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PRIMITIVITY IN FREE GROUPS 
AND FREE METABELIAN GROUPS 

C. K. GUPTA, N. D. GUPTA AND V. A. ROMAN'KOV 

ABSTRACT. LetM„>c denote the free «-generator metabelian nilpotent group of class 
c. For m < n — 2, every primitive system of m elements of Mn c can be lifted to a 
primitive system of m elements of the absolutely free group Fn of rank n. The restriction 
on m cannot be improved. 

Introduction. Let F = (/i , . . . , /n) (= Fn) be the free group of rankrc and let 
w = { wi , . . . , wm}, m < n, be a system of words in F. The system w is said to be 
primitive if it can be included in some basis of F. Primitivity of a given system w can 
be algorithmically decided (Whitehead, see Lyndon and Schupp [6], p. 30), and there 
are some nice primitivity criteria in terms of certain properties of the m x n Jacobian 
matrix J(w) = (dw,/ dfj), over ZF, of the Fox derivatives d/ dff ZF —• ZF (Birman 
[3] for the case m — n and Umirbaev [10] for the general case). In the free metabelian 
groups M — (x\,... ,xn) (= Mn\ the corresponding primitivity criteria for a system 
g = {gi , . . . ,gm} are due to Bachmuth [1] (for the case m = n) and Timoshenko [9] 
(for the case m < n — 3) who obtained necessary and sufficient conditions for the system 
g to be included in some basis of M in terms of the m x m minors of the m x n Jacobian 
matrix 7(g) = (dgt/dxj), over ZA, of the induced Fox derivatives d/' dxf. ZF —> ZA, 
where ZA is the group ring of the free abelian group A = ( a\,..., an) (= An). In these 
cases, the algorithmic decidability of the primitivity in M of the given system g then 
reduces to the existence of a solution of a system of linear equations over the Laurent 
polynomial ring Z[afl,..., a^] ] which, in turn, can be effectively decided (Timoshenko 
f8]). 

Let V be a fully invariant subgroup of F. We say that a system w = { wi , . . . , vvm}, 
m < n, of words in F is primitive mod V if for some choice of words v i , . . . , vm G V, 
the corresponding system {wivi, . . . , wmvm} is primitive (absolutely), or equivalently, 
if the system { w\ V,.. . , wm V} of cosets can be extended to some basis for Fj V. Now 
let V,U be fully invariant subgroups of F with V > U. Then we say that a system of 
words w = {wi, . . . ,wm},m < n, can be lifted {via V) to a primitive system mod U if 
and only if there exists v* G V such that the corresponding system { wi v i , . . . , wmvm} 
is primitive mod U. Let 1C(F) denote the oth term of the lower central series of F and 
let F" (— l2(Ft)\ denote the second commutator subgroup of F. Our primary result in 
this paper is the following: if w = { H>I, . . . , wm}, m < n — 2, is a primitive system 
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modulo lc+\(F)Fi', c > 2, then w can be lifted (via lc+\(F)Fi') to a primitive system of 

F (Theorems B ScE). The restriction m < n — 2 cannot be improved (Remark C). 

Primitive lifting in free metabelian groups. Let M = Mn = (x\,...,xn) = 

Fn/ F"n be the free metabelian group of rank« > 2. Let e: ZM —» Z be the augmen

tation map and A(M), the augmentation ideal of ZM. Let A (= A„) be the free abelian 

group generated by a\,..., an and let 9 : ZM —-> Z[afl,..., a^1 ] be the linear exten

sion of the natural homomorphism: M —> A. For j — 1 , . . . ,/i, define induced right 

partial derivative maps d/dxy. ZM —» Z[af\... ^ ^ l as follows (cf. [5], p. 8): write 

u — EU — (x\ — l)u\ + • • • + (xn — \)un, ut G ZM and define du/dxj — OUJ. Alter

nately, define d(u + v)/ dxj — du/ dxj + dv/dxj, d(uv)/ dxj — du/ dxj9v + eudv/dxj, 

d(xj)/ dxj — 1, 3(*/)/ dxj — 0, / ^ j . To each system g = {gi,...,gm} of m elements 

in M there corresponds an m x n Jacobian Matrix 7(g) = (dgt/ dxj) of the partial deriva

tives. When m = n, we shall need the following criterion for g to be a basis of M (cf. [5], 

p. 29). 

