A CRITERION FOR VERSALITY OF DEFORMATIONS OF TUBULAR NEIGHBORHOODS OF STRONGLY PSEUDO CONVEX BOUNDARIES

TAKAO AKAHORI

ABSTRACT. We extend the famous Kodaira-Spencer's completeness theorem for a family of deformations of complex structures (see [12]). As an application, we show that the canonical family constructed in [9] is versal.

1. Introduction. The purpose of this paper is to give a criterion for versality of deformations of complex structures over a tubular neighborhood of a strongly pseudo convex boundary. In the our former paper ([9]), we constructed a canonical family of complex structures over a tubular neighborhood of the strongly pseudo convex boundary which satisfies a certain condition, *from the point of view of CR-structures*. In this paper, we give a fairly general criterion for versality *in the sense of Kuranishi*. And as an application of this criterion, we see that our family constructed in [5] is versal *in the sense of Kuranishi*. Namely, we assume: we are given a family of deformations of almost complex structures over \overline{U} , ($\phi(t)$, T), satisfying

o is a non-singular point of T,

$$\phi(t) \in \Gamma(\bar{U}, T' \otimes (T''N)^*),$$

$$\phi(t) = \sum_{\lambda=1}^{q} \beta_{\lambda} t_{\lambda} + O(t^{2}),$$

where $\phi(t)$ is defined by the standard way as in [10] and $\{\beta_{\lambda}\}_{\lambda=1}^{q}$ generates $H^{(1)}(U, T'N)$, T'N-valued $\bar{\partial}$ -cohomology, and $q = \dim_{C} H^{(1)}(U, T'N)$. We note that we don't assume $P(\phi(t)) = 0$ for all t in T. Under this assumption, we have:

CRITERION. Assume the above. And we assume that:

$$P(\phi(t)) = 0 \mod \mathbf{H}_{TN}^{(2)} P(\phi(t)).$$

Define $T' \subset T$ by $T' = \{t', t' \in T \mid P(\phi(t')) = 0\}$. Then our family, $(\phi(t), T)$ is versal *in the sense of Kuranishi*, where if dim_C $X \ge 4$, $\mathbf{H}_{TN}^{(2)}$ = the harmonic projection of T'N-valued forms of type (0, 2), and if dim_C X = 3, $\mathbf{H}_{TN}^{(2)} = 1 - \bar{\partial}N\bar{\partial}^*$, where N means the Neumann operator of T'N-valued forms of type (0, 1).

The proof will be done along the lines of [3].

Received by the editors August 2, 1990.

[©] Canadian Mathematical Society 1992.

2. A family of deformations of tubular neighborhoods of strongly pseudo convex boundaries. Let X be a complex manifold. Let Ω be a relative compact strongly pseudo convex domain with smooth boundary $b\Omega$. We consider deformations of tubular neighborhoods of the strongly pseudo convex boundary $b\Omega$. Let (T, o) be a germ of complex analytic subspaces of (C^r, o) .

DEFINITION 2.1. By a family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b\Omega$, (X, π, T) , we mean that X, T are analytic spaces, and a smooth morphism $\pi: X \to (T, o)$ satisfying: $\pi^{-1}(o)$ is a tubular neighborhood of $b\Omega$ in X.

Henceforth we use the notation (X, π, T) for a family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b\Omega$. Let (X, π, T) be a family of deformations of a tubular neighborhood of a strongly pseudo convex boundary. And we set $\pi^{-1}(o) = U$. Then we can define an element $\phi(t)$ of $\Gamma(\tilde{U}', T'N \otimes (T'N)^*)$, which is parametrized by *T* complex analytically, by the standard way as in [10], satisfying:

$$P(\phi(t)) = 0 \text{ for } t \text{ in } T,$$

where U' is also a tubular neighborhood of $b\Omega$ and $U' \subset \subset U$.

3. The notion of versality. Let (X, π, T) be a family of deformations of a tubular neighborhood of a strongly pseudo convex boundary $b\Omega$. In this section, we recall the notion of versality (cf. [2], [3], [4]).

