ i ≤ p,

the Jacobian matrix of h has the required form.
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(ii) If there is 2 ≤ j ≤ p − 1 such that νp(a j) = 1, then νp(b j) = 0. In this case,
L = ⟨d 1 , . . . , d j , d j+2 , . . . , d p⟩, T = ⟨D1 , . . . ,D j ,D j+2 , . . . ,Dp⟩, and

M ≅ ⟨ ρ(d 1), . . . , ρ(d j), ρ(d j+2), . . . , ρ(d p)⟩/N
where

N = ⟨−▲ ρ(d 1) − z▲2 ρ(d2), pρ(d 1), . . . , pρ(d j), pρ(d j+2), . . . , pρ(d p)⟩ .
_us

J = ⟨D1 + z▲ D2 , pD1 , pD2 , . . . , pD j , pD j+2 , . . . , pDp⟩
= ⟨D1 + z▲ D2 , pD2 , . . . , pD j , pD j+2 , . . . , pDp⟩

and J0 = ⟨d 1 , pd2 , . . . , pd j , pd j+2 , . . . , pd p⟩, τ0(d 1) = pd 1, τ0(d i) = d i , for 2 ≤ i ≤ p,
i ≠ j + 1. Finally,

Mτ = ⟨D1 , . . . ,D j ,D j+2 , . . . ,Dp⟩/⟨pD1 + z▲ D2 , pD2 , . . . , pD j , pD j+2 , . . . , pDp⟩,
and we are done.

Global Norm Homomorphism

Let q be a prime, s ∈ Z be a multiplicative generator modulo q and ζ be a primitive
q-th root of unity. Let R be theWeil restriction of Fm with respect to the extension
Z[ζ]/Z and the basis ζ , ζ s , ζ s

2
, . . . , ζ s

q−2
. _en

P(X) = NQ(ζ)/Q( 1 +
q−1

∑
i=1

x i ζ s
i−1

) − 1 ∈ HomZ(R, Fm)

and P(X) ≡ −∑q−1
i=1 x i mod deg 2. Put X = (x1 , . . . , xq−2) and Y = (y1 , . . . , yq−2).

By the implicit function theorem there exists a unique ϕ ∈ Z[[x1 , . . . , xq−2]] such
that P(ϕ(X), X) = 0. Let α(X) denote the (q − 1)-tuple (ϕ(X), X). Deûne the
(q − 2)-tuple Ω(X ,Y) = (Ω1(X ,Y), . . . ,Ωq−2(X ,Y)) by

Ω i(X ,Y) = R i+1(α(X), α(Y)) for 1 ≤ i ≤ q − 2.
One obtains

P(R1(α(X), α(Y)) , . . . , Rq−1(α(X), α(Y))) = 0,

since P(R(X ,Y)) = Fm(P(X), P(Y)), thus

ϕ(R2(α(X), α(Y)) , . . . , Rq−1(α(X), α(Y))) = R1(α(X), α(Y)) .