LEMMA 1 (BACHMUTH [1]). Let g— { g i , . . . ,gn} be a system of elements of a free 

metabelian group Mn. Then g is a basis for Mn if and only if its Jacobian matrix /(g) is 

invertible over Z[af\ . . . , a^x ]. 

An arbitrary system g = {g\,...,gm} in M consists of elements of the form x\x • • • 

x^u, et G Z, u G M'. If g is primitive mod M' then there exists a tame automor

phism a G Aut(M) (i.e. a is induced by an automorphism of Fn) such that a (g) = 

{x\U\,... ,xmwm}, ui G M'. A system of the form {x\U\,... ,xmum}, w/ G M', will be 

called an lA-system. Thus primitive lifting of systems in free metabelian groups reduces 

to primitive lifting of IA-systems of the form {x\ u\,..., xmum}, U{ G M', m <n. We say 

that an IA-system {x\u\,...,xmwm}, w; G M', m < rc, is lA-primitive if it extends to an 

IA-basis of M of the form { x\ u\,..., xmum, xm+i um+\,..., xnun } , u\ G M'. We shall need 

the following reduction lemmas. 

LEMMA 2. If an IA-system {x\U\,... ,xmum}, Ui G M'n, m < n, is primitive in Mn 

then it is lA-primitive. 

PROOF. Let {y i , . . . , ^ m , z m +i , . . . , z w } be a basis for M, where y7 = Jt/W;, / = 

1 , . . . , m; z/ = Xjyl • • • jcn" v/,7 = m+ l,...,n,ejt G Z, v,- G M'n. Using Nielsen transforma

tions of the type Zj —* z/yf, /c G Z, the basis { v i , . . . , vm, zm+\, • • •, zn } can be transformed 

to a basis of the form {y\,...,ym, z!m+l,..., in } where zfj are of the new form given by 

zj. = x ^ .. .x^Wj, v'j G M^. Since modulo M'n, the subsystem { 4 + 1 , . . . , < } gener

ates {jcm + i , . . . , xn } , it follows that by using Nielsen transformations on { zf
m+l,..., z!n } , 

the basis { y\,..., ym, 4+i » • • •, ^ } can be further transformed to a basis { y i , . . . , ym, 

4+i > • • • > 4 ) ' where ^ = jtyi/', vj E Mf
n. This completes the proof of the lemma. 

LEMMA 3. L f̂ 1 < m < p < n be fixed and assume that for each e > 2 ev

ery I A-system of the form {x\ v\,... ,xmvm,xm+\ ,...,xp} with v/ G 7e(M„) CÛ« Z?̂  / / / / ^ 

to « primitive system ofMn of the form {x\ v\W\,... 9xmvmwm,xm+\,... ,xp} vvzY/z W/ G 
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le+\(Mn). Then, for any e > 2, every lA-system of the form {x\U\,... ,xmum, 

xm+\,... ,xp}, with ut G M'n, can be lifted to a primitive system of Mn of the form 

{x\u\wu...9xmumwm,xm+\,...,xp} withwt G le+\(Mn). 

PROOF. It suffices to prove by induction on c > 2 that there is an automorphism a 

of Mn which transforms the given IA-system {x\u\9... ,xmum,xm+\,... ,xp} to an IA-

system of the form {x\U\,c,... ,xmumtC,xm+\,... ,xp} with u^c G lc{Mn). For c = 2 we 

can choose a to be the identity automorphism. For the inductive step, let 

{x\u\,... ,xmum,xm+i9... ,xp}, ut G M'n, be already transformed to {*i«i , c - i , . . . , 

^m«m,c-i»^m+iv • •,•*>} with w/,c-i G lc-\(Mn) by some automorphism of Mn. By our 

assertion, {x\u\jC-\,... ,xmum,c-\,xm+\ ,...,xp} can be lifted to a primitive system of 

Mn of the form {jciiii>c_iWi,...,^mMm>c_iwm,o:m+i,...,JCp} with w, G 7C(M„). Putgi = 