DEFINITION 3.1. A family of deformations of a tubular neighborhood of a strongly pseudo convex boundary $b\Omega$, (X, π, T) is called *versal* if the following holds: For any family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b\Omega$, (\mathcal{Y}, ω, S) satisfying: $o \in S$, and $\omega^{-1}(o) = V$ is an open neighborhood of $b\Omega$ in N satisfying: $\pi^{-1}(o) = U \subset V$, there are a holomorphic map τ from S to T and a holomorphic map g(s) from $\pi^{-1}(\tau(s))$ to $\omega^{-1}(s)$, g(o) = identity map, depending on scomplex analytically and if necessary, we must shrink S sufficiently small.

4. A criterion. Let X be a complex manifold and let Ω be a strongly pseudo convex domain with smooth boundary $b\Omega$. We assume that we are given a family of deformations of complex structures over \overline{U} , $(T, \phi(t))$, satisfying: *o* is a non-singular point of *T*,

$$\phi(t) \in \Gamma(\overline{U}, T'N \otimes (T''N)^*)$$
$$\phi(t) = \sum_{\lambda=1}^{q} \beta_{\lambda} t_{\lambda} + 0(t^2),$$

where $\{\beta_{\lambda}\}_{\lambda=1}^{q}$ generates $H^{(1)}(U, T'N)$, T'N-valued $\bar{\partial}$ -cohomology at degree one and $q = \dim_{C} H^{(1)}(U, T'N)$, and (t_{1}, \ldots, t_{q}) is a local coordinate of T at the origin.

CRITERION. Assume the above. And we assume that $P(\phi(t)) \equiv 0 \mod \mathbf{H}_{TN}^{(2)} P(\phi(t))$. Then our family, $(\phi(t), T)$, is versal *in the sense of Kuranishi*, where if $\dim_C X \ge 4$, $\mathbf{H}_{T'N}^{(2)}$ = the harmonic projection of T'N-valued form of type (0, 2), and if $\dim_C X = 3$, $\mathbf{H}_{T'N}^{(2)} = 1 - \bar{\partial}N\bar{\partial}^*$, where N means the Neumann operator of T'N-valued forms of type (0, 1).

REMARK. Here concerning the notion of a family of deformations of tubular neighborhoods of strongly pseudo convex boundaries, rigorously our $(\phi(t), T)$ should be read as $(\phi(t'), T')$, where

$$T' = \{ t' \mid t' \in T, P(\phi(t')) = 0 \}.$$

We show our criterion. Let (\mathcal{N}, ω, S) be an arbitrary family of deformations of a neighborhood V of $b\Omega$ satisfying: $o \in S$ and $\omega^{-1}(o) = V$, $U \subset V$. We assume the following:

- (4.i) o is the origin of a complex euclidean space C^r and S is an analytic subspace of a neighborhood D of o in C^r defined by $b_1(s) = \cdots = b_\ell(s) = 0$.
- (4.ii) We find a finite system of open sets of \mathcal{N}_i , $\{\mathcal{U}_i\}_{i\in\Lambda}$, satisfying that there is an analytic embedding

$$\eta_j: \mathcal{U}_j \longrightarrow W_j \times D$$
 with $p_2 \cdot \eta_j = \omega$ for each $j \in \Lambda_j$

where W_j is a neighborhood of o in C^n and p_2 denotes the projection of $W_j \times D$ onto the second factor. We denote by $\zeta_j = (\zeta_j^{(1)}, \ldots, \zeta_j^{(n)})$ and $s = (s_1, \ldots, s_r)$ the coordinates of W_j and D respectively, and set $z_j^{\lambda} = \zeta^{\lambda} \cdot \eta_j |_{\omega} - 1_{(o)}$ for $\lambda = 1, \ldots, n$ and $U_i = \mathcal{U}_i \cap b\Omega$, where we regard ζ_i^{λ} as a function on $W_i \times D$,

(4.iii) $\eta_i \cdot \eta_k^{-1}$ is represented by:

$$\zeta_j^{\lambda} = f_{jk}^{\lambda}(\zeta_k, s) \text{ for } \lambda = 1, \dots, n,$$

$$s_{\alpha} = s_{\alpha} \text{ for } \alpha = 1, \dots, r,$$

and we set

$$f_{ik}^{\lambda}(z_k) = f_{ik}^{\lambda}(z_k, o)$$
 for $\lambda = 1, \dots, n$,

(4.iv) $f_{ij}^{\lambda}(f_{jk}(\zeta_k, s), s) \equiv f_{ik}^{\lambda}(\zeta_k, s) \mod b(s)$, where $\mod b(s)$ means $\mod \{b_{\mu}(s), b_{\mu}(s), b_$ $\mu = 1, \dots, \ell$ and henceforth we use this notation for brevity.