_e latter equality implies R(α(X), α(Y)) = α(Ω(X ,Y)), i.e., Ω is a formal group
law over Z, α ∈ Hom(Ω, R), and J(α) = Q̃ = {q̃ i , j}1≤i≤q−1,1≤ j≤q−2, where q̃ i , j = 1 if
j = i − 1, q̃ i , j = −1 if i = 1, q̃ i , j = 0 otherwise. To ûndHonda’s type of the logarithm of
Ω as a formal power series over Qp (Honda’s p-type), denote by r(p) an integer such
that p ≡ sr(p) mod q and notice that the logarithm of R is of p-type pIq−1 −V r(p)▲,
where V = {v i , j}1≤i , j≤q−1, v i , j = 1 if j = i − 1 or j = i + q − 2, and v i , j = 0 otherwise for
p ≠ q, and of p-type pIq−1−(pIq−1−Z)▲,where Z = {z i , j}1≤i , j≤q−1, z i , j = 1 for any i , j
for p = q ([DGX, Proposition 9.1]). Take Q = {q i , j}1≤i , j≤q−1 such that q i , j = 1 if j = i,
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q i , j = −1 if j ≠ 1, i = 1 and q i , j = 0 otherwise. For p ≠ q, let S(p) = {s(p)i , j}1≤i , j≤q−2,
s(p)i , j = 1 if j = i − r(p) or j = i − r(p) + q − 1; s(p)i , j = −1 if i = r(p) and
s(p)i , j = 0 otherwise. By Proposition 4.5 there is a kernel (Hp , hp) of P such that
J(hp) = Q(0 Iq−2)T = Q̃ and the logarithm of Hp has p-type pIq−2 − S(p)▲ if
p ≠ q and pIq−2 − pIq−2▲ if p = q. Remark that the latter type can be replaced by
pIq−2. Since P ○ α = 0, there is gp ∈ HomZp(Ω,Hp) such that α = hp ○ gp . It implies
J(gp) = Iq−2, i.e., Ω and Hp are strictly isomorphic over Zp and the logarithm of Ω
has the sameHonda’s p-type as Hp .

Matrices S(p) are deûned for any prime p ≠ q, put S(q) = 0. One can show that
S(p) and S(p′) commute for any primes p, p′. For a positive integer l = ∏m

i=1 p
k i
i ,

where p1 , . . . , pm are distinct primes, deûne S(l) =∏m
i=1 S(p i)k i . Let

ξ(X) =
∞

∑
l=1

1
l
S(l)X l ∈ Q[[X]]q−2 and Ξ(X ,Y) = ξ−1( ξ(X) + ξ(Y)) .

_en ξ is of p-type pIq−2−S(p)▲ for any prime p, and Ξ is a formal group law overZ
([Ho,_eorem 8], [DGX, Proposition 2.5]). _us Ω and Ξ have the same p-type for
any prime p, and therefore are strictly isomorphic over Z. _is is [CG,_eorem 1].

Galois Action Associated with a Torus

Let L/K be a ûnite Galois extension of degree n, M be a free OK–module with
OK[Gal(L/K)]- and OL-module structure extending the OK-module structure such
that τ(lm) = l ττ(m) for any τ ∈ Gal(L/K), l ∈ OL and m ∈ M. Let m1 , . . . ,ms be a
free OK-basis ofM, σ ∈ Gal(L/K), D ∈ Ms(OK) be the matrix of σ − id in the basis
m1 , . . . ,ms .

Lemma 5.5 If L/K is tamely ramiûed, then D satisûes the conditions of Lemma 4.1.

Proof It suõces to prove that if x , y ∈M and σx − x = py, then there exists x′ ∈M
such that σx′ − x′ = y. Let K̃ be the subûeld of L ûxed by σ . _en L/K̃ is also tamely
ramiûed, and hence, trL/K̃ ∶OL → OK̃ is surjective. Chose z ∈ OL so that trL/K̃(z) = 1
and denote the order of σ by q. _en z + σz + ⋅ ⋅ ⋅ + σ q−1z = 1. Finally, σx − x = py
implies y + σ y + ⋅ ⋅ ⋅ + σ q−1 y = 0 and

x′ = −y ⋅ σz − (y + σ y)σ 2z − (y + σ y + σ 2 y)σ 3z − ⋅ ⋅ ⋅
− (y + σ y + σ 2 y + ⋅ ⋅ ⋅ + σ q−2 y)σ q−1z

satisûes the required condition.

Let e1 = 1, . . . , en be a free OK-basis of OL and let T be an algebraic torus over
K of dimension d split over L. Let x1 , . . . , xd be a free basis in the group X of
characters of T , which allows one to identify TL with (Gd

m)L and its Hopf algebra
with L[x1 , x−1

1 , . . . , xd , x−1
d ]. _e natural action of Gal(L/K) on the Hopf algebra of

TL induces an action on its formal completion with respect to the local parameters
x1 − 1, . . . , xd − 1, that is, on L[[x1 , . . . , xd]].
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Let R be theWeil restriction of Fdm with respect to OL/OK and e1 , . . . , en . For any
nilpotent OK-algebra N , one can identify R(N) with Fdm(N ⊗OK OL) by

(s1 , . . . , snd)←→ (
n

∑
i=1

s(i−1)d+1 ⊗ e i , . . . ,
n

∑
i=1

s(i−1)d+d ⊗ e i) .

