A CRITERION FOR VERSALITY
 OF DEFORMATIONS OF TUBULAR NEIGHBORHOODS OF STRONGLY PSEUDO CONVEX BOUNDARIES

TAKAO AKAHORI

Abstract

We extend the famous Kodaira-Spencer's completeness theorem for a family of deformations of complex structures (see [12]). As an application, we show that the canonical family constructed in [9] is versal.

1. Introduction. The purpose of this paper is to give a criterion for versality of deformations of complex structures over a tubular neighborhood of a strongly pseudo convex boundary. In the our former paper ([9]), we constructed a canonical family of complex structures over a tubular neighborhood of the strongly pseudo convex boundary which satisfies a certain condition, from the point of view of $C R$-structures. In this paper, we give a fairly general criterion for versality in the sense of Kuranishi. And as an application of this criterion, we see that our family constructed in [5] is versal in the sense of Kuranishi. Namely, we assume: we are given a family of deformations of almost complex structures over $\bar{U},(\phi(t), T)$, satisfying

$$
\begin{aligned}
& o \text { is a non-singular point of } T, \\
& \phi(t) \in \Gamma\left(\bar{U}, T^{\prime} \otimes\left(T^{\prime \prime} N\right)^{*}\right), \\
& \phi(t)=\sum_{\lambda=1}^{q} \beta_{\lambda} t_{\lambda}+0\left(t^{2}\right),
\end{aligned}
$$

where $\phi(t)$ is defined by the standard way as in $[10]$ and $\left\{\beta_{\lambda}\right\}_{\lambda=1}^{q}$ generates $H^{(1)}\left(U, T^{\prime} N\right)$, $T^{\prime} N$-valued $\bar{\jmath}$-cohomology, and $q=\operatorname{dim}_{C} H^{(1)}\left(U, T^{\prime} N\right)$. We note that we don't assume $P(\phi(t))=0$ for all t in T. Under this assumption, we have:

Criterion. Assume the above. And we assume that:

$$
P(\phi(t))=0 \bmod \mathbf{H}_{T^{\prime} N}^{(2)} P(\phi(t)) .
$$

Define $T^{\prime} \subset T$ by $T^{\prime}=\left\{t^{\prime}, t^{\prime} \in T \mid P\left(\phi\left(t^{\prime}\right)\right)=0\right\}$. Then our family, $(\phi(t), T)$ is versal in the sense of Kuranishi, where if $\operatorname{dim}_{C} X \geq 4, \mathbf{H}_{T N}^{(2)}=$ the harmonic projection of $T^{\prime} N$ valued forms of type $(0,2)$, and if $\operatorname{dim}_{C} X=3, \mathbf{H}_{T^{\prime} N}^{(2)}=1-\bar{\partial} N \bar{\partial}^{*}$, where N means the Neumann operator of $T^{\prime} N$-valued forms of type $(0,1)$.

The proof will be done along the lines of [3].

[^0](c) Canadian Mathematical Society 1992.
2. A family of deformations of tubular neighborhoods of strongly pseudo convex boundaries. Let X be a complex manifold. Let Ω be a relative compact strongly pseudo convex domain with smooth boundary $b \Omega$. We consider deformations of tubular neighborhoods of the strongly pseudo convex boundary $b \Omega$. Let (T, o) be a germ of complex analytic subspaces of (C^{r}, o).

DEFINITION 2.1. By a family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b \Omega,(X, \pi, T)$, we mean that X, T are analytic spaces, and a smooth morphism $\pi: X \rightarrow(T, o)$ satisfying: $\pi^{-1}(o)$ is a tubular neighborhood of $b \Omega$ in X.

Henceforth we use the notation (X, π, T) for a family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b \Omega$. Let (X, π, T) be a family of deformations of a tubular neighborhood of a strongly pseudo convex boundary. And we set $\pi^{-1}(o)=U$. Then we can define an element $\phi(t)$ of $\Gamma\left(\bar{U}^{\prime}, T^{\prime} N \otimes\left(T^{\prime \prime} N\right)^{*}\right)$, which is parametrized by T complex analytically, by the standard way as in [10], satisfying:

$$
P(\phi(t))=0 \text { for } t \text { in } T,
$$

where U^{\prime} is also a tubular neighborhood of $b \Omega$ and $U^{\prime} \subset \subset U$.
3. The notion of versality. Let (X, π, T) be a family of deformations of a tubular neighborhood of a strongly pseudo convex boundary $b \Omega$. In this section, we recall the notion of versality (cf. [2], [3], [4]).