*iwi,c-iwi, . . . ,gm = imMm,c-iwm, g^ = Xk, k = m + 1,...,/?. Thus there exists a G 

Aut(M„) such that a :*,•—» gi, / = 1 , . . . ,p . Then a _ 1 (g i ) = JC/ and for / = 1 , . . . , m, 

df_1(^'W/>c_i) = ot~x{g{wYx) = jCj-Qf—1(w ~̂1) = X(UijC for some w ĉ G lc(Mn), and 

a_ 1(x^) = x^ for k = m + 1,...,/?. This completes the proof of the Lemma. 

LEMMA 4. If for 1 < m < n, c > 2, every lA-system {x\V\,X2,. •. ,xm} vW/7* 

vi G 72(^n) can be /(/fed (v/tf 7c+i(Mn)>) to « primitive system of Mn then every IA-

system {x\U\,... ,xmwm} w/r/i w, G li(Mn) can be lifted (via lc+\(Mn)) to a primitive 

system ofMn. 

PROOF. By induction on m > 1. For m — \ there is nothing to prove. By the in

duction hypothesis {X2W2, • • • ̂ xmum} can be lifted (via lc+\(Mn)) to a primitive system 

of Mn, so by Lemma 2 it can be lifted to a primitive IA-system. Thus, there is an IA-

automorphism a G Aut(Afn) and w, G lc+\(Mn) such that a:XiUtWi —> *,-, / = 2 , . . . , m 

and cr.jci«i —> JCIVI, vi G 72 Wz)- Clearly, a transforms the system {JCIWI, . . . ,xmum} 

to {x\v\,X2W2,... ,xmwm}, wt G 7c+i(A^«)- Thus the problem reduces to lifting (via 

7c+i (Mn)) of a system of the form { JCI v*x, * 2 , . . . , xm}, v\ G li{Mn), to a primitive system 

of Mn which, by hypothesis, is the case. 

As a corollary to Lemmas 3 and 4 we obtain the following important lemma. 

LEMMA 5. If for any c > 2 and 1 < m < n, every IA-system {*IVI,JC2, . . . ,xm}, 

with v\ G 7c(Mn), can be lifted (via lc+\(Mn)) to a primitive system of Mn then every 

lA-system {x\u\,... ,xmum} with Ut G li(Mn) can be lifted (via 7c+i(Mn),) to a primitive 

system ofMn. 

LEMMA 6. For each p G Ac_2(Mn), c > 3, the system g = {g\,-> • ,gn} with 

g\ = x\lx\,X2]p[x2,X3](X2~ir, 83 = x3[xux2r
p2[x2,x3r-^P2, gi = *., i ^ 1,3, forms 

a basis for Mn. (Notation: [xi9Xj]8+h — [Xi,Xj]g[Xi,Xj]h). 

PROOF. By Lemma 1 it suffices to show that the Jacobian matrix 7(g) of the given 

system g is invertible over ZA. Indeed, it is easily seen that with TT = Op (under 0 : ZM —* 
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(a2 - I)2ir 0. .0 
0 0. .0 

l)7r + (a2 -• 1 ) 2 7 T 2 0. .0 

ZA), the matrix /(g) has the form, 

1 + (a2 — 1)7T * 

0 1 
—(#2 — 1)7T2 * 1 — (<?2 

0 0 0 1 0 
0 0 0 0 1 J 

The determinant of/(g) is easily seen to be 1, so /(g) is invertible. 
We now establish primitive lifting in Mn of a single element of M„tC. 

THEOREM A. Let g be an arbitrary element ofMn, n > 3, such that g is primitive 
modulo 7c+i(M„), c > 2. Then g can be lifted (via 7c+i(A «̂)>) to a primitive element of 
Mn. 