_en a right action of Gal(L/K) on R can be deûned as follows: for

s ∈ HomOL(OL[[x1 , . . . , xd]],N ⊗OK OL) ,
put sσ = σ̂−1 ○ s○ σ̃ ,where σ̃ ∈ EndOK (OL[[x1 , . . . , xd]]) is the restriction of the action
of σ on L[[x1 , . . . , xd]], and σ̂ ∈ EndOK (N ⊗OK OL) is induced by σ . _is right action
can be considered as a (le�) action ofGal(L/K)○ on R,whereGal(L/K)○ denotes the
opposite group of Gal(L/K).

Proposition 5.6 If L/K is tamely ramiûed, σ ∈ Gal(L/K), then σ − id is pure as an
endomorphism of the formal group law R.

Proof DenoteM = X⊗OK HomOK (OL ,OK). _enM has an OL-module structure
induced from the OL-module structure on HomOK (OL ,OK). _e group X is invari-
antwith respect to theGal(L/K)-action on theHopf algebra of TL . Besides, there is a
uniqueGal(L/K)-action onHomOK (OL ,OK) such that hτ(l τ) = h(l) for any l ∈ OL ,
h ∈ HomOK (OL ,OK), τ ∈ Gal(L/K). _en there is a unique OK[Gal(L/K)]-module
structure onM that satisûes τ(x⊗h) = τ(x)⊗hτ for any x ∈ X, h ∈ HomOK (OL ,OK),
τ ∈ Gal(L/K). Clearly, τ(lm) = l ττ(m) for any m ∈M, l ∈ OL , τ ∈ Gal(L/K). More-
over, according to [DGX, Proposition 6.3], J(σ) is equal to the matrix of σ consid-
ered as an endomorphism ofM in the basis m1 , . . . ,mdn , where m(i−1)d+l = x l ⊗ ẽ i ,
1 ≤ i ≤ n, 1 ≤ l ≤ d, and ẽ1 , . . . , ẽn is the basis of HomOK (OL ,OK) dual to e1 , . . . , en .
Lemma 5.5 completes the proof.

Let (H, h) denote a kernel of σ − id.

Corollary If L/K is tamely ramiûed, then Im h(N) = Ker(σ − id)(N) for any nilpo-
tent OK-algebra N.

_is corollary can be interpreted as a consequence of a result on theNéron model
for an algebraic torus split over a tamely ramiûed extension. Indeed, recall that R can
be identiûed with the formal completion of theWeil restriction of (Gd

m)OL with re-
spect to OL/OK . _e latter scheme is canonically isomorphic to the connected com-
ponent U0 of the Néron model U for the Weil restriction of (Gd

m)L with respect to
L/K. An action of Gal(L/K) on theseWeil restrictions can be deûned as above, and
due to the universal property of theNéronmodel,we get an action ofGal(L/K) onU.
According to [Ed], the ûxed subscheme Uσ of U is smooth, provided L/K is tamely
ramiûed. _e connected component of (U0)σ is canonically isomorphic to that of
Uσ (see [DGX, Proposition 5.6]), and in particular, (U0)σ is also smooth. Denote
by H′ the formal completion of (U0)σ , and by h′ the completion of the morphism
ι∶ (U0)σ → U0, which is the kernel of the endomorphism σ − id of U0. Since (U0)σ

is aõne, Im h′(N) = Im ι(N) = Ker(σ − id)(N) for any nilpotentOK-algebra N , and
hence (H′ , h′) is also a kernel of σ − id. _is implies the required statement.
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