DEFINITION 3.1. A family of deformations of a tubular neighborhood of a strongly pseudo convex boundary $b \Omega,(X, \pi, T)$ is called versal if the following holds: For any family of deformations of tubular neighborhoods of a strongly pseudo convex boundary $b \Omega,(\mathcal{Y}, \omega, S)$ satisfying: $o \in S$, and $\omega^{-1}(o)=V$ is an open neighborhood of $b \Omega$ in N satisfying: $\pi^{-1}(o)=U \subset \subset V$, there are a holomorphic map τ from S to T and a holomorphic map $g(s)$ from $\pi^{-1}(\tau(s))$ to $\omega^{-1}(s), g(o)=$ identity map, depending on s complex analytically and if necessary, we must shrink S sufficiently small.
4. A criterion. Let X be a complex manifold and let Ω be a strongly pseudo convex domain with smooth boundary $b \Omega$. We assume that we are given a family of deformations of complex structures over $\bar{U},(T, \phi(t))$, satisfying: o is a non-singular point of T,

$$
\begin{gathered}
\phi(t) \in \Gamma\left(\bar{U}, T^{\prime} N \otimes\left(T^{\prime \prime} N\right)^{*}\right), \\
\phi(t)=\sum_{\lambda=1}^{q} \beta_{\lambda} t_{\lambda}+0\left(t^{2}\right),
\end{gathered}
$$

where $\left\{\beta_{\lambda}\right\}_{\lambda=1}^{q}$ generates $H^{(1)}\left(U, T^{\prime} N\right), T^{\prime} N$-valued $\bar{\partial}$-cohomology at degree one and $q=\operatorname{dim}_{C} H^{(1)}\left(U, T^{\prime} N\right)$, and $\left(t_{1}, \ldots, t_{q}\right)$ is a local coordinate of T at the origin.

CRITERION. Assume the above. And we assume that $P(\phi(t)) \equiv 0 \bmod \mathbf{H}_{T N}^{(2)} P(\phi(t))$. Then our family, $(\phi(t), T)$, is versal in the sense of Kuranishi, where if $\operatorname{dim}_{C} X \geq 4$,
$\mathbf{H}_{T_{N} N}^{(2)}=$ the harmonic projection of $T^{\prime} N$-valued form of type $(0,2)$, and if $\operatorname{dim}_{C} X=3$, $\mathbf{H}_{T^{\prime} N}^{(2)}=1-\bar{\partial} N \bar{\partial}^{*}$, where N means the Neumann operator of $T^{\prime} N$-valued forms of type $(0,1)$.

REMARK. Here concerning the notion of a family of deformations of tubular neighborhoods of strongly pseudo convex boundaries, rigorously our $(\phi(t), T)$ should be read as $\left(\phi\left(t^{\prime}\right), T^{\prime}\right)$, where

$$
T^{\prime}=\left\{t^{\prime} \mid t^{\prime} \in T, P\left(\phi\left(t^{\prime}\right)\right)=0\right\}
$$

We show our criterion. Let (\mathcal{N}, ω, S) be an arbitrary family of deformations of a neighborhood V of $b \Omega$ satisfying: $o \in S$ and $\omega^{-1}(o)=V, U \subset \subset V$. We assume the following:
(4.i) o is the origin of a complex euclidean space C^{r} and S is an analytic subspace of a neighborhood D of o in C^{r} defined by $b_{1}(s)=\cdots=b_{\ell}(s)=0$.
(4.ii) We find a finite system of open sets of $\mathcal{N},\left\{\mathcal{U}_{j}\right\}_{j \in \Lambda}$, satisfying that there is an analytic embedding

$$
\eta_{j}: \mathcal{U}_{j} \rightarrow W_{j} \times D \text { with } p_{2} \cdot \eta_{j}=\omega \text { for each } j \in \Lambda
$$

where W_{j} is a neighborhood of o in C^{n} and p_{2} denotes the projection of $W_{j} \times D$ onto the second factor. We denote by $\zeta_{j}=\left(\zeta_{j}^{(1)}, \ldots, \zeta_{j}^{(n)}\right)$ and $s=\left(s_{1}, \ldots, s_{r}\right)$ the coordinates of W_{j} and D respectively, and set $z_{j}^{\lambda}=\left.\zeta^{\lambda} \cdot \eta_{j}\right|_{\omega}-1_{(o)}$ for $\lambda=1, \ldots, n$ and $U_{j}=\mathcal{U}_{j} \cap b \Omega$, where we regard ζ_{j}^{λ} as a function on $W_{j} \times D$,
(4.iii) $\eta_{j} \cdot \eta_{k}^{-1}$ is represented by:

