antibiotics were administered in the office for pre-procedure prophylaxis. To enhance antibiotic prescribing in these specialized clinics, interventions should focus on non-visit prescriptions and provide education for APPs, alongside adjustments to default durations in electronic orders. Further evaluation is essential to assess the appropriateness of single doses for pre-procedure prophylaxis.

Antimicrobial Stewardship & Healthcare Epidemiology 2024;4(Suppl. S1):s7-s8 doi:10.1017/ash.2024.103

Presentation Type:

Poster Presentation - Top Poster Abstract Subject Category: Antibiotic Stewardship Evaluation of Predictors Associated with Slow Clinical Response with Extension of Outpatient Parenteral Antimicrobial Therapy

Kristen McSweeney, Tufts Medical Center; Fang Yu Liu, Tufts Medical Center; Rachel Erdil, Tufts Medical Center; Majd Alsoubani, Tufts Medical Center; Tine Vindenes, TUSM; Shira Doron, Tufts Medicine and Kap Sum Foong, Tufts Medical Center, Tufts University School of Medicine

Background: Outpatient parenteral antimicrobial therapy (OPAT) provides a safe and effective alternative to prolonged hospitalization for patients with infectious diseases requiring elongated antimicrobial therapy. One study found that 35.6% of OPAT episodes met the composite definition for treatment failure, with unplanned extension of OPAT as the most common reason for treatment failure. Our study sought to identify factors predicting higher likelihood of extension of OPAT due to slow clinical response to treatment and determine how therapy extension relates to complications. Method: This retrospective cohort study included all patients aged ≥18 years discharged on OPAT between April 2022 and October 2022. Demographic, treatment, outcome, and complications data were extracted through chart review. The primary outcome was the proportion and predictors of OPAT extension due to slow clinical response to treatment. The secondary outcomes were OPAT complication rate, 30-day ED visit and 30-day readmission rates related to OPAT complications. We used univariable and multivariable logistic regression models for the primary outcome of slow clinical response requiring OPAT extension. Variables with p < 0.1 in the univariable analyses were included in the multivariable model. Result: 231 patients received OPAT during the six-month study. Among them, 40 (17.3%) patients required an extension of therapy. In univariable analysis, patients who had slow clinical response requiring extension of OPAT were more likely to have intraabdominal infection (odds ratio [OR], 2.435; 95% confidence interval[CI], 1.053-5.628), receipt of metronidazole (OR, 3.729; 95% CI, 1.413-9.842), and were more likely to be followed up through office visit (OR, 5.033; 95%CI, 1.164-21.759) or combination of office visit and telemedicine (OR, 2.223; 95%CI 1.041-4.747). Other variable comparisons are detailed in Figure 1. In the multivariable regression analysis, the independent predictor associated with extended of OPAT was follow-up via office visit (adjusted OR, 4.630; 95% CI, 1.024-20.694). Rates of complications related to intravenous access and antibiotic were similar between patients with and without extension; 15% vs. 11% (p=0.430) and 7.5% vs. 7.3% (p=1.000), respectively. There were no significant differences in 30-day ED visits and readmission rates between the 2 groups: 7.5% vs. 5.8%(p=0.715) and 12.5% vs. 7.3% (p=0.338). Conclusion: Our study highlights patient's office visit follow-up is associated with the OPAT extension due to slow clinical response. However, extended therapy did not result in a significant increase in complications or hospital readmissions. These findings suggest the importance of careful patient selection and monitoring for OPAT, potentially guiding more efficient and targeted healthcare practices.

Antimicrobial Stewardship & Healthcare Epidemiology 2024;4(Suppl. S1):s8 doi:10.1017/ash.2024.104

