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CONDITIONAL LOCAL NONDETERMINISM 
AND HAUSDORFF MEASURE OF LEVEL SETS 

NARN-RUEIH SHIEH* 

ABSTRACT. Let X be a real stochastic process. We localize 
S. M. Berman's formulation on the local nondeterminism of X to a fixed 
level. With this localized idea, we prove that, for large classes of Gaussian 
and Markov X, at each x the level set X(t, u) = x has infinite Hausdorff <j> -
measure (<j> is certain measure function) for a; in a set of positive probability. 

1. Let X(0,0 < t < 1, be a real stochastic process defined on some probability 
space (£2, $,P). S. M. Berman formulated the local nondeterminism of X, firstly in the 
Gaussian case [1] then in the general case [2]. The local nondeterminism will assert the 
smoothness of the local time, which in turn will assert the irregularity of the path X(-). As 
an interesting application, Berman ([2, Theorem 6.2 and Examples 7. 1-2], [3, Theorems 
4, 6]) proved that: for large classes of Gaussian and Markov X, the "progressive level 
set" {s : X(S,LJ) = X(t,uj)} has infinite Hausdorff <j> -measure (<j> is certain measure 
function) for almost all t, for a.s. u. In this note, we shall present the corresponding ones 
of these results for level sets 

Z(x,u) = {te [0,1] :X(t,uj) = x}. 

To state our results, we first recall the definition of Hausdorff <j> -measures. Let <j> (t), 
0 < t < 1, be an increasing right continuous function such that <\> (0+) = 0. Such a func
tion is called a measure function. We suppose that <j> satisfies the additional condition: 

(1.1) <\> if)11 is decreasing and <j> (t)/1 —-»• oo as t [ 0. 

Now, define the Hausdorff </> -measure of a subset E of [0,1 ] by 

</>(£) = lim inf{ £ </> ( length of /,) : E C U/;, 

It's are subintervals of [0,1] whose lengths are at most 6 } . 

THEOREM 1.1. Let X(t),0 < t < 1, be a real continuous Gaussian process with 
mean 0, and define 

(1.2) b2(t)= inf E(X(s) - X(s'))2. 
\s-s'\>t 
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Suppose that the process is locally nondeterministic (see Berman [1]). If, for some 
e > 0 and some integer m > 2, 

(L3) S i »(2-)]- j <0°' 
then, at each x, P{ UJ : </>(Z(JC,U;)) = 00} > 0. 

Theorem 1.1 is derived from Theorem 2.1 in Section 2; the latter is a result for general 
stochastic processes. Theorem 2.1 is also applicable to Markov processes. LetXO), 0 < 
t < 1, be a real time-homogenous Markov process, having a transition density function 
p(t; JC, v) which is continous in (JC, v). Assume also that the paths X(-) are right continuous 
and have left limits everywhere and that 

lim sup / p(s\ JC, y) ds — 0 
<loxJKJoF 

for all compact K. 

THEOREM 1.2. Let X be given above and X(0) = XQ. At a level x, if 

j p(t;x0,x)dt > 0, j p{t;x,x)dt > 0, 

and for some e > 0 and some integer m > 2 

°° (Srp(t;x,x)dt\m 

S ( [*(2-)]'~ j < 0°' 
r/ẑ n, P{o; : </>(Z(JC,O;)) = oo} > 0. 

The processes and the measure function considered above are those in Berman [2,3]. 
Note that local time (as an occupation density) arguments in [2,3] fails to have meaning 
when we consider a fixed level. Our novel idea here is to "localize" Berman's formulation 
on the local nondeterminism in [2] and the ingredients of the arguments in [2,3] to the 
(fixed) level x. This idea is developed in the next two sections. In Section 2, we state 
Theorem 2.1, which is a result for the Hausdorff ^-measure of level sets of general 
stochastic processes and corresponds to Berman's [2, Theorem 6.2] and [3, Theorem 2]. 
Theorems 1.1 and 1.2 are direct consequences of it. For the clearness of the context, we 
separate the proof of Theorem 2.1 to Section 3. In final Section 4, we remark a question 
on the comparison between Theorem 1.2 and the viewpoint from probabilistic potential 
theory (due to Professor E. A. Perkins). 