$$
\begin{gathered}
\zeta_{j}^{\lambda}=f_{j k}^{\lambda}\left(\zeta_{k}, s\right) \text { for } \lambda=1, \ldots, n \\
s_{\alpha}=s_{\alpha} \text { for } \alpha=1, \ldots, r
\end{gathered}
$$

and we set

$$
f_{j k}^{\lambda}\left(z_{k}\right)=f_{j k}^{\lambda}\left(z_{k}, o\right) \text { for } \lambda=1, \ldots, n
$$

(4.iv) $f_{i j}^{\lambda}\left(f_{j k}\left(\zeta_{k}, s\right), s\right) \equiv f_{i k}^{\lambda}\left(\zeta_{k}, s\right) \bmod b(s)$, where $\bmod b(s)$ means $\bmod \left\{b_{\mu}(s)\right.$, $\mu=1, \ldots, \ell\}$ and henceforth we use this notation for brevity.
To prove the versality of the family which satisfies our condition, it suffices to show the existence of a neighborhood D^{\prime} of o in D, of a family $g_{i}(s)$ of sections of $T^{\prime} N$ over U_{i} which depends complex analytically on s in D^{\prime} for each $i \in \Lambda$, and of a T-valued holomorphic function $\tau(s)$ on D^{\prime} satisfying:

$$
\begin{gather*}
\left(g_{i}(o)\right)^{\lambda}=z^{\lambda} \text { for } \lambda=1, \ldots, n, \quad \tau(o)=0 \tag{4.0}\\
\left(g_{i}(s)\right)^{\lambda}-f_{i j}^{\lambda}\left(g_{j}(s), s\right)=0 \text { for } s \in S \text { and } \lambda=1, \ldots, n, \tag{4.1}\\
(\bar{\partial}+\phi(\tau(s)))\left(g_{i}(s)\right)^{\lambda}=0 \text { for } s \in S \text { and } \lambda=1, \ldots, n, \tag{4.2}\\
h(\tau(s))=0 \text { for } s \in S, \tag{4.3}
\end{gather*}
$$

where $h(t)=\mathbf{H}_{T^{\prime} N}^{(2)} P(\phi(t))$, and if necessary, we must shrink S sufficiently small, and $g_{i}(s)$ has the expression $g_{i}(s)=\sum_{\lambda=1}^{n}\left(g_{i}(t)\right)^{\lambda} \partial / \partial z_{i}^{\lambda}$, regarded as an element of $\Gamma\left(U_{i}\right.$, $\left.T^{\prime} N\right)$ and $(\bar{\partial}+\phi(\tau(s)))\left(g_{i}(s)\right)^{\lambda}$ denotes the element $\Gamma\left(U_{i}, T^{\prime} N\right)$ defined by the equation

$$
(\bar{\partial}+\phi(\tau(s)))\left(g_{i}(s)\right)^{\lambda}(X)=X\left(\left(g_{i}(s)\right)^{\lambda}\right)+\phi(\tau(s))(X)\left(\left(g_{i}(s)\right)^{\lambda}\right), \text { for any } X \in T^{\prime} N
$$

4.1. Construction of a formal solution. First, we construct $\left\{g_{i}(s)\right\}_{i \in \Lambda}$ and $\tau(s)$ formally in s, namely we construct $\left\{g_{i}^{(\mu)}(s)\right\}_{i \in \Lambda}$ and $\tau^{(\mu)}(s)$ for $\mu=1, \ldots$ satisfying:

$$
\begin{equation*}
\left(g_{i}^{(0)}\right)^{\lambda}=z_{i}^{\lambda} \text { for } \lambda=1, \ldots, n \text { and } \tau^{(0)}=0 \tag{4.0}
\end{equation*}
$$

$$
\begin{align*}
\left(g_{i}^{(\mu)}(s)\right)^{\lambda}-f_{i j}^{\lambda}\left(g_{j}^{(\mu)}(s), s\right) \equiv 0 \bmod \left(b_{m}(s), s^{\mu+1}\right), \quad m=1, \ldots, \ell \tag{4.1}\\
\left(\bar{\partial}+\phi\left(\tau^{(\mu)}(s)\right)\right)\left(g_{i}^{(\mu)}(s)\right)^{\lambda} \equiv 0 \bmod \left(b_{m}(s), s^{\mu+1}\right), \quad m=1, \ldots, \ell \tag{4.2}\\
h\left(\tau^{(\mu)}(s)\right) \equiv 0 \bmod \left(b_{m}(s), s^{\mu+1}\right), m=1, \ldots, \ell \tag{4.3}
\end{align*}
$$