View No. OR. (95% CD) <i>p</i> value x000. (95% CD) <i>p</i> value Apr is years, modian (0.2). 63 (0.2, 13) 62 (0.2, 13) 1.005 (0.082 - 1.023) 0.659 - - Fermale 15 (0.1, 5) 71 (0.12) Bedemone 0.9590 - - State 32 (0.2, 5) 1.20 (0.23) 0.858 (0.488 - 1.964) 0.9590 - - State 30 (75.0) 1.44 (77.5) Reference - - - State 30 (75.0) 1.44 (77.5) Reference - - - State 30 (75.0) 1.44 (75.5) Reference - - - State 50 (0.25.0) 1.20 (0.25.0) 0.546 (0.20.1.243) 0.547 - - State 50 (0.25.0) 1.20 (0.25.0) 0.548 (0.20.1.243) 0.547 - - - State 50 (0.25.0) 1.20 (0.25.0.23.0) 0.25.1 - - - - - - - - - <th></th> <th colspan="2">OPAT extension</th> <th colspan="2">Carra area representa</th> <th colspan="2">Summaria on regression</th>		OPAT extension		Carra area representa		Summaria on regression	
Linkin (OQD)		Yes	No	OR (95% CI)	p value	aOR (95% CI)	p value
Linkin (OQD)	1	n= 40 63 (52, 78)	8= 191 62 (52, 73)	1.005 (0.982 - 1.028)	0.670		
Finale 15 (3 : 5) 71 (0 7 : 2) Bedemoc 0.586 (0.481 - 1.994) Asc 30 (5 : 5) 120 (6 : 2) 0.586 (0.481 - 1.994) - - State 30 (5 : 5) 144 (7 : 5) Reference - - - State 30 (5 : 5) 144 (7 : 5) Reference - - - State 30 (5 : 5) 110 (5 : 6) Reference - - - State 8 (20 : 6) 13 (90 : 6) Reference - - - State 8 (20 : 6) 556 (0.113 - 2.273) 0.514 - - - State 8 (20 : 6) 556 (0.213 - 2.483) 0.547 - - - State 9 (21 : 7) 0 (21 : 7) 0 (21 : 7) 0 (21 : 7) -	median (JQR)	03 (32, 78)	02 (32, 13)	1.000 (0.982 - 1.028)			
Nake 25 (62.5) 120 (62.8) 0.586 (0.488 - 1.994) Sace 30 (75.0) 148 (77.5) Reference 0.734 · Othern 10 (25.0) 44 (22.5) 1.147 (0559 - 2.53) 0.714 · · Non-Riman 31 (95.0) 173 (90.6) Reference 0.574 · · Non-Riman 2 (5.0) 44 (22.5) 1.147 (0559 - 2.53) 0.574 · · Outsides 0.556 (0.113 - 2.073) 0.574 ·		15/02.5	71 (27.7)	Patarana	0.309		· ·
Exce 0.75 /mile 144 (7.5) Reference 0.734 . 0.When 30 (75.0) 144 (7.5) Reference 0.374 . 0.When 34 (05.0) 172 (00.0) Reference 0.374 . . 0.When 21 (2.0) 14 (0.4) 0.056 (0.113 - 2.273) 0.374 . . 0.When 21 (2.0) 14 (0.4) 0.55 (0.117 - 2.059) 0.341 . . 0.12 8 (20.0) 35 (23.8) 0.516 (0.217 - 2.459) 0.431 . . 1.4 8 (20.0) 52 (43.7) 0 0.9999 . . . 0.Minary image 13 (32.3) 66 (34.6) Reference 0.Minary image 13 (32.3) 66 (34.6) Reference .		25 (57.5)		0.006 (0.492 - 1.004)			
UNite 30 (75.0) 144 (77.5) Reference Others 10 (25.0) 14 (20.5) 14 (20.5) 1.42 (0.50 - 2.533) Efficiently 38 (95.0) 173 (90.6) Reference 0.374 - Statistics 2.0 14 (9.4) 0.568 (0.213 - 2.233) 0.374 - - Statistics Scoolidy index 50.23 (2.5, 0) 16 (8.4, 0) 0.568 (0.2012 - 2.653) 0.375 - - 1-4 8 (20.0) 55 (28.8) 0.568 (0.2012 - 2.659) 0.431 - - - 10 commercial 11 (2.5) 46 (4.4) Reference -	• 54800	23 (02.3)	120 (02.8)	0.930 (0.455 - 1.994)	· · · · · ·		
Others 10 (25.0) 44 (22.5) 1.47 (0.550 - 2.33) Non-Hispanic 38 (95.0) 173 (90.6) Reference	Race				0.734		· ·
Effencing 38 (95.0) 173 (90.6) Reference 0.556 (0.113 - 2.273) 0.374	 White 		148 (77.5)				
Non-Elemente Historie 2(5:0) 173 (00.6) Reference (0.556 (0.113 - 2.273) 0.374 . 0 5(12.5) 21 (11.0) Reference (0.566 (0.212.343) 0.374 . . 0 5(2.2) S (20.0) 35 (21.5) 0.1 (10.19 - 2.080) 0.431 . . 1.4 8 (20.0) 55 (21.5) 0.56 (0.112 - 2.650) 0.374 . . 0.5 15 (21.5) 16 (21.5) 0.56 (0.112 - 2.650) 0.374 . . 0.50 22 (20.0) 16 (24.0) 0.56 (0.127 - 2.650) 0.374 . . 0.50 22 (3.0) 32 (43.7) 1.20 (0.565 - 2.555) 0.654 . . 0.50 23 (41.7) 1.20 (0.156 - 2.555) 0.654 . . . 0.50 21 (1.5) 24 (2.1) 1.26 (0.02 - 2.141) 0.50 21 (1.6) 1.6 (3.0) Non-Eaglighth 4 (1.0)<	Others	10 (25.0)	43 (22.5)	1.147 (0.550 - 2.533)			