2. Let X(t), 0 < t < 1, be a real measurable stochastic process on some probabil
ity space (Q, #,P). For positive integer k and 0 < t\ < t2 < • • • < tk < 1, let 
p(t\,..., tk', y\,..., yic) denote the joint density function of X(t\ ) , . . . , X(tk) at y\,..., y^. 
Also, let p(ti,..., tk',y\,...,yk-i \t\',x) denote the conditional joint density function of 
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X{t2) — X(t\),... ,X(tk) — X(tk-\) at y\,... ,yk_\ ; given X(t\) = x. Fix a level x, we as
sume that 

(i) There exists an open neighborhood (a, b) of x such that p(t\,..., tk\ y\,...,yk) 
exists for all y\,... ,yk G (a, b) and that the integral function qk defined by 

qk(yu-.-,yk) = J -"jo p{t\,...,tk\y\,---,yk)dt\...dtk 

is finite and continuous in (y\,... ,yk) G (a, b)k. 
(ii) There exists a nonnegative integrable function g(t) on [0,1] and a sequence of 

positive real numbers c\, C2, •.. , such that 

k-\ 

p(tu...9tk; o , . . . ,o |rr,x) < Q n^((/+i -0') . 
(Ac— 1 ) terms 

for all k and all t\,..., tk. 
The condition (ii) above is a "localized" version of Berman's formulation on the local 

nondeterminism of general stochastic processes [2, Definition 5.1]; thus, we call (ii) the 
conditional local ^-nondeterminism (abbrev. CLgND) at the level x. The intuitive mean
ing is that, once the process hits x at certain instant t\, then the local unpredictability 
around x occurs henceforth. 

THEOREM 2.1. Assume that the paths X(-,u) have at most countably many discon
tinuities and that the conditions (i)f (ii) are satisfied at x. Let <j> (t) be a measure function 
satisfying (1.1) and, for some integer m>2, 

00 2n ( r2~" \m-\ 
T, -, / g(t)dt) < oo. 

Then 

p{u : 4>(Z(x,u)) = oo} > ; ri-^-
JoSoP(t,f;x,x)dtdtf 

To derive Theorems 1.1 and 1.2 from Theorem 2.1 is direct. Let X be the Gaussian 
process in Theorem 1.1. When X is locally nondeterministic in the sense of Berman [1], 
standard calculations on the joint density function of X(t\),X(t2) — X(t\),... ,X(tk) — 
X(tk-\) show that, at each x,X is CLgND at x, with g(t) — b~x(t) where b(t) is defined 
by (1.2). Next, let X be the Markov process in Theorem 1.2. The joint density function 
of X(t\),... ,X(tk) at JCI, . . . ,xk is lti=\P(ti — ti-\;xi-\,X(), to = 0. Thus, at each JC, X 
is CLgND with g(t) — p(t,x,x). The arguments in Berman [3,129-131] show that the 
condition (i) is satisfied for the X above. Finally, observe that we may assume the integer 
m on Theorems 1.1 and 1.2 so large that me > \. 
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3. The proof of Theorem 2.1.. For each u 0 < t < 1, set 

1 rt 
L(t,x) = hm—- / \[x-EtX+e](X(u))du. 