(4.4) $\mu g_{i}^{(\mu)}(s)$ is a $\Gamma\left(U_{i}, T^{\prime} N\right)$-valued polynomial in s of degree μ and $\tau^{(\mu)}(s)$ is a T-valued polynomial in s of the same degree satisfying that

$$
g_{i}^{(\mu)}(s) \equiv g_{i}^{(\mu-1)}(s) \bmod s^{\mu}
$$

and

$$
\tau^{(\mu)}(s) \equiv \tau^{(\mu-1)}(s) \bmod s^{\mu}
$$

Now we construct these $\left\{g_{i}^{(\mu)}(s)\right\}_{i \in \Lambda}$ and $\tau^{(\mu)}(s)$ by induction on μ.
For $\mu=0$, we set

$$
\left(g_{i}^{(0)}\right)^{\lambda}=z_{i}^{\lambda} \text { for } \lambda=1, \ldots, n \text { and } \tau^{0}=0
$$

Suppose that $\left\{g_{i}^{(\mu-1)}(s)\right\}_{i \in \Lambda}$ and $\tau^{(\mu-1)}(s)$ are determined for some $\mu \geq 1$. First we define a $\Gamma\left(U_{i} \cap U_{j}, T^{\prime} N\right)$-valued polynomial in s of degree $\mu, \sigma_{i j}^{(\mu)}(s)$, by

$$
\sigma_{i j}^{(\mu)}(s) \equiv \sum_{\lambda=1}^{n}\left\{\left(g_{i}^{(\mu-1)}(s)\right)^{\lambda}-f_{i j}^{\lambda}\left(g_{j}^{(\mu-1)}(s), s\right)\right\} \partial / \partial z_{i}^{\lambda} \bmod s^{\mu+1} .
$$

Then we set

$$
\left.g_{i}^{\prime}\right|_{\mu}(s)=\sum_{k \in \Lambda} \rho_{k} \kappa_{s}^{\mu}\left(\sigma_{k i}^{(\mu)}(s)\right)
$$

where $\left\{\rho_{k}\right\}_{k \in \Lambda}$ is a partition of unity subordinate to $\left\{U_{k}\right\}_{k \in \Lambda}$, and $\kappa_{s}^{\mu}()$ means the μ th polynomial part of () with respect to s. Next we define $\Gamma\left(U_{i}, T^{\prime} N \otimes\left(T^{\prime \prime} N\right)^{*}\right)$-valued polynomial $w_{i}^{(\mu)}(s)$ and $\zeta_{i}^{(\mu)}(s)$ of degree μ by

$$
\begin{aligned}
w_{i}^{(\mu)}(s)= & -\sum_{\lambda=1}^{n}\left[\bar{\partial}\left\{\left(g_{i}^{(\mu-1)}(s)\right)^{\lambda}+\left(\left.g_{i}^{\prime}\right|_{\mu}(s)\right)^{\lambda}\right\}\right. \\
& \left.+\phi\left(\tau^{(\mu-1)}(s)\right)\left\{\left(g_{i}^{(\mu-1)}(s)\right)^{\lambda}-\left(g_{i}^{(0)}\right)^{\lambda}\right\}\right] \partial / \partial z_{i}^{\lambda} \bmod s^{\mu+1}
\end{aligned}
$$

and

$$
\zeta_{i}^{(\mu)}(s) \equiv w_{i}^{(\mu)}(s)-\left.\phi\left(\tau^{(\mu-1)}(s)\right)\right|_{U_{i}} \bmod s^{\mu+1}
$$

We solve $\tau_{\mu}^{(\sigma)}(s)$ satisfying

$$
\sum_{\sigma=1}^{q} \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma}^{\prime}=\mathbf{H}_{T^{\prime} N}^{(1)}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)\right)
$$

where $\beta_{\lambda}^{\prime}=\mathbf{H}_{T^{\prime} N}^{(1)} \beta_{\lambda}$, and $\mathbf{H}_{T^{\prime} N}^{(1)}$ means the harmonic projection of $T^{\prime} N$-valued form. This part is the only one different from [3].