Historic 2 (2.0) 18 (9.4) 0.556 (0.113 - 2.273) 0.374 - - Conditions 5 (12.5) 21 (11.0) Reference 0.547 - - 1.2 8 (20.0) 49 (2.7) 0.688 (0.201.2.843) 0.547 - - 3.4 8 (20.0) 49 (2.7) 0 0.688 (0.201.2.843) 0.547 - - 3.5 19 (2.7) 66 (34.6) 1.201 (0.402 - 3.635) 0.414 - - 3.5 19 (2.1) 66 (34.6) Reference - - - 0.7000 9 (4.7) 0 0.5999 - - - - 0.7000 9 (4.7) 0 0.5999 -<							
	 Non-Hispanic 	38 (95.0)	173 (90.6)	Reference			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	 Hispanic 	2 (5.0)	18 (9.4)	0.506 (0.113 - 2.273)	0.374	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Charlson						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			21 (11,0)		0.417		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			49 (23.7)				-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1.302 (0.402 - 2.635)	0.431	-	-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2(50)	16/8.40	0.526 (0.192 - 3.032)	0.722	-	-
Instratore Commercial Medicase 11 (32.5) (250) 66 (34.6) (35 (45.7) Reference 1.20 (0.565 - 2.55) 0.654 (0.570 (0.127 - 2.009)			_
• Commercial Medicase 11 (32.5) Medicase 66 (34.6) 9 (34.7) Reference 1.20 (50.57.255) 0.654 0.651 . . Medicase 4 (10.0) (25.0) 52 (14.7) 4 (2.1) 1.20 (50.57.255) 1.20 (0.557.255) 0.654 0.601 . . Subscience 1.2(2) 4 (2.1) 1.20 (50.57.255) 0.651 . . Subscience 1.2(2) 4 (2.1) 1.20 (50.67.255) 0.651 . . Non-English 4 (10.0) 16 (8.4) 1.215 (0.384-3.549) 0.740 . . Non-English 4 (10.0) 16 (8.4) 1.225 (0.352-1.349) 0.740 . . Non-English 4 (10.0) 16 (8.4) Reference Information 10 (25.0) 24 (17.5) 0.56 (0.323-1.449) 0.323 . . . IAI 10 (25.0) 24 (15.2) 1.379 (0.555-3.533) 0.432 . . . IAI 10 (25.0) 24 (12.6) 0.594 (0.3552.735) 0.443 . <td></td> <td>0</td> <td>2(4.7)</td> <td></td> <td>9.399</td> <td></td> <td>- ·</td>		0	2(4.7)		9.399		- ·
Addicate 22 (25.0) 95 (45.7) 1.20 (0.563 - 2.55) 0.6454 - - • Others 1 (2.5) 4 (2.1) 1.269 (0.131-12.29) 0.851 - - • English 36 (00.0) 1175 (91.6) Reference 0.780 - - • English 4 (10.0) 156 (44.4) Reference 0.780 - - • Dincharge location 9 (72.5) 123 (64.4) Reference 0.328 - - • None-Baglish 14 (15.5) 76 (98.8) 0.615 (-3.332) 0.328 - - • None-Baglish 14 (15.0) 76 (98.8) 0.615 (-3.332) 0.432 - - • SNT 18 (22.0) 21 (12.6) 1.379 (0.585 - 3.332) 0.432 - - • Ald 10 (25.0) 23 (12.0) 2.435 (1.053 - 5.238) 0.437 - - • SNT 18 (22.5) 17 (8.9) 1.462 (0.566 - 4.225) 0.483 - - - • Certral 30 (75.0) <td< td=""><td></td><td>13 (32 5)</td><td>66 (34.6)</td><td>Reference</td><td></td><td> </td><td>1</td></td<>		13 (32 5)	66 (34.6)	Reference			1
Medicaid 4 (10.0) 28 (14.7) 0.72 (0.217 - 2.419) 0.601 - - Transp Janguage 1.26 (0.1) 1.26 (0.112.29 (0.131.229) 0.837 - - Non-English 4 (10.0) 1175 (91.6) Reference 0.740 - - Non-English 4 (10.0) 1175 (91.6) Reference - - - Non-English 4 (10.0) 165 (8.4) 1.215 (0.384 - 38.49) 0.740 - - SNS 111 (27.5) 66 (35.6) 0.666 (0.323 - 1.459) 0.328 - - SNT 11 (27.5) 66 (35.6) 0.566 (0.323 - 1.349) 0.432 - - SNT 11 (27.5) 66 (35.6) 0.566 (0.357 - 3.312) 0.452 - - SNT 11 (27.5) 66 (35.6) 0.566 (0.357 - 3.513) 0.452 - - SNT 11 (27.5) 12 (16.4) Reference 0.573 - - SNT 10 (25.0) 12 (17.0) 2 (17.5) 1	Medicare	22 (55.0)		1,201 (0,565 = 2,555)	0.634		· .