PROOF. Using a tame automorphism of Mn, if necessary, we may assume that g is 
of the form g = x\ u, u G M'n. By Lemma 5 we may further assume that u G 7c(Afn) and 
write g as: 

g = xi n [xuxir n [xi,xj]q* 
2<i<n Ki<j<n 

where /?/, qtj G Ac~2(Mn). Define h = {h\9...,hn} with h\ — x\ Ui<i<j<n[xi,Xj]qij, 
hi — Xi,i ^ 1. Then the Jacobian /(h) = (d/i;/ dxj) is of the form 

* * 
0 0 

0 0 0 . . . 1 0 
.0 0 0 . . . 0 I J 

which is clearly invertible. Thus, by Lemma 1 there is an automorphism (3 G Aut(M„) 
which maps hi to xt for all /. Modulo 7c+i (Afw), g(3 = x\ Ui<i<n [x\, Xi\Pi and it suffices to 
prove that g = x\ Th<i<n[x\,Xi]Pi can be lifted (via 1c+\(Mn)) to a primitive element of 
Mn. For each / ^ 1, choose j ^ 1, i, and consider the system { hn,..., /i/„} with 

Ail =Xl[XuXirixhXif
x'-iri

9 hij=Xj[xUXi]-^[xi9Xiy
,^r-^9 

hik — Xk, k ^ l , j . Then there is a tame automorphismT; G Aut(Mrt) which maps JCJ tox\, 
x/ to X2 and jty to jt3. This automorphism transforms the system { hn,..., hin } to a system 
of the form {g\,...,gn} where 

gl=xdxuX2]P[X2,X3]^-l)P, 

g3 = x3[xux2r
p2ix2,x3r-^-l)p\ 

gi = xi9 / ^ l ,3 , /7GA c - 2 (M n ) . 

By Lemma 6 the system {g\9...9gn} is a basis for Mn. Thus there is an automorphism 
at G Aut(M„) such that ai(x\[x\,Xi]Pi) = x\ mod 7c+i(M„). By successive applications, 
we obtain a2 . . . an(xi n2</<«[*i,-X/P) = *i mod 7c+i(^n). This completes the proof of 
the theorem. 

For the general case, we prove the following. 
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THEOREM B. For n > 4 and m < n — 2, every primitive system g = {gi , . . . ,g m } 
mod 7c+i {Fn)F" can be lifted (via lc+\(Fn)F") to a primitive system ofFn. 

PROOF. Note that a system g = {gi , . . . ,gm} is primitive mod lc(Fn)F
f„ if and 

only if there is an automorphism r G Aut(F„) such that { g\T,..., gmr} is of the form 
{x\u\, . . . ,xmum} , ut G Fjj. Thus without loss of generality we can assume that g = 
{x\u\,...9xmum},Ui G Ff

n. When n > 4, every automorphism of Fj Fif is tame (Bach-
muth and Mochizuki [2], Roman'kov [8]). It suffices, therefore, to prove that for m < 
n — 2 every IA-system g = {x\u\,..., xmum}, m G M'n, can be lifted (via7c+i (Mn)) to a 
primitive system of Mn. The case m = 1 follows from Theorem A. For m > 2, we con
sider an arbitrary IA-system g = {jci«i,;t4M4,... ,xm+2Um+2} of m elements. By Lemma 5 
we may further assume that g is of the form { x\ v\, x*,..., xm+2 } , where vi G lc(Mn). As 
in the proof of Theorem A we may transform the system so that x\ v\ assumes the form: 

JCIVI = JCI n [x\9Xi\Pi with/?/ G Ac_2(Mn). 
2<i<n 

By Lemma 6, 

{XX[XUX2T[X2,X^-X)P\X2^[XUX^^^ 

is a basis for Mn, which proves that { x\ [x\, X2Y2, x 4 , . . . , xm+2} can be lifted to a primitive 
system of Mn. Further, by Lemma 6, for each i > 3, the system {x\ [x\, xi]Pi[Xi,xi]iXi~X)Pi, 
X2,X3[x\,X(]~pi [xi,X3]Pi~(Xi~l)pt ,X4,...,xn} is a basis for Mn and for i = 3, the system 

{^l[jCi,JC3F3[jC3,JC2] to"1)P\JC2[jCi,JC3rP3[JC3,JC2]^^^ JC„ } 

is a basis for Mn. Thus there exist automorphisms a; G Aut(Mw) such that with a — 
ot2---&n, we obtain mod 7c+i(Mn) the congruences a(x\lh<i<n[x\,Xi]Pi) = ax\, 
a(xt) = X(, i ^ 1,2,3. Thus { JCI vi, JC4,... ,xm+2), where vi G lc(Mn), can be lifted (via 
7c+i (A n̂)) to a primitive system of Mn and consequently, by Lemma 5, { g\, #4, . . . , gm+2} 
can be lifted (via7c+i(Mn)) to a primitive system of Mn. 