$$
\begin{gathered}
g_{\mu}^{\prime}(s)=-\bar{\partial}_{T_{N}}^{*} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)-\tau_{\mu}(s)\right), \\
\tau_{\mu}(s)=\sum_{\sigma=1}^{q} \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma} \\
\tau_{\mu}^{(\sigma)}(s)=\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right), \beta_{\sigma}^{\prime}\right)
\end{gathered}
$$

where $($,$) is chosen satisfying: \left(\beta_{\lambda}^{\prime}, \beta_{\mu}^{\prime}\right)=\delta_{\lambda \mu}$. Then we have that $g_{\mu}^{\prime}(s)$ is $\Gamma\left(U, T^{\prime} N\right)-$ valued, since $N_{T^{\prime} N}$ is a C^{∞} operator. Finally we set

$$
g_{i}^{(\mu)}(s)=g_{i}^{(\mu-1)}(s)+\left.g_{i}^{\prime}\right|_{\mu}(s)+g_{\mu}^{\prime}(s)
$$

and

$$
\tau^{\mu}(s)=\tau^{(\mu-1)}(s)+\tau_{\mu}(s)
$$

Obviously (4.0) and (4.4) $)_{\mu}$ are satisfied for all $\mu \geq 1$.
Proposition 4.1. For any $\mu \geq 0$,

$$
\begin{equation*}
\left(g_{i}^{(\mu)}(s)\right)^{\lambda}-f_{i j}^{\lambda}\left(g_{j}^{(\mu)}(s), s\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right) \text { for } \lambda=1, \ldots, n \tag{1}
\end{equation*}
$$

(2) ${ }_{\mu}$

$$
\theta_{i}^{(\mu)}(s)-\left.\phi\left(\tau^{(\mu)}(s)\right)\right|_{U_{i}} \equiv 0 \bmod \left(b(s), s^{\mu+1}\right) \text { for } \lambda=1, \ldots, n,
$$

where $\theta_{i}^{(\mu)}(s)$ is a $\Gamma\left(U_{i}, T^{\prime} N \otimes\left(T^{\prime \prime} N\right)^{*}\right)$-valued polynomial in t of degree μ defined by:
(3) ${ }_{\mu}$

$$
\left(\bar{\partial}+\theta_{i}^{(\mu)}(s)\right)\left(g_{i}^{(\mu)}(s)\right)^{\lambda} \equiv 0 \bmod s^{\mu+1} \text { for } \lambda=1, \ldots, n,
$$

$$
h\left(\tau^{(\mu)}(s)\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)
$$

(4) ${ }_{\mu}$
(5) μ
(6) ${ }_{\mu}$

$$
\mathbf{H}_{T^{\prime} N}^{(1)}\left\{\sum_{i \in \Lambda} \rho_{i} w_{i}^{(\mu+1)}(s)-\phi\left(\tau^{(\mu)}(s)\right)\right\} \equiv 0 \bmod s^{\mu+1}
$$

Proof. We prove this proposition by following the line in [3].
For $\mu=0$, it is obvious. Because

$$
\sigma_{i j}^{(1)}(s) \equiv 0 \bmod s, \quad w_{i}^{(1)}(s) \equiv 0 \bmod s
$$

and

$$
\phi\left(\tau^{(0)}(s)\right)=0
$$

$(4)_{0}-(6)_{0}$ are also satisfied.
We suppose that $(1)_{\mu-1}-(6)_{\mu-1}$ are satisfied for some $\mu \geq 1$. To prove (1) $)_{\mu}$, we recall the following lemma.

LEmmA 4.2. $\quad \sigma_{k i}^{(\mu)}(s)-\sigma_{k j}^{(\mu)}(s)+\sigma_{i j}^{(\mu)}(s) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)$.
For the proof, see Lemma 3.2 in [3].
PROOFS OF (1) μ_{μ} AND (4) ${ }_{\mu}$. The proof of this part is completely the same as in page 828 in [3]. So we omit the proof.