Mimicking the proof of Marcus [6, Theorem 1], we can show that, under the condition 

(i), L(t, x) exists in Lk(Q.) for all even k, hence for all k, and 

ELk(t,x) = / * * * / p{u\,... ,Uk',x,... ,x) du\ . . . duu 

k terms 

Furthermore, for a.s. UJ , a measure L(dt, x, UJ) is induced. From the displays (3.1) and (3.2) 

below, L(dt,x) has no atoms a.s.. Since X( ) is assumed to have at most countably many 

discontinuities, thus L([0,1],x) = L(A,x) where A — A(UJ) is the set of continuities of 

X(-). Let t e A and X(t) ^ x Then there exist e = e(f) > 0 and £ = £ (0 > 0 such that 

\X(s)-x\ > e for alls e (t-2è,t + 26).Fora\lmûon<ï\ss,s,:t-26 < s< t-6 < t< 

t + 6 < s' < t + 26, L([s,s'],x) = 0 from the définition of L, see Marcus [6, p. 281], and 

hence L((f-<5,f+ <$),*) = 0. ThusL([0, 1],JC) = L(A,JC) = L(Z(x)HA,x) = L(Z(x),x)\ 

cf. Marcus [6, p.282, line 5] where he assumed the path continuity and now we have 

weakened his assumption. Set 

2n 

7=1 

7 - 1 j_ 
2n ' 2n , x, UJ\ , 

1 1 
r < t < —, 

2n+1 - 2n 

which we regard as Berman's [3] modulator "localized" at*. It is seen that Mm(-,JC, UJ) is 

nondecreasing and 

(3.1) [L(t,x,uj)-L(s,x,oj)]m <2mMm{t-s,x,uj) 

for all rationals s < t (cf. [3, Lemma 2.2]). When the process is CLgND at x, 

(3.2) 

£ M m ( 2 - " , x ) ^ / . . . L mp(tu 

2" 

Cm! / • • • / p(tx 

, f m ; j c , . . . ,x)dt\ . . .dtm 

. , f m ; 0 , . . . , 0 | tx\x)p(ti\x)dtx...dt„, 
7 = 1 

< m!cw2" 

y<f , -<^ i<^ 

/?(f ; x) dr 
2 - n 

g(0* 
m-1 

We also observe that the content of Berman [2, Lemma 2.3] can be expressed as follows. 

Let (j)(t) be a measure function satisfying (1.1) and a(dt) be a Borel measure on [0,1]. 

If for some positive integer /?, 

oo 1 2" 

y ya
p 1 j 

2n 2n < oo. 
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Then, a(E) = 0 for every Borel E of finite <j> -measure. Now, all the ingredients of the 
arguments in the proofs of [2, Theorem 6.2] and [3, Theorem 2] have been localized to the 
level x. With these and the reasoning of Berman, we conclude that, under the assumptions 
of Theorem 2.1, 

P{OJ : <KZ(x,u>)) = oo} > P{UJ : L(Z(X\X,UJ) > 0} - P{UJ : L([0, 1],JC,U;) > 0} 

(£L(1,JC))2 _ (SoP(t;x)dxf 
> 

EL2(l,x) JÙSoP(t,t;x,x)dtdf' 

In the above, we have used a simple distributional inequality for nonnegative random 
variables, see Kahane [5; p. 6]. 

4. Professor E. A. Perkins kindly indicates the author to note the following question. 
Let X be a standard Markov process and x be regular for { x}. Since it is well-known 
that the level set Z(x) is essentially the range of a subordinator, we may apply the result 
in Fritedt and Pruitt [4] to obtain the exact Hausdorff measure of Z(x). Then, what is the 
comparison between this viewpoint and Theorem 1.2? We cannot give concrete examples 
to compare the two aspects, but we remark as follows. On the one hand, for a general 
X, the structure of the subordinator associated with Z(x) seems not explicitly known (it 
is stable with index 1/ a when X is stable with index a > 1). On the other hand, in 
Theorem 1.2 the measure function <j> and the transition density p(t\x,x) are explictly 
related. Observe that, if for sufficiently small t 

\ogt\l+£\l/p / rt \(P-D/P / | logf|1 + £ \ / /* \ ( 

(f> (t) > const. J—— J ( / p(s; x, x) ds) 

for some e > 0 and some integer/? > 2, then the summability condition in Theorem 1.2 
is satisfied (cf. Berman [2, Theorem 6.2]). 
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