Others 1 (2.5) 4 (2.1) 1.269 (0.131-12.292) 0.837 - - English 36 (90.0) 1175 (91.6) Reference 0.780 - - English 4 (10.0) 15 (8.4) 1.215 (0.384 - 3.849) 0.780 - - Dicharge Jocinia 29 (72.5) 123 (64.4) Reference 0.328 - - Box SNT 11 (27.5) 66 (35.6) 0.656 (0.323 - 1.459) 0.328 - - BAJ 14 (15.0) 76 (39.8) 0.315 (0.400 - 1.660) 0.573 - - - SNT 8 (22.0) 29 (15.2) 1.397 (0.581 - 3.332) 0.452 - - - SITI 8 (22.0) 23 (12.0) 2.435 (1.053 - 5.238) 0.637 - - - Venest 5 (12.5) 17 (8.9) 1.462 (0.566 - 4.225) 0.483 - - - Venest 5 (12.5) 12 (17.8) Reference 0.877 - - -	Medicaid			0.725 (0.217 - 2.419)		਼	
Transpring 36 (90.0) 1175 (91.6) Reference Non-English 4 (10.0) 16 (8.4) 1.215 (0.384 - 3.84) 0.740 Non-English 4 (10.0) 16 (8.4) 1.215 (0.384 - 3.84) 0.740 Non-English 4 (10.0) 18 (17.5) 0.680 (0.241 - 1.807) 0.4418 SNF 11 (27.5) 68 (35.6) 0.566 (0.323 - 1.459) 0.323 Non-English 4 (45.0) 76 (39.8) 0.315 (0.400 - 1.660) 0.573 Phanary PS1 9 (22.5) 63 (35.0) 0.590 (235 - 1.314) 0.197 Namary PS1 9 (22.5) 13 (19.9) 0.460 (556 - 4.225) 0.443 Others 5 (12.5) 14 (17.8) Reference Others 5 (12.5) 14 (17.8) Reference Others 5 (12.5) 14 (17.8) Ref	Others					<u> </u>	1.1
Instantion 36 (00.0) 117 (91.6) Reference 0.740 - Pencifinal itery 5 (12.5) 34 (17.5) 0.650 (0.241 - 1807) 0.448 - - Dicharge location 9 (72.5) 123 (64.4) Reference - - - SNP 11 (27.5) 66 (35.6) 0.656 (0.233 - 1.459) 0.338 - - B&J 14 (35.0) 76 (38.8) 0.815 (0.400 - 1.660) 0.573 - - SNT 8 (22.0) 23 (12.0) 2.435 (1.055 - 5.332) 0.452 - - IECIED infection 5 (12.5) 17 (8.9) 1.462 (0.506 - 4.22.5) 0.443 - - Venture 5 (12.5) 17 (18.9) 1.482 (0.506 - 2.254) 0.847 - - Venture 5 (12.5) 14 (17.8) Reference - - - - - Venture 5 (12.5) 14 (17.8) Reference - - - - - - - -	Primary language					1	
Non-English 4 (10.0) 16 (8.4) 1.12 (0.384 - 3.49) 0.740 . Dicharge location 9 (7.5) 34 (17.5) 0.650 (0.241 - 1.807) 0.418 . . SNF 11 (27.5) 65 (35.6) 0.856 (0.323 - 1.459) 0.328 . . SNF 11 (27.5) 65 (35.6) 0.556 (0.323 - 1.459) 0.328 . . PAD 14 (35.0) 76 (39.8) 0.315 (0.400 - 1.660) 0.573 . . Phanary PS1 9 (22.5) 64 (35.0) 0.590 (235 - 1.314) 0.452 . . IAI 10 (25.0) 23 (12.0) 2.455 (1.053 - 5.628) 0.037 2.181 (0.855 - 0.090 . Others 5 (12.5) 14 (17.8) Reference . . . Perpheral 10 (25.0) 39 (41.7) 1.388 (0.59 - 2.681) 0.877 . . Certral 30 (75.0) 44 (12.61 1.388 (0.59 - 2.681) 0.877 . . . Cathage ensor 7 (17.5)	 English 			Reference			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 Non-English 	4 (10.0)	16 (8.4)	1.215 (0.384 - 3.849)			· ·
	Penicillin allergy	5 (12.5)	34 (17.8)	0.660 (0.241 - 1.807)	0.418	2	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Discharge location	1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• Home	29 (72.5)		Reference	10000		
• 8.4 / Immary PN 9 (22) 6 (38) 0.315 (0.400 - 1.660) 0.573 . . • Finnary PN 9 (22) 6 (38) 0.315 (0.400 - 1.660) 0.573 . . . • STI 8 (22.0) 29 (15.2) 1.397 (0.585 - 3.32) 0.452 . . . • IAI 10 (25.0) 23 (12.0) 2.485 (1.055 - 5.628) 0.087 2.188 (0.885 - 0.098 • Others 5 (12.5) 17 (8.9) 1.440 (0.596 - 4.225) 0.443 . . • Others 5 (12.5) 14 (17.38) Reference . . . • Certral 30 (75.0) 141 (73.8) Reference • Certral 30 (75.0) 40 (12.0) 0.944 (0.404 - 2.207) 0.894 • Certral aboperin 21 (50.0) 49 (4.71) 1.388 (0.692 - 2.061) 0.877 . . . • Cathagerenna 7 (17.5) 24 (12.6) 1.476 (0.588 - 3.707) 0.487 <t< td=""><td>• SNF</td><td>11 (27.5)</td><td>68 (35.6)</td><td>0.686 (0.323 = 1.459)</td><td>0.328</td><td></td><td>-</td></t<>	• SNF	11 (27.5)	68 (35.6)	0.686 (0.323 = 1.459)	0.328		-
• Transmy PSI 9 (22.5) 68 (33.6) 0.599 (0.265 - 1.314) 0.197 . . • NATI 8 (22.6) 29 (15.2) 1.397 (0.55 - 3.332) 0.452 . . . • IAI 10 (25.0) 23 (12.0) 2.435 (1.053 - 5.638) 0.087 2.188 (0.845 - 0.069 • IE CEED infection 5 (12.5) 17 (18.9) 1.44 (0.5056 - 4.225) 0.443 . . . • Cereral 30 (75.0) 141 (73.8) Reference .			1000000000		1.000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14 (35.0)		0.815 (0.400 - 1.660)			-