To prove the versality of the family which satisfies our condition, it suffices to show the existence of a neighborhood D' of o in D, of a family $g_i(s)$ of sections of T'N over U_i which depends complex analytically on s in D' for each $i \in \Lambda$, and of a T-valued holomorphic function $\tau(s)$ on D' satisfying:

(4.0)
$$(g_i(o))^{\lambda} = z^{\lambda} \text{ for } \lambda = 1, \dots, n, \quad \tau(o) = 0$$

(4.1)
$$(g_i(s))^{\lambda} - f_{ii}^{\lambda}(g_i(s), s) = 0 \text{ for } s \in S \text{ and } \lambda = 1, \dots, n,$$

(4.2)
$$(\bar{\partial} + \phi(\tau(s)))(g_i(s))^{\lambda} = 0 \text{ for } s \in S \text{ and } \lambda = 1, \dots, n,$$

 $h(\tau(s)) = 0 \text{ for } s \in S \text{ and}$ $h(\tau(s)) = 0 \text{ for } s \in S,$ (4.3)

where $h(t) = \mathbf{H}_{TN}^{(2)} P(\phi(t))$, and if necessary, we must shrink S sufficiently small, and $g_i(s)$ has the expression $g_i(s) = \sum_{\lambda=1}^n (g_i(t))^{\lambda} \partial / \partial z_i^{\lambda}$, regarded as an element of $\Gamma(U_i, t)$ T'N and $(\bar{\partial} + \phi(\tau(s)))(g_i(s))^{\lambda}$ denotes the element $\Gamma(U_i, T'N)$ defined by the equation (ā

$$\bar{\partial} + \phi\left(\tau(s)\right) \left(g_i(s)\right)^{\lambda}(X) = X\left(\left(g_i(s)\right)^{\lambda}\right) + \phi\left(\tau(s)\right)(X)\left(\left(g_i(s)\right)^{\lambda}\right), \text{ for any } X \in T'N.$$

T. AKAHORI

4.1. Construction of a formal solution. First, we construct $\{g_i(s)\}_{i \in \Lambda}$ and $\tau(s)$ formally in *s*, namely we construct $\{g_i^{(\mu)}(s)\}_{i \in \Lambda}$ and $\tau^{(\mu)}(s)$ for $\mu = 1, \ldots$ satisfying:

(4.0)
$$(g_i^{(0)})^{\lambda} = z_i^{\lambda} \text{ for } \lambda = 1, \dots, n \text{ and } \tau^{(0)} = 0,$$

$$(4.1)_{\mu} \qquad \left(g_{i}^{(\mu)}(s)\right)^{\lambda} - f_{ij}^{\lambda}\left(g_{j}^{(\mu)}(s), s\right) \equiv 0 \mod\left(b_{m}(s), s^{\mu+1}\right), \quad m = 1, \dots, \ell,$$

$$(4.2)_{\mu} \qquad \left(\bar{\partial} + \phi\left(\tau^{(\mu)}(s)\right)\right) \left(g_{i}^{(\mu)}(s)\right)^{\lambda} \equiv 0 \mod\left(b_{m}(s), s^{\mu+1}\right), \quad m = 1, \dots, \ell,$$

(4.3)_{$$\mu$$} $h(\tau^{(\mu)}(s)) \equiv 0 \mod(b_m(s), s^{\mu+1}), m = 1, \dots, \ell,$

 $(4.4)_{\mu} g_i^{(\mu)}(s)$ is a $\Gamma(U_i, T'N)$ -valued polynomial in s of degree μ and $\tau^{(\mu)}(s)$ is a T-valued polynomial in s of the same degree satisfying that

$$g_i^{(\mu)}(s) \equiv g_i^{(\mu-1)}(s) \mod s^{\mu}$$

and

$$\tau^{(\mu)}(s) \equiv \tau^{(\mu-1)}(s) \operatorname{mod} s^{\mu}.$$

Now we construct these $\{g_i^{(\mu)}(s)\}_{i \in \Lambda}$ and $\tau^{(\mu)}(s)$ by induction on μ . For $\mu = 0$, we set

$$(g_i^{(0)})^{\lambda} = z_i^{\lambda}$$
 for $\lambda = 1, \dots, n$ and $\tau^0 = 0$.