Next we see (2) μ_{μ} and (3) $)_{\mu}$. For this, we must recall some lemmas.
LEMMA 4.3. $\quad \theta_{i}^{(\mu)}(s) \equiv w_{i}^{(\mu)}(s)-\left.\bar{\partial}_{T^{\prime} N} g_{\mu}^{\prime}(s)\right|_{U_{i}} \bmod \left(b(s), s^{\mu+1}\right)$.
For the proof, see Lemma 3.3 in [3].
Corollary 4.4. $\quad P\left(w_{i}^{(\mu)}(s)\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)$.
For the proof, see Corollary 3.4 in [3].
Lemma 4.5. $\quad \theta_{i}^{(\mu)}(s) \equiv \theta_{j}^{(\mu)}(s)$ on $U_{i} \cap U_{j} \bmod \left(b(s), s^{\mu+1}\right)$.
For the proof, see Lemma 3.5 in [3].
So we have:
COROLLARY 4.6. $\quad w_{i}^{(\mu)}(s) \equiv w_{j}^{(\mu)}(s)$ on $U_{i} \cap U_{j} \bmod \left(b(s), s^{\mu+1}\right)$. Therefore

$$
\zeta_{i}^{(\mu)}(s) \equiv \zeta_{j}^{(\mu)}(s) \text { on } U_{i} \cap U_{j} \bmod \left(b(s), s^{\mu+1}\right)
$$

And we have:
LEmmA 4.7. $\quad h\left(\tau^{(\mu-1)}(s)\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)$, where $h(t)=\mathbf{H}_{T^{\prime} N}^{(2)} P(\phi(t))$.
For the proof, see Lemma 3.7 in [3].
Lemma 4.8. $\quad \bar{\partial}_{T_{N} N}^{(1)}\left(\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)$.
For the proof, see Lemma 3.8 in [3].
Lemma 4.9.

$$
\sum_{i \in \Lambda} \rho_{i} \theta_{i}^{(\mu)}(s)-\phi\left(\tau^{(\mu)}(s)\right) \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)
$$

Proof. By Lemma 4.3, we have

$$
\begin{aligned}
\sum_{i \in \Lambda} \rho_{i} \theta_{i}^{(\mu)}(s) & -\phi\left(\tau^{(\mu)}(s)\right) \\
\equiv & \sum_{i \in \Lambda} \rho_{i} w_{i}^{(\mu)}(s)-\bar{\partial}_{T^{\prime} N} g_{\mu}^{\prime}(s)-\phi\left(\tau^{(\mu-1)}(s)\right)-\phi_{1} \tau_{\mu}(s) \bmod \left(b(s), s^{\mu+1}\right) \\
\equiv & \sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left\{\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)-\sum_{\sigma=1}^{q} \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma}\right\} \\
& \quad-\sum_{\sigma=1}^{q} \tau_{\mu}^{(\sigma)}(s) \beta_{\sigma} \bmod \left(b(s), s^{\mu+1}\right)
\end{aligned}
$$

While by the definition of $\beta_{\sigma}^{\prime}, \beta_{\sigma}$, there is an α_{σ} satisfying:

$$
\beta_{\sigma}=\beta_{\sigma}^{\prime}+\bar{\partial}_{T^{\prime} N} \alpha_{\sigma} \text { (because of } \beta_{\sigma}^{\prime}=\mathbf{H}_{T^{\prime} N}^{(1)} \beta_{\sigma} \text {). }
$$

So

$$
\left(1-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\right) \beta_{\sigma}=\beta_{\sigma}^{\prime} .
$$

Hence

$$
\begin{aligned}
\sum_{i \in \Lambda} \rho_{i} \theta_{i}^{(\mu)}(s) & -\phi\left(\tau^{(\mu)}(s)\right) \\
\equiv & \sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)\right) \\
& -\sum_{\sigma=1}^{q}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right), \beta_{\sigma}^{\prime}\right) \beta_{\sigma}^{\prime} \bmod \left(b(s), s^{\mu+1}\right) \\
\equiv & \sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T_{N} N}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)\right) \\
& -\mathbf{H}_{T^{\prime} N}^{(1)}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)\right) \bmod \left(b(s), s^{\mu+1}\right) \\
\equiv & \sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T_{N} N}^{*} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)\right) \\
& \left.-\mathbf{H}_{T_{N} N}^{(1)}\left(\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)\right) \bmod \left(b(s), s^{\mu+1}\right) \quad \quad \text { by }(5)_{\mu-1} \text { and }(6)_{\mu-1}\right) \\
\equiv & \bar{\partial}_{T^{\prime} N}^{(1)} \bar{\partial}_{T^{\prime} N}^{(1)} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)\right) \\
\equiv & 0 \bmod \left(b(s), s^{\mu+1}\right) \quad \text { (by Lemma 4.8). }
\end{aligned}
$$