IAI 10 (25.0) 23 (12.0) 2.435 (10.63 - 56.20) 0.087 2.181 (0.85 - 50.00) 0.098 IE CEED infection 5 (12.5) 17 (8.9) 1.462 (0.566 - 4.225) 0.483 5.005 - 5.009 - 5.005 - 5.009 - 5.005 - 5.009 - - - - Access -	 Primary PSI 	9 (22.5)	63 (33.0)	0.590 (0.265 - 1.314)			· ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
IE CED indection 5 (12.5) 17 (8.9) 1.462 (0.506 - 4.22.5) 0.483 . . Others 5 (12.5) 24 (12.6) 0.994 (0.525 - 2.78.5) 0.994 (0.57 . . . Veces 30 (75.0) 144 (73.8) Reference 0.877 . . . Perghenal 10 (25.0) 50 (26.2) 0.944 (0.429 - 2.061) 0.877 . . . Operation 2 (25.0) 59 (44.7) 1.288 (0.50 - 2.554) 0.449 . <td>• IAI</td> <td>10 (25.0)</td> <td>23 (12.0)</td> <td>2.435 (1.055 - 5.628)</td> <td>0.057</td> <td>2.181 (0.865 -</td> <td>0.098</td>	• IAI	10 (25.0)	23 (12.0)	2.435 (1.055 - 5.628)	0.057	2.181 (0.865 -	0.098
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TE CIED infection	\$ (12.5)	17/8-00	1462/0 506-4 225	0.483	5.300)	
Access 30 (75.0) 141 (73.8) Reference 0.877 . . Perghenal 10 (25.0) 50 (26.2) 0.944 (0.429 - 2.061) 0.877 . . . Perghenal 10 (25.0) 59 (26.2) 0.944 (0.429 - 2.007) 0.894 . . . Pergleining 8 (20.0) 59 (44.1) 1.238 (0.50 - 2.554) 0.449 . . . Catabagenemes 7 (17.5) 24 (12.6) 1.475 (0.588 - 3.070) 0.449 .	• Others	5 (12.5)		0.994 (0.355 - 2.785)			L 0
$\begin{array}{c cmral}{} \bullet \operatorname{Central} & 30(750) & 144(738) & \operatorname{Reference} \\ \bullet \operatorname{Cerphan} & 10(250) & 50(262) & 0.400(0.439-2.061) & 0.877 & . & . \\ \bullet \operatorname{Cephalospecin} & 22(550) & 95(48,7) & 1.38(0.650-2.554) & 0.469 & . & . \\ \bullet \operatorname{Cephalospecin} & 22(550) & 95(48,7) & 1.38(0.650-2.554) & 0.469 & . & . \\ \bullet \operatorname{Cephalospecin} & 71(75,7) & 24(12,6) & 1.47(0.588-3.707) & 0.407 & . & . \\ \bullet \operatorname{Cephalospecin} & 71(75,7) & 24(12,6) & 1.47(0.588-3.707) & 0.407 & . & . \\ \bullet \operatorname{Cephalospecin} & 21(20,0) & 43(22.5) & 0.560(0.369-2.056) & 0.728 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.441 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.441 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.441 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.441 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.451 . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.647(0.214-1.959) & 0.079 & 1.490(0.651- & 0.457 . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 25(14.7) & 0.567(0.431-1.899) & 0.901 & . & . \\ \bullet \operatorname{Cephalospecin} & 4(10.0) & 15(0.59 . & 1.384(0.929-3.859) & 0.991 & . & . \\ \bullet \operatorname{Cephalospecin} & - . \\ \bullet \operatorname{Cephalospecin} & - & . \\ \bullet \operatorname{Cephalospecin} & - . \\ $	Access						-
Perghenal 10 (25.0) 50 (26.2) 0.944 (0.429 - 2.061) 0.877 - - Perglexitions 8 (20.0) 40 (20.59) 0.944 (0.449 - 2.207) 0.894 - - Openalizins 8 (20.0) 90 (44.13) 1.238 (0.50 - 2.554) 0.489 - - Catabagenemes 7 (17.5) 24 (12.6) 1.475 (0.588 - 3.070) 0.4407 - - Obmes 4 (10.0) 25 (14.7) 0.546 (0.369 - 2.005) 0.008 2.0991 (0.605 - 0.244 Number of Ambroticia 1 0.647 (0.214 - 1.959) 0.441 - - Vamber of Authoticia 2 10 (25.0) 131 (68.8) Reference - - 1 21 (52.5) 133 (68.8) Reference - - - 2 17 (42.5) 56 (28.3) 1.894 (0.929 - 3.859) 0.079 1.490 (0.651 - 0.345 3 2 (50) 40 (25.2) Reference - - - - - - <t< td=""><td>Central</td><td>30 (75.0)</td><td>141 (73.8)</td><td>Reference</td><td></td><td></td><td></td></t<>	Central	30 (75.0)	141 (73.8)	Reference			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 Peripheral 	10 (25.0)	50 (26.2)	0.940 (0.429 - 2.061)	0.877		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Antibiotic class						