Suppose that $\{g_i^{(\mu-1)}(s)\}_{i\in\Lambda}$ and $\tau^{(\mu-1)}(s)$ are determined for some $\mu \ge 1$. First we define a $\Gamma(U_i \cap U_j, T'N)$ -valued polynomial in *s* of degree $\mu, \sigma_{ij}^{(\mu)}(s)$, by

$$\sigma_{ij}^{(\mu)}(s) \equiv \sum_{\lambda=1}^{n} \{ \left(g_i^{(\mu-1)}(s) \right)^{\lambda} - f_{ij}^{\lambda} \left(g_j^{(\mu-1)}(s), s \right) \} \partial / \partial z_i^{\lambda} \mod s^{\mu+1}.$$

Then we set

$$g'_i|_{\mu}(s) = \sum_{k \in \Lambda} \rho_k \kappa_s^{\mu} \left(\sigma_{ki}^{(\mu)}(s) \right),$$

where $\{\rho_k\}_{k\in\Lambda}$ is a partition of unity subordinate to $\{U_k\}_{k\in\Lambda}$, and $\kappa_s^{\mu}(\cdot)$ means the μ th polynomial part of () with respect to *s*. Next we define $\Gamma(U_i, T'N \otimes (T'N)^*)$ -valued polynomial $w_i^{(\mu)}(s)$ and $\zeta_i^{(\mu)}(s)$ of degree μ by

$$w_i^{(\mu)}(s) = -\sum_{\lambda=1}^n \left[\bar{\partial} \left\{ \left(g_i^{(\mu-1)}(s) \right)^{\lambda} + \left(g_i' |_{\mu}(s) \right)^{\lambda} \right\} + \phi \left(\tau^{(\mu-1)}(s) \right) \left\{ \left(g_i^{(\mu-1)}(s) \right)^{\lambda} - \left(g_i^{(0)} \right)^{\lambda} \right\} \left] \partial / \partial z_i^{\lambda} \bmod s^{\mu+1} \right\}$$

and

$$\zeta_i^{(\mu)}(s) \equiv w_i^{(\mu)}(s) - \phi\left(\tau^{(\mu-1)}(s)\right)|_{U_i} \mod s^{\mu+1}.$$

We solve $\tau_{\mu}^{(\sigma)}(s)$ satisfying

$$\sum_{\sigma=1}^{q} \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma}' = \mathbf{H}_{TN}^{(1)} \Big(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \Big(\zeta_i^{(\mu)}(s) \Big) \Big),$$

where $\beta'_{\lambda} = \mathbf{H}_{TN}^{(1)} \beta_{\lambda}$, and $\mathbf{H}_{TN}^{(1)}$ means the harmonic projection of T'N-valued form. This part is the only one different from [3].

$$g'_{\mu}(s) = -\bar{\partial}^{*}_{TN} N_{TN} \Big(\sum_{i \in \Lambda} \rho_{i} \kappa^{\mu}_{s} \Big(\zeta^{(\mu)}_{i}(s) \Big) - \tau_{\mu}(s) \Big)$$

$$\tau_{\mu}(s) = \sum_{\sigma=1}^{q} \tau^{(\sigma)}_{\mu}(s) \beta_{\sigma},$$

$$\tau^{(\sigma)}_{\mu}(s) = \Big(\sum_{i \in \Lambda} \rho_{i} \kappa^{\mu}_{s} \Big(\zeta^{(\mu)}_{i}(s) \Big), \beta'_{\sigma} \Big),$$

where (,) is chosen satisfying: $(\beta'_{\lambda}, \beta'_{\mu}) = \delta_{\lambda\mu}$. Then we have that $g'_{\mu}(s)$ is $\Gamma(U, T'N)$ -valued, since $N_{T'N}$ is a C^{∞} operator. Finally we set

$$g_i^{(\mu)}(s) = g_i^{(\mu-1)}(s) + g_i'|_{\mu}(s) + g_{\mu}'(s)$$

and

$$\tau^{\mu}(s) = \tau^{(\mu-1)}(s) + \tau_{\mu}(s).$$

Obviously (4.0) and (4.4)_{μ} are satisfied for all $\mu \ge 1$.