Proof of (2) μ. By Lemma 4.9 with Lemma 4.5,

$$
\left.\theta_{i}^{(\mu)}(s) \equiv \phi\left(\tau^{(\mu)}(s)\right)\right|_{U_{i}} \bmod \left(b(s), s^{\mu+1}\right) .
$$

Proof of (3) μ. Since the linear term of $h(t)$ is 0 , we have

$$
\begin{aligned}
h\left(\tau^{(\mu)}(s)\right) & \equiv h\left(\tau^{(\mu-1)}(s)\right) \bmod s^{\mu+1} \\
& \equiv 0 \bmod \left(b(s), s^{\mu+1}\right)(\text { by Lemma 4.7 })
\end{aligned}
$$

PROOF OF (5) μ_{μ}.

$$
\begin{aligned}
& \bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left\{\sum_{i \in \Lambda} \rho_{i} w_{i}^{(\mu+1)}(s)-\phi\left(\tau^{(\mu)}(s)\right)\right\} \\
& \equiv \bar{\partial}_{T^{\prime} N} \bar{\partial}_{T_{N} N}^{*} N_{T^{\prime} N}\left\{\sum_{i \in \Lambda} \rho_{i} w_{i}^{\mu+1}(s)-\phi\left(\tau^{(\mu-1)}(s)\right)-\phi_{1} \tau_{\mu}(s)\right\} \bmod s^{\mu+1} \\
& \equiv \bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu)}(s)\right)-\bar{\partial}_{T^{\prime} N} \bar{\partial}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left(\phi_{1} \tau_{\mu}(s)\right) \bmod s^{\mu+1} \\
& \equiv 0 \bmod s^{\mu+1} \text { (by the definition of } \tau_{\mu}(s) \text { and (5) }{ }_{\mu-1} \text {). }
\end{aligned}
$$

PROOF OF (6) ${ }_{\mu}$.

$$
\begin{aligned}
\mathbf{H}_{T^{\prime} N}^{(1)}\{ & \left.\sum_{i \in \Lambda} \rho_{i} w_{i}^{\mu+1}(s)-\phi\left(\tau^{(\mu)}(s)\right)\right\} \\
\equiv & \equiv \mathbf{H}_{T^{\prime} N}^{(1)}\left\{\sum_{i \in \Lambda} \rho_{i} \zeta_{i}^{(\mu+1)}(s)-\bar{\partial}_{T^{\prime}} \bar{J}_{T^{\prime} N}^{*} N_{T^{\prime} N}\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right)-\phi_{1} \tau_{\mu}(s)\right)\right. \\
& \quad-\sum_{\sigma=1}^{q}\left(\left(\sum_{i \in \Lambda} \rho_{i} \kappa_{s}^{\mu}\left(\zeta_{i}^{(\mu)}(s)\right), \beta_{\sigma}^{\prime}\right) \beta_{\sigma}\right\} \\
& \equiv 0 \bmod s^{\mu+1}\left(\operatorname{by}(6)_{\mu-1}\right) .
\end{aligned}
$$

By Proposition 4.1, we have (4.1) ${ }_{\mu}$ and (4.3) ${ }_{\mu}$ for any $\mu \geq 0$. From (2) ${ }_{\mu}$ in Proposition 4.1, we have that for any $\mu \geq 0$,

$$
\begin{equation*}
\left(\bar{\partial}+\phi\left(\tau^{(\mu)}(s)\right)\right)\left(g_{i}^{(\mu)}(s)\right)^{\lambda} \equiv 0 \bmod \left(b(s), s^{\mu+1}\right) \text { for } \lambda=1, \ldots n \tag{4.2}
\end{equation*}
$$

This completes the inductive construction of $g_{i}^{(\mu)}(s)$ and $\tau^{(\mu)}(s)$.
4.2. Convergence of the formal power series We see that the formal power series $g_{i}(s)=\lim _{\mu \rightarrow \infty} g_{i}^{(\mu)}(s)$ and $\tau(s)=\lim _{\mu \rightarrow \infty} \tau^{(\mu)}(s)$ converges with respect to $\left\|\|_{(0, m)}^{\prime}\right.$-norm and ||-norm respectively where $m \geq n+2$ and $|\mid$ denotes the euclidean norm on the finite dimensional vector space \mathcal{H}, where \mathcal{H} is generated by $\beta_{1}, \ldots, \beta_{q-1}, \beta_{q}$ (for the definition of $\left\|\|_{(0, m)}^{\prime}\right.$-norm, see [9], and we can identify T and \mathcal{H} locally at the origin).