Carbagements 7 (17.5) 24 (12.6) 1.475 (0.588 - 3.707) 0.407 . . Subconstructure 8 (20.0) 43 (22.5) 0.460 (96.9 - 20.05) 0.728 .<	 Penicillin 			0.944 (0.404 - 2.207)			-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 Cephalosporin 	22 (55.0)		1.288 (0.650 - 2.554)			1.1
• Others 4 (10.0) 28 (14.7) 0.647 (0.214 - 1.959) 0.441 7.230) Namber of Aushbotics 21 (52.5) 131 (68.8) Reference -	 Carbapenems 	7 (17.5)	24 (12.6)				· ·
• Others 4 (10.0) 28 (14.7) 0.647 (0.214 - 1.959) 0.441 7.230) Namber of Aushbotics 21 (52.5) 131 (68.8) Reference -	 Givcopeptodes 						
Others 4 (10.0) 28 (14.7) 0.647 (0.214 - 1.959) 0.441 - - Mathbotics 21 (52.5) 131 (68.8) Reference 1.490 (0.651 - 0.345) • 2 17 (42.5) 56 (29.3) 1.894 (0.929 - 3.859) 0.079 3.411) • 3 2 (5.0) 4 (2.1) 3.119 (0.537 - 18.107) 0.205 1.390 (0.170 - 0.759 • -2 (day 22 (55.0) 101 (53.9) Reference 11.3500 1.13500 • >2 (day 18 (45.0) 88 (46.1) 0.950 (0.483 - 1.899) 0.901 - • >2 (day 18 (45.0) 38 (20.1) 151 (79.9) 5.033 (1.164 - 21.759) 0.691 4.630 (1.024 - 0.047) > No (ga+12) 2 (4.8) 40 (95.2) Reference 0.091 4.630 (1.024 - 0.047) > No (ga+161) 25 (15.5) 136 (84.5) Reference 0.091 4.630 (1.024 - 0.047) > No (ga+161) 25 (15.7) 156 (84.5) Reference 0.278 - - No (ga+161) 25 (15.7) 156 (84.5) Reference 0.278	 Metronidazole 	8 (20.0)	12 (6.3)	3.729 (1.413 = 9.842)	0.006	2.091 (0.605 -	0.244
Number of Aushbotics 21 (52.5) 131 (68.8) Reference 1.894 (929 - 3.859) 0.079 1.490 (0.651 - 3.410) 0.445 • 2 17 (42.5) 5 (26.3) 1.394 (929 - 3.859) 0.079 1.490 (0.651 - 3.410) 0.445 • 3 2 (5.0) 4 (2.1) 3.119 (0.537 - 18.107) 0.205 1.390 (0.70 - 1.390 (0.170 - 1.390 (0.170 - 0.205) 0.901 - • $\sim 2/day$ 22 (55.0) 103 (53.9) Reference 0.952 (0.437 - 1897) 0.901 - - • $\sim 2/day$ 18 (45.0) 85 (46.1) 0.958 (0.43 - 1.899) 0.901 - - • $\sim 2/day$ 2 (48) 40 (95.2) Reference 0.958 (0.431 - 1.899) 0.901 - - • No (a+12) 2 (48) 40 (95.2) Reference 0.958 (0.431 - 1.999) 0.901 - - • No (a+16) 25 (15.5) 136 (84.5) Reference 0.278 - - - • No (a+16) 25 (15.5) 136 (84.5) Reference 0.278 - - - • No (a+16) 27 (14.7) 157 (15.3) <td< td=""><td>Others</td><td>4 (10.00</td><td>78/14/75</td><td>0.617/0.214 - 1.050</td><td>0.4/1</td><td>7.290)</td><td></td></td<>	Others	4 (10.00	78/14/75	0.617/0.214 - 1.050	0.4/1	7.290)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- (1 10(14.7)	(vare - 1377)			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1000000000	100000			1
• 2 17 (42.5) 56 (29.3) 1.894 (0.929 - 3.859) 0.079 1.490 (0.651 - 0.345) • 3 2 (5.0) 4 (2.1) 3.119 (0.557 - 18.107) 0.205 1.390 (0.170 - 0.759 Frequency • 02 (day 18 (45.0) 88 (46.1) 0.958 (0.483 - 1.899) 0.901 . . • 22 (day 18 (45.0) 88 (46.1) 0.958 (0.483 - 1.899) 0.901 . . . • 20 (day 18 (45.0) 88 (46.1) 0.958 (0.483 - 1.899) 0.901 . . . • 20 (day 18 (45.0) 151 (79.9) 5.033 (1.164 - 21.759) 0.031 4.630 (1.024 - 0.047) • 20 (day 15 (1.4) 55 (78.6) 1.484 (0.728 - 3.026) 0.278 . . • 20 (day14) 25 (15.5) 135 (78.5) Reference • 20 (day14) 25 (14.5) 135 (78.5) Reference • 20 (day14) 27 (14.7) 157 (85.3) Reference . . <td>• 1</td> <td>21 (52.5)</td> <td>131 (68.8)</td> <td>Reference</td> <td>1000000</td> <td>100000000</td> <td>1000</td>	• 1	21 (52.5)	131 (68.8)	Reference	1000000	100000000	1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 2				0.079	1.490 (0.651 -	0.345