PROPOSITION 4.1. For any $\mu \ge 0$,

$$(1)_{\mu} \qquad \left(g_i^{(\mu)}(s)\right)^{\lambda} - f_{ij}^{\lambda}\left(g_j^{(\mu)}(s), s\right) \equiv 0 \operatorname{mod}\left(b(s), s^{\mu+1}\right) \text{for } \lambda = 1, \dots, n,$$

 $(2)_{\mu} \qquad \theta_{i}^{(\mu)}(s) - \phi\left(\tau^{(\mu)}(s)\right)|_{U_{i}} \equiv 0 \operatorname{mod}(b(s), s^{\mu+1}) \text{ for } \lambda = 1, \ldots, n,$ where $\theta_{i}^{(\mu)}(s)$ is a $\Gamma\left(U_{i}, T'N \otimes (T''N)^{*}\right)$ -valued polynomial in t of degree μ defined by:

$$\left(\bar{\partial} + \theta_i^{(\mu)}(s)\right) \left(g_i^{(\mu)}(s)\right)^{\lambda} \equiv 0 \mod s^{\mu+1} \text{ for } \lambda = 1, \dots, n,$$
$$h\left(\tau^{(\mu)}(s)\right) \equiv 0 \mod\left(b(s), s^{\mu+1}\right),$$

(3)_µ

(4)_{$$\mu$$} $\sum_{k \in \Lambda} \rho_k \{ \sigma_{kj}^{(\mu+1)}(s) - \sigma_{ki}^{(\mu+1)}(s) \} \equiv 0 \mod s^{\mu+1},$

(5)_{$$\mu$$} $\overline{\partial}_{T'N}\overline{\partial}_{T'N}^* N_{T'N}\left\{\sum_{i\in\Lambda}\rho_i w_i^{(\mu+1)}(s) - \phi\left(\tau^{(\mu)}(s)\right)\right\} \equiv 0 \mod s^{\mu+1},$

(6)_µ
$$\mathbf{H}_{T'N}^{(1)} \{ \sum_{i \in \Lambda} \rho_i w_i^{(\mu+1)}(s) - \phi\left(\tau^{(\mu)}(s)\right) \} \equiv 0 \mod s^{\mu+1}.$$

PROOF. We prove this proposition by following the line in [3]. For $\mu = 0$, it is obvious. Because

$$\sigma_{ij}^{(1)}(s) \equiv 0 \mod s, \quad w_i^{(1)}(s) \equiv 0 \mod s$$

and

$$\phi\left(\tau^{(0)}(s)\right) = 0,$$

 $(4)_0$ – $(6)_0$ are also satisfied.

We suppose that $(1)_{\mu-1}$ -(6)_{$\mu-1$} are satisfied for some $\mu \ge 1$. To prove $(1)_{\mu}$, we recall the following lemma.

LEMMA 4.2. $\sigma_{ki}^{(\mu)}(s) - \sigma_{kj}^{(\mu)}(s) + \sigma_{ij}^{(\mu)}(s) \equiv 0 \mod(b(s), s^{\mu+1}).$

For the proof, see Lemma 3.2 in [3].

PROOFS OF $(1)_{\mu}$ AND $(4)_{\mu}$. The proof of this part is completely the same as in page 828 in [3]. So we omit the proof.

Next we see $(2)_{\mu}$ and $(3)_{\mu}$. For this, we must recall some lemmas.

LEMMA 4.3.
$$\theta_i^{(\mu)}(s) \equiv w_i^{(\mu)}(s) - \bar{\partial}_{TN}g'_{\mu}(s)|_{U_i} \operatorname{mod}(b(s), s^{\mu+1}).$$

For the proof, see Lemma 3.3 in [3].

COROLLARY 4.4. $P(w_i^{(\mu)}(s)) \equiv 0 \mod(b(s), s^{\mu+1}).$

For the proof, see Corollary 3.4 in [3].