To prove that $\left\{g_{i}^{(\mu)}(s)\right\}_{i \in \Lambda}$ and $\tau^{(\mu)}(s)$ converge, it suffices to show the following estimates; for all $\mu \geq 1$,

$$
\begin{equation*}
\left\|g_{i}^{(\mu)}(s)-g_{i}^{(0)}\right\|_{(0, m)}^{\prime} \ll A(s) \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\left|\tau^{(\mu)}(s)\right| \ll A(s) \tag{4.6}
\end{equation*}
$$

where $A(s)$ is defined by:

$$
A(s)=(b / 16 c) \sum_{\mu=1}^{\infty}\left(c^{\mu} / \mu^{2}\right)\left(s_{1}+\cdots+s_{r}\right)^{\mu}
$$

by the complete same way as in [8]. As $\phi(t)$ is holomorphic in t and $f_{i j}\left(\zeta_{j}, s\right)$ is holomorphic in ($\left.\zeta_{j}, s\right)$, we may assume the following:

$$
\begin{gather*}
\|\phi(t)\|_{(0, m)} \ll\left(b_{0} / c_{0}\right) \sum_{\mu=1}^{\infty} c_{0}^{\mu}\left(t_{1}+\cdots+t_{r}\right)^{\mu}, \tag{4.v}\\
\left\|f_{i j}^{\lambda}\left(z_{j}+x, s\right) f_{i j}^{\lambda}\left(z_{j}\right)-\sum_{\nu=1}^{n}\left(\partial f_{i j}^{\lambda} / \partial z_{j}^{\lambda}\right)\left(z_{j}\right) x^{\nu}-\sum_{\alpha=1}^{r}\left(\partial f_{i j}^{\lambda} / \partial s_{\alpha}\right)\left(z_{j}, 0\right) s_{\alpha}\right\|_{(0, m)}^{\prime} \\
\ll\left(b_{0} / c_{0}\right) \sum_{\mu=2}^{\infty} c^{\mu}\left(x_{1}+\cdots+x_{n}+s_{1}+\cdots+s_{r}\right)^{\mu} \text { for } \lambda=1, \ldots, n . \tag{4.vi}
\end{gather*}
$$

However the proof of this part is the same as in [3]. So we omit this. Hence we have that $g_{i}(s)$ is a $\Gamma_{(0, m)}^{\prime}\left(U_{i}, T^{\prime} N\right)$-valued holomorphic function and $\tau(s)$ is a T-valued holomorphic function on some neighborhood D^{\prime} of o in D. so we have our criterion.

References

1. T. Akahori, Intrinsic formula for Kuranishi's $\bar{\partial}_{b}^{\phi}$, Publ. RIMS, Kyoto Univ., 14(1978), 615-641.
2. \qquad , Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold, Publ. RIMS, Kyoto Univ., 14(1978), 789-847.
3. T. Akahori and K. Miyajima, Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold. II, Publ. RIMS, Kyoto Univ., 16(1980), 811-834.
4. T. Akahori, The new estimate for the subbundles E_{j} and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent. Math., 63(1981), 311-334.
5. The new Neumann operator associated with deformations of strongly pseudo convex domains and its application to the deformation theory, Invent. Math., 68(1982), 317-352.
6. \qquad , A criterion for the Neumann type problem over a differential complex on a strongly pseudo convex domain, Math. Ann., 264(1983), 525-535.
7. Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold with real dimension 5, Manuscripta math., 63(1989), 29-43.
8. \qquad On the deformation theory of pseudo hermitian CR-structures which preserve the Webster's scalar curvature (an approach to the local moduli theory for strongly pseudo convex domains), Nihonkai Math. J., 1(1990), 55-88.
\qquad On the Kuranishi family of deformations of complex structures over a tubular neighborhood of a strongly pseudo convex boundary with complex dimension 3, preprint.
9. K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I-II, Ann. of Math., 67(1958), 328-466.
10. K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68(1958), 450-459.
11. K. Kodaira and D.C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math., 100(1958), 281-294.
12. M. Kuranishi, Deformations of isolated singularities and $\bar{\delta}_{b}$, preprint, Columbia Univ., 1973.

Niigata University
Niigata, Japan

[^0]: Received by the editors August 2, 1990 .