Frequency 11.350 •••2 (day 22 (55.0) 103 (53.9) Reference 11.350) •••2 (day 22 (55.0) 103 (53.9) Reference 0.901 - ••2 (day 12 (48.0) 46 (95.2) Reference 0.901 - - • No (n=42) 2 (48.1) 40 (95.2) Reference 0.901 - - • Ver (n=189) 38 (20.1) 151 (79.9) 5.033 (1.164 - 21.759) 0.081 4.650 (1.024 - 0.047) Vel (n=101) 25 (15.5) 136 (84.5) Reference - - Vel (n=01) 15 (21.4) 55 (78.6) 1.484 (0.728 - 3.026) 0.278 - - 0.60 deffice and 13 (27.7) 157 (85.3) Reference - - - - - 0.91 (def) 27 (14.7) 157 (85.3) Reference - - - - - - - - - - - - - - - - - -	3.					3.411)	
Trequency 22 (ds) 103 (ds 9) Reference 0.901 - - >>2 (day) 15 (ds.0) 85 (ds.1) 0.950 (0.483 - 1.899) 0.901 - - - >>0 (day) 15 (ds.0) 85 (ds.1) 0.950 (0.483 - 1.899) 0.901 - - - >>0 (ds.12) 2 (ds) 40 (95.2) Reference 0.031 4.630 (1.024 - 0.047) >Yes (sr=189) 38 (20.1) 151 (79.9) 5.003 (1.164 - 21.759) 0.031 4.630 (1.024 - 0.047) >No (sr=161) 15 (21.4) 55 (74.6) 1.484 (0.728 - 3.026) 0.278 - - No (sr=164) 15 (21.4) 55 (74.6) 1.484 (0.728 - 3.026) 0.278 - - - No (sr=164) 27 (14.7) 157 (85.3) Reference -	• 3	2 (5.0)	4 (2.1)	3.119 (0.537 - 18.107)	0.205		0.758
• • • • • • • • • • • • • • • • • • •	Constrainty:					11.330)	-
+>2 (day	e cm2 (day	22 (55.0)	103/53.05	Peterence			1
Office visit 2 (4.8) 40 (95.2) Reference 0.031 4.630 (1.024 - 0.047) Yet (pr-189) 38 (20.1) 151 (79.9) 5.033 (1.164 - 21.759) 0.031 4.630 (1.024 - 0.047) Telebaldh visit > 0.047 20.6440 20.6440 20.6440 Yet (pr-70) 15 (21.4) 55 (78.6) 1.484 (0.728 - 3.026) 0.278 . Sol certificit > 0.0181 24.630 (1.024 - 0.047) . . . Sol certificit 25 (78.5) 1.484 (0.728 - 3.026) 0.278 . . Sol certificit > 0.0191 14.62 (0.645 - 0.363 . . . Sol certificit > 0.0191 13 (27.7) 34 (72.5) 2.223 (1.041 - 4.747) 0.0399 1.462 (0.645 - 0.363 Sol certificit 10 (7, 15) 9 (7, 12) 1.023 (0.584 - 1.063) 0.251 - Sol certificit - - - - - Missed appointment - - - - - 0.90.9 1.55 (81.2)	• >2 /day	18 (45.0)		0.958 (0.483 = 1.899)	0.901		· · · ·
No (m=42) Yet (m=189) 2 (4.8) 38 (20.1) 40 (95.2) 151 (79.9) Reference 5.033 (1.164 - 21.759) 0.031 4.630 (1.024 - 20.694) 0.047 Telebaldh visit > Reference 1.64baldh visit 0.031 4.630 (1.024 - 20.694) 0.047 No (m=161) 15 (21.4) 55 (78.6) 1.484 (0.732 - 3.026) 0.278 - No (m=184) 27 (14.7) 157 (85.3) Reference 1.484 (0.732 - 3.026) 0.278 - - No (m=184) 27 (14.7) 157 (85.3) Reference 3.2225 (1.041 - 4.747) 0.0399 1.462 (0.645 - 3.312) 0.363 Time from hospital incharge to first 0PAT follow up, styn, median (QQ) 0.021 - - - Visuel appointment 0PAT 500w up, 32 (20.0) 155 (81.2) Reference 0 -	Office visit			(second second			-
• Yer (pr=189) 38 (20.1) 151 (79.9) 5.033 (1.164 - 21.759) 0.031 4.659 (1.024 - 0.047) Telehadh vint >> 0.047) 151 (79.9) 5.033 (1.164 - 21.759) 0.031 4.659 (1.024 - 0.047) >> 0.047) 152 (1.5) 136 (84.5) Reference + Yer (pr=70) 152 (1.4) 55 (78.6) 1.484 (0.728 - 3.026) 0.278		2 (4.8)	40 (95.2)	Reference		factors for an fir	
Telebalth visit 20.694) • No (av161) 25 (15.5) 136 (84.5) Reference • No (av161) 25 (15.5) 136 (84.5) Reference • Set (av-70) 15 (21.4) 55 (78.6) 1.454 (0.728 – 3.026) 0.278 Soft office and relabealth visit No (av184) 27 (14.7) 157 (85.3) Reference 0.0299 1.462 (0.645 – 0.363 No (av184) 27 (14.7) 13 (27.7) 34 (72.3) 2.223 (1.041 – 4.747) 0.0299 1.462 (0.645 – 0.363 Sincharge to first 97 (7, 12) 1.023 (0.384 – 1.063) 0.251 - - OPAT follow up, styn, median (QQ) 9 1.55 (81.2) Reference 0 -	• Yes (n=189)	38 (20.1)	151 (79.9)	5.033 (1.164 - 21.759)	0.031		0.047