LEMMA 4.5. $\theta_i^{(\mu)}(s) \equiv \theta_j^{(\mu)}(s) \text{ on } U_i \cap U_j \mod(b(s), s^{\mu+1}).$

For the proof, see Lemma 3.5 in [3].

So we have:

COROLLARY 4.6.
$$w_i^{(\mu)}(s) \equiv w_j^{(\mu)}(s) \text{ on } U_i \cap U_j \mod(b(s), s^{\mu+1}).$$
 Therefore
 $\zeta_i^{(\mu)}(s) \equiv \zeta_j^{(\mu)}(s) \text{ on } U_i \cap U_j \mod(b(s), s^{\mu+1}).$

And we have:

LEMMA 4.7. $h(\tau^{(\mu-1)}(s)) \equiv 0 \mod(b(s), s^{\mu+1}), \text{ where } h(t) = \mathbf{H}_{TN}^{(2)} P(\phi(t)).$ For the proof, see Lemma 3.7 in [3]. LEMMA 4.8. $\bar{\partial}_{TN}^{(1)} (\sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s)) \equiv 0 \mod(b(s), s^{\mu+1}).$ For the proof, see Lemma 3.8 in [3].

Lemma 4.9.

$$\sum_{i\in\Lambda}\rho_i\theta_i^{(\mu)}(s)-\phi\left(\tau^{(\mu)}(s)\right)\equiv 0 \operatorname{mod}(b(s),s^{\mu+1}).$$

PROOF. By Lemma 4.3, we have

$$\begin{split} \sum_{i \in \Lambda} \rho_i \theta_i^{(\mu)}(s) &- \phi\left(\tau^{(\mu)}(s)\right) \\ &\equiv \sum_{i \in \Lambda} \rho_i w_i^{(\mu)}(s) - \bar{\partial}_{TN} g_{\mu}'(s) - \phi\left(\tau^{(\mu-1)}(s)\right) - \phi_1 \tau_{\mu}(s) \operatorname{mod}(b(s), s^{\mu+1}) \\ &\equiv \sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s) - \bar{\partial}_{TN} \bar{\partial}_{TN}^* N_{TN} \{\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s)\right) - \sum_{\sigma=1}^q \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma} \} \\ &- \sum_{\sigma=1}^q \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma} \operatorname{mod}(b(s), s^{\mu+1}). \end{split}$$

https://doi.org/10.4153/CJM-1992-015-2 Published online by Cambridge University Press

While by the definition of β'_{σ} , β_{σ} , there is an α_{σ} satisfying:

$$\beta_{\sigma} = \beta'_{\sigma} + \bar{\partial}_{TN} \alpha_{\sigma}$$
 (because of $\beta'_{\sigma} = \mathbf{H}^{(1)}_{TN} \beta_{\sigma}$).

So

$$(1-\bar{\partial}_{T'N}\bar{\partial}_{T'N}^*N_{T'N})\beta_{\sigma}=\beta_{\sigma}'.$$

Hence

$$\begin{split} \sum_{i \in \Lambda} \rho_i \theta_i^{(\mu)}(s) &= \phi\left(\tau^{(\mu)}(s)\right) \\ &\equiv \sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s) - \bar{\partial}_{TN} \bar{\partial}_{TN}^* N_{TN} \left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s)\right)\right) \\ &\quad - \sum_{\sigma=1}^q \left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s)\right), \beta_{\sigma}'\right) \beta_{\sigma}' \mod\left(b(s), s^{\mu+1}\right) \\ &\equiv \sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s) - \bar{\partial}_{TN} \bar{\partial}_{TN}^* N_{TN} \left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s)\right)\right) \\ &\quad - \mathbf{H}_{TN}^{(1)} \left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s)\right)\right) \mod\left(b(s), s^{\mu+1}\right) \\ &\equiv \sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s) - \bar{\partial}_{TN} \bar{\partial}_{TN}^* N_{TN} \left(\sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s)\right) \\ &\quad - \mathbf{H}_{TN}^{(1)} \left(\sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s)\right) \mod\left(b(s), s^{\mu+1}\right) \quad (by (5)_{\mu-1} \text{ and } (6)_{\mu-1}) \\ &\equiv \bar{\partial}_{TN}^{(1)*} \bar{\partial}_{TN}^{(1)} N_{TN} \left(\sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s)\right) \\ &\equiv 0 \mod\left(b(s), s^{\mu+1}\right) \quad (by \text{ Lemma 4.8}). \end{split}$$