REMARK C. For each n > 3 r/zere exists an IA-system of n — 1 elements of Mn,c 

which cannot be lifted (via lc+\iMn)) to a primitive system of Mn. Thus the restriction 
m < n — 2 in Theorem B cannot be relaxed. 

DETAILS. Choose g\ = x\ [JCI, JC3,X3], g, — x^i^f 1,3. We show that for any choice 
of g3 = X3W, u G Mjj, and any choice of elements vv; G 74 (M„), / = 1, . . . , n, the Jacobian 
matrix 7(g) of the system g = {g\W\,..., gnwn} is not invertible. The matrix 7(g) has 
the form: 

r i + ( a 3 - l ) 2 + 7 r n 7Ti2 - ( < 2 i - l ) ( < 2 3 - l ) + 7ri3 . . . KX,n-\ 7ï{n 1 

7T21 1 + 7T22 7T23 . . . ^2,n-\ ^2n 

7T3i* 7T32* 1 + 7T33* . . . 7T3^_i* 7T3n* 

L 7T„i 7T„2 7Tn3 . . . nn,n-\ ^ + Knn i 
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where each 7T// E A3(A) and 7^* E A(A). If /(g) is invertible then it remains invertible 

under the endomorphism mapping #3 to a3 and at to 1 for each / ^ 3. Since, for any /, 

Y%=i(dwi/ dxj)(cij — 1) = EjLi ^ (^z — 1) = 0, it follows that 7̂ 3 gets mapped to 0 under 

the above endomorphism. Thus the resulting matrix 7(g)* is of the form 

r i + te-i^ + TrÎ! 

where TT-J G A 3 ( ^ ) and 713,-* E A(^3). The determinant of 7(g)* is of the form 1 + («3 — 

I)2 + (#3 — l)37r and if it is invertible then we must have 1 + (#3 — l) 2 + («3 — l)37r = #3 

for some k E Z. Working modulo A2 («3) shows that £ must be zero, so that (a^ — l ) 2 + 

(#3 — l)37r = 0 which, however, is not possible in the cyclic group ring Z(a^). 

Primitive lifting in F3 of a single element. Let g = x\u,u € 1C(M?). By Theo

rem A, g can be lifted (via 7c+i (M3)) to a primitive element of À/3. Since M3 admits wild 

automorphisms (Chein [4]), lifting g to a primitive element of F3 does not follow in

stantly as was the case for n > 4. For simplicity of notation we let M = M3 be generated 

by JC, y, z. In preparation we first prove, 

THEOREM D. Every lA-element of the form g = x[y, z]p(x,y,z) can be lifted (via F%) to 

a primitive element ofF^. 

PROOF. The proof consists in exhibiting a tame automorphism of M which maps 

x to x[y, z]p(x,y,z). For each ij,k E Z, consider the tame automorphisms a^ and fy of 

M given by ajk = {x —• *[y ,z ] y z \ y —> y, z —• z } , /?/ = {* —* *, y —> -r_,V", 

z —» x^zx*}, and define the tame automorphism 5 ^ = ft-1 a,*/?,-. It is easy to see that 

each Sijk is of the form 8^ = {JC —•» x | j , z ] * ' ^ , y ^ yu, z —> zu}, u E A/'. If 5 ^ 

is also of the form 5£y*/ = {* —»• x[v,z]y ^ , y —» y , z —> zu } , 1/ E M', then we 

see that £p£/y*/ = {x —* x|>, z ] ^ ^ ^ , y —> / ' " , z —• z"'"}- Since /?(x,3;,z) is a 

Z-linear sum of group elements of the form xiyizk, ij, k E Z, it follows that there is a 

tame automorphism // E gp{8ij, ij,k E Z} which has the form /i = {* —* x[y,z]p{x,y,z\ 

y—>yw,z—>zw},w = w(x, y, z) E M'. This completes the proof of the theorem. 