No (ar-161) 25 (15.5) 156 (84.5) Reference Per (ar-97) 15 (21.4) 55 (78.6) 1.454 (0.728 - 3.026) 0.278 .						20.694)	-
Ver (pr-70) 15 (21.4) 55 (78.6) 1.484 (0.728 - 3.026) 0.278 . . solo defice and solo defice and solo defice and solo defice and > 0 (gr 18) . <t< td=""><td></td><td></td><td></td><td>1000 A 1000 A 1000</td><td></td><td>2</td><td></td></t<>				1000 A 1000 A 1000		2	
Doth office and elshahdt visit 27 (14.7) 157 (85.5) Reference • Ye (sr/#47) 13 (27.7) 34 (72.5) 2.225 (1.041 - 4.747) 0.059 1.462 (0.645 - 0.363) Time from hospital incharge to first 10 (7.15) 9 (7, 12) 1.023 (0.984 - 1.063) 0.251 - OPAT follow up, skyn, median (QR) 9 312 - - -	 No (n=161) 	25 (15.5)	136 (84.5)	Reference	0.770		1
elsbeah visit 27 (14.7) 157 (85.3) Raference • Yes (srr47) 13 (27.7) 34 (72.3) 2.223 (1.041 - 4.747) 0.039 1.462 (0.645 - 0.363) Time from boestral incharge to first strain boestral strain with strain boestral strain boestral strain strain boestral strain strai	• Tes (1=70)	15 (21.4)	35 (78.6)	1.484 (0.728 - 3.026)	0,2/8		-
							E
Yei (pr-47) 13 (27.7) 34 (72.3) 2.223 (1.041 - 4.747) 0.059 1.462 (0.645 - 0.363 3312) Time from beginal 10 (7, 15) 9 (7, 12) 1.023 (0.964 - 1.063) 0.251 - - inductor to fill (0, 0, 0) -	No (me184)	27/14 75	157/05 22	Patrone			1
Time from bongstal 10 (7, 15) 9 (7, 12) 1.025 (0.964 - 1.063) 0.251 Jincharge to first 09,7 (12) 1.025 (0.964 - 1.063) 0.251 - OPAT Editors up, days, median (QR)					0.000	1.463/0.445	0.263
Time from bogstal 10 (?, 15) 9 (?, 12) 1.025 (0.584 - 1.063) 0.251 - OPAT follow up, lays, median (OR)	• 1 cs (Det /)	13 (27.7)	34((2.3)	2.223 (1.041 = 4./47)	0.029		0.303
lineharpe to first DPAT follow up, lays, mediau (QR) Mined appointment 0 32 (80.0) 155 (81.2) Reference	Time from hospital	10 (7, 15)	9(7,12)	1.023 (0.984 - 1.063)	0.251	33147	
DPAT follow up, https://doc.org/ Maneel appointment 0 32 (80.0) 155 (81.2) Reference 0	discharge to first		- (, 14)				1
ays, median (IQR) Mased appointment ● 32 (80.0) 155 (81.2) Reference	OPAT follow up.						1
Minsed appointment 32 (80.0) 155 (81.2) Reference	days, median (IQR)						1
 0 32 (80.0) 155 (81.2) Reference 	Missed appointment	Sector Sector	1	S			
I 6 (15.0) 21 (11.0) 1.384 (0.517 = 3.702) 0.517	• 0	32 (80.0)	155 (81.2)	Reference			L
	·!	6 (15.0)	21 (11.0)	1.384 (0.517 = 3.702)	0.517	-	-

Presentation Type:

• >1 2 (5.0) Missing OPAT labs 4 (10.0)

Figure 1. Characteristics

Poster Presentation - Top Poster Abstract

Subject Category: Antibiotic Stewardship

Implementing an Antimicrobial Stewardship Lecture Series for Family Medicine Residency Programs in South Carolina

Kayla Antosz, ASC-SC, University of South Carolina College of Pharmacy; Pamela Bailey, Prisma Health Midlands/University of South Carolina; Majdi Al-Hasan, University of South Carolina School of Medicine; Brandon Bookstaver, Prisma Health-Midlands; Hana Winders, Prisma Health-Midlands and Sarah Battle, Prisma Health-Midlands

Background: Family medicine physicians are one of the leading prescribers of antimicrobials in both the inpatient and ambulatory setting, however appropriate education on antimicrobial stewardship (AS) is lacking. The Antimicrobial Stewardship Collaborative of South Carolina (ASC-SC)