PROOF OF $(2)_{\mu}$. By Lemma 4.9 with Lemma 4.5,

$$\theta_i^{(\mu)}(s) \equiv \phi\left(\tau^{(\mu)}(s)\right)|_{U_i} \operatorname{mod}(b(s), s^{\mu+1}).$$

PROOF OF $(3)_{\mu}$. Since the linear term of h(t) is 0, we have

$$h(\tau^{(\mu)}(s)) \equiv h(\tau^{(\mu-1)}(s)) \mod s^{\mu+1}$$
$$\equiv 0 \mod(b(s), s^{\mu+1}) \text{ (by Lemma 4.7)}$$

PROOF OF $(5)_{\mu}$.

$$\begin{split} \bar{\partial}_{TN} \bar{\partial}_{T'N}^* N_{TN} \{ \sum_{i \in \Lambda} \rho_i w_i^{(\mu+1)}(s) - \phi\left(\tau^{(\mu)}(s)\right) \} \\ &\equiv \bar{\partial}_{TN} \bar{\partial}_{T'N}^* N_{TN} \{ \sum_{i \in \Lambda} \rho_i w_i^{\mu+1}(s) - \phi\left(\tau^{(\mu-1)}(s)\right) - \phi_1 \tau_{\mu}(s) \} \mod s^{\mu+1} \\ &\equiv \bar{\partial}_{T'N} \bar{\partial}_{T'N}^* N_{TN} \left(\sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu)}(s) \right) - \bar{\partial}_{TN} \bar{\partial}_{T'N}^* N_{TN} \left(\phi_1 \tau_{\mu}(s) \right) \mod s^{\mu+1} \\ &\equiv 0 \mod s^{\mu+1} \text{ (by the definition of } \tau_{\mu}(s) \text{ and } (5)_{\mu-1} \text{).} \end{split}$$

PROOF OF $(6)_{\mu}$.

$$\begin{aligned} \mathbf{H}_{T'N}^{(1)} \left\{ \sum_{i \in \Lambda} \rho_i w_i^{\mu+1}(s) - \phi\left(\tau^{(\mu)}(s)\right) \right\} \\ &\equiv \mathbf{H}_{T'N}^{(1)} \left\{ \sum_{i \in \Lambda} \rho_i \zeta_i^{(\mu+1)}(s) - \bar{\partial}_{T'N} \bar{\partial}_{T'N}^* N_{T'N} \left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s) \right) - \phi_1 \tau_{\mu}(s) \right) \right. \\ &\left. - \sum_{\sigma=1}^q \left(\left(\sum_{i \in \Lambda} \rho_i \kappa_s^{\mu} \left(\zeta_i^{(\mu)}(s) \right), \beta_{\sigma}' \right) \beta_{\sigma} \right) \right\} \\ &\equiv 0 \mod s^{\mu+1} \ (by \ (6)_{\mu-1}). \end{aligned}$$

By Proposition 4.1, we have $(4.1)_{\mu}$ and $(4.3)_{\mu}$ for any $\mu \ge 0$. From $(2)_{\mu}$ in Proposition 4.1, we have that for any $\mu \ge 0$,

$$(4.2)_{\mu} \qquad \left(\bar{\partial} + \phi\left(\tau^{(\mu)}(s)\right)\right) \left(g_{i}^{(\mu)}(s)\right)^{\lambda} \equiv 0 \operatorname{mod}\left(b(s), s^{\mu+1}\right) \text{ for } \lambda = 1, \dots n.$$

This completes the inductive construction of $g_i^{(\mu)}(s)$ and $\tau^{(\mu)}(s)$.

4.2. Convergence of the formal power series We see that the formal power series $g_i(s) = \lim_{\mu \to \infty} g_i^{(\mu)}(s)$ and $\tau(s) = \lim_{\mu \to \infty} \tau^{(\mu)}(s)$ converges with respect to $\| \|'_{(0,m)}$ -norm and $\|$ -norm respectively where $m \ge n+2$ and $\| \|$ denotes the euclidean norm on the finite dimensional vector space \mathcal{H} , where \mathcal{H} is generated by $\beta_1, \ldots, \beta_{q-1}, \beta_q$ (for the definition of $\| \|'_{(0,m)}$ -norm, see [9], and we can identify T and \mathcal{H} locally at the origin).