We can now prove the following main result of this section. 

THEOREM E. Every primitive element ofM-^^c > 2, can be lifted (via /yc+\(M)Fff) 

to a primitive element ofF^ 

PROOF. We may assume that c > 3 (the case c — 2 being trivial) and by Lemma 5 

that the given primitive element g has the form g — xu,u E 7c(Af )• Since u is of the form 

u = k z ] * w ) [ j t , ^ z F ( ^ 

1 + 7 r 22 ° Kn-l n2n 
Al* l ^3/1-1* «L* 
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with <?(.*:,y,z) G AC~2(M) and/?(jt,y,z), p'(jc,y,z), p"(x,y,z) G Ac~3 (M), it suffices to 
prove that each of the elements of the form x[y,z]q^x,y,z\ x[x,y,y]p{x-y,z\ x[x,y,z]p(x,y,z), 
with q(x, y, z) G AC_2(M) and p(x, y, z) G AC~~3(M) can be lifted (via 7c+i (M)) to primitive 
elements of F3. 

Primitive lifting of x[y,z\q^y,z) (mod 1C+\(M)) follows from Theorem D. For primi
tive lifting of JC[X, y, y]p^y^ (mod 7c+i (M)) we only need to establish a tame automor
phism of M which maps x to x[x,y,y]p(x,y,z^ (mod 7c+i(A^))- Indeed, for the given 
p(x,y,z) G AC_3(M) we choose, using proof of Theorem D, a tame automorphism \i 
ofMgivenby/i = {x-^ x[y,z]~p(x,y,z\y-^ yw, z—^ zw}, w = w(x,y,z) G M' and a 
tame automorphism À = {x —> x, y —* y, z —> z[x,y]) of M. Then modulo 7c+i(M) we 
observe that 

/ x ( x ) - x [ j , z ] ^ ( w ) , 

A(/xW) = 4*z[*,j]]~*w) - 4 x , y , j F ( w ) ^ z ] ^ ( w ) , 

Also, / i"1
 (A (MOO)) = y (mod M'), M"1

 (A (M(Z))) = * ( m o d M ' ) - Thus wA^"1 has 
the required form: 

fiXfj,"1 = {x^x|>c,y,y;p ( JW), y—>yw, z —• zv} 

modulo 7c+i(A )̂-
For primitive lifting of JC[JC, y, z F ^ ' ^ , we choose /x = {x 

z —• z^}, w = W(JC, y, z) G M', as before and choose p — { x 
Then, modulo 7c+i(M), MP/i_1 has the required form /ip/x_ 

y —• yw, z —• zv}. This completes the proof of Theorem E. 

Concluding Remarks. Since every I A-automorphism of M2 is inner (Bachmuth 
[1]), g = x\u can be lifted to a primitive element of M2 if and only if u is of the form 
[x\, v]. Thus, for c > 3, not every primitive element of M2,c can be lifted to a basis of 
M2. 

The existence of non-tame automorphisms of M3 was first shown by Chein [4]. Specif
ically, the automorphism {x —» jc[y, z, JC, JC], y —* y, z —> z} of M3 cannot be lifted to an 
automorphism of the free group F3. It is easily seen that every endomorphism in M3 of 
the form {x —> x\y, z]p(-x,y,z\ y —» y, z —• z} is an automorphism of M3. So, for each 
p(x,y,z) G ZM3, the element x[y,z]p^x,y,z) is primitive in M3 and we call it a Chein ele
ment of M3. By Theorem D, it follows that every Chein element of M3 can be lifted to a 
primitive element of F3. It is natural to ask: can every primitive element of M3 be lifted 
to a primitive element of F3? Finally, by Timoshenko's results primitivity in Mn, n > 4, 
is algorithmically decidable. We conclude by asking: is primitivity inA/3 algorithmically 
decidable? 

-+ x\y,z\ -p(x,y,z) y-^yw 

-+x,y-+ y[y,x], z-^ z} 
' = {*-•> x[x,y , zw(x,y,z) 
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