To prove that $\{g_i^{(\mu)}(s)\}_{i\in\Lambda}$ and $\tau^{(\mu)}(s)$ converge, it suffices to show the following estimates; for all $\mu \ge 1$,

$$(4.5)_{\mu} \qquad \qquad \|g_i^{(\mu)}(s) - g_i^{(0)}\|_{(0,m)}' << A(s),$$

 $(4.6)_{\mu} \qquad |\tau^{(\mu)}(s)| << A(s),$

where A(s) is defined by:

$$A(s) = (b/16c) \sum_{\mu=1}^{\infty} (c^{\mu}/\mu^2)(s_1 + \dots + s_r)^{\mu}$$

by the complete same way as in [8]. As $\phi(t)$ is holomorphic in *t* and $f_{ij}(\zeta_j, s)$ is holomorphic in (ζ_j, s) , we may assume the following:

(4. v)
$$\|\phi(t)\|_{(0,m)} << (b_0/c_0) \sum_{\mu=1}^{\infty} c_0^{\mu} (t_1 + \dots + t_r)^{\mu},$$

(4. *vi*)
$$\|f_{ij}^{\lambda}(z_j + x, s)f_{ij}^{\lambda}(z_j) - \sum_{\nu=1}^{n} (\partial f_{ij}^{\lambda} / \partial z_j^{\lambda})(z_j)x^{\nu} - \sum_{\alpha=1}^{r} (\partial f_{ij}^{\lambda} / \partial s_{\alpha})(z_j, 0)s_{\alpha}\|'_{(0,m)}$$
$$<< (b_0 / c_0) \sum_{\mu=2}^{\infty} c^{\mu} (x_1 + \dots + x_n + s_1 + \dots + s_r)^{\mu} \text{ for } \lambda = 1, \dots, n.$$

However the proof of this part is the same as in [3]. So we omit this. Hence we have that $g_i(s)$ is a $\Gamma'_{(0,m)}(U_i, T'N)$ -valued holomorphic function and $\tau(s)$ is a *T*-valued holomorphic function on some neighborhood D' of o in D. so we have our criterion.

232

REFERENCES

- **1.** T. Akahori, *Intrinsic formula for Kuranishi's* $\bar{\partial}_{b}^{\phi}$, Publ. RIMS, Kyoto Univ., **14**(1978), 615–641.
- 2. _____, Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold, Publ. RIMS, Kyoto Univ., 14(1978), 789–847.
- 3. T. Akahori and K. Miyajima, Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold. II, Publ. RIMS, Kyoto Univ., 16(1980), 811–834.
- **4.** T. Akahori, *The new estimate for the subbundles* E_i *and its application to the deformation of the boundaries of strongly pseudo convex domains*, Invent. Math., **63**(1981), 311–334.
- **5.**_____, The new Neumann operator associated with deformations of strongly pseudo convex domains and its application to the deformation theory, Invent. Math., **68**(1982), 317–352.
- A criterion for the Neumann type problem over a differential complex on a strongly pseudo convex domain, Math. Ann., 264(1983), 525–535.
- 7. _____, Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold with real dimension 5, Manuscripta math., **63**(1989), 29–43.
- On the deformation theory of pseudo hermitian CR-structures which preserve the Webster's scalar curvature (an approach to the local moduli theory for strongly pseudo convex domains), Nihonkai Math. J., 1(1990), 55–88.
- **9.**_____, On the Kuranishi family of deformations of complex structures over a tubular neighborhood of a strongly pseudo convex boundary with complex dimension 3, preprint.
- 10. K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I-II, Ann. of Math., 67(1958), 328-466.
- 11. K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68(1958), 450–459.
- K. Kodaira and D.C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math., 100(1958), 281–294.
- **13.** M. Kuranishi, *Deformations of isolated singularities and* $\bar{\partial}_b$, preprint, Columbia Univ., 1973.

Niigata University Niigata, Japan