PRIMITIVITY IN FREE GROUPS AND FREE METABELIAN GROUPS

C. K. GUPTA, N. D. GUPTA AND V. A. ROMAN'KOV

Abstract

Let $M_{n, c}$ denote the free n-generator metabelian nilpotent group of class c. For $m \leq n-2$, every primitive system of m elements of $M_{n, c}$ can be lifted to a primitive system of m elements of the absolutely free group F_{n} of rank n. The restriction on m cannot be improved.

Introduction. Let $F=\left\langle f_{1}, \ldots, f_{n}\right\rangle\left(=F_{n}\right)$ be the free group of rank n and let $\mathbf{w}=\left\{w_{1}, \ldots, w_{m}\right\}, m \leq n$, be a system of words in F. The system \mathbf{w} is said to be primitive if it can be included in some basis of F. Primitivity of a given system \mathbf{w} can be algorithmically decided (Whitehead, see Lyndon and Schupp [6], p. 30), and there are some nice primitivity criteria in terms of certain properties of the $m \times n$ Jacobian matrix $J(\mathbf{w})=\left(\partial w_{i} / \partial f_{j}\right)$, over $\mathbf{Z} F$, of the Fox derivatives $\partial / \partial f_{j}: \mathbf{Z} F \rightarrow \mathbf{Z} F$ (Birman [3] for the case $m=n$ and Umirbaev [10] for the general case). In the free metabelian groups $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle\left(=M_{n}\right)$, the corresponding primitivity criteria for a system $\mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}$ are due to Bachmuth [1] (for the case $m=n$) and Timoshenko [9] (for the case $m \leq n-3$) who obtained necessary and sufficient conditions for the system \mathbf{g} to be included in some basis of M in terms of the $m \times m$ minors of the $m \times n$ Jacobian matrix $J(\mathbf{g})=\left(\partial g_{i} / \partial x_{j}\right)$, over $\mathbf{Z} A$, of the induced Fox derivatives $\partial / \partial x_{j}: \mathbf{Z} F \rightarrow \mathbf{Z} A$, where $\mathbf{Z} A$ is the group ring of the free abelian group $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle\left(=A_{n}\right)$. In these cases, the algorithmic decidability of the primitivity in M of the given system \mathbf{g} then reduces to the existence of a solution of a system of linear equations over the Laurent polynomial ring $\mathbf{Z}\left[a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}\right]$ which, in turn, can be effectively decided (Timoshenko [8]).

Let V be a fully invariant subgroup of F. We say that a system $\mathbf{w}=\left\{w_{1}, \ldots, w_{m}\right\}$, $m \leq n$, of words in F is primitive $\bmod V$ if for some choice of words $v_{1}, \ldots, v_{m} \in V$, the corresponding system $\left\{w_{1} v_{1}, \ldots, w_{m} v_{m}\right\}$ is primitive (absolutely), or equivalently, if the system $\left\{w_{1} V, \ldots, w_{m} V\right\}$ of cosets can be extended to some basis for F / V. Now let V, U be fully invariant subgroups of F with $V \geq U$. Then we say that a system of words $\mathbf{w}=\left\{w_{1}, \ldots, w_{m}\right\}, m \leq n$, can be lifted (via V) to a primitive system mod U if and only if there exists $v_{i} \in V$ such that the corresponding system $\left\{w_{1} v_{1}, \ldots, w_{m} v_{m}\right\}$ is primitive $\bmod U$. Let $\gamma_{c}(F)$ denote the c-th term of the lower central series of F and let $F^{\prime \prime}\left(=\gamma_{2}\left(F^{\prime}\right)\right)$ denote the second commutator subgroup of F. Our primary result in this paper is the following: if $\mathbf{w}=\left\{w_{1}, \ldots, w_{m}\right\}, m \leq n-2$, is a primitive system

Received by the editors May 17, 1990.
AMS subject classification: 20F28, 20 F 18.
(C) Canadian Mathematical Society 1992.
modulo $\gamma_{c+1}(F) F^{\prime \prime}, c \geq 2$, then \mathbf{w} can be lifted (via $\gamma_{c+1}(F) F^{\prime \prime}$) to a primitive system of F (Theorems $B \& E$). The restriction $m \leq n-2$ cannot be improved (Remark C).

Primitive lifting in free metabelian groups. Let $M=M_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \cong$ $F_{n} / F_{n}^{\prime \prime}$ be the free metabelian group of rank $n \geq 2$. Let $\varepsilon: \mathbf{Z} M \rightarrow \mathbf{Z}$ be the augmentation map and $\Delta(M)$, the augmentation ideal of $\mathbf{Z} M$. Let $A\left(=A_{n}\right)$ be the free abelian group generated by a_{1}, \ldots, a_{n} and let $\theta: \mathbf{Z} M \rightarrow \mathbf{Z}\left[a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}\right]$ be the linear extension of the natural homomorphism: $M \rightarrow A$. For $j=1, \ldots, n$, define induced right partial derivative maps $\partial / \partial x_{j}: \mathbf{Z} M \rightarrow \mathbf{Z}\left[a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}\right]$ as follows (cf. [5], p. 8): write $u-\varepsilon u=\left(x_{1}-1\right) u_{1}+\cdots+\left(x_{n}-1\right) u_{n}, u_{i} \in \mathbf{Z} M$ and define $\partial u / \partial x_{j}=\theta u_{j}$. Alternately, define $\partial(u+v) / \partial x_{j}=\partial u / \partial x_{j}+\partial v / \partial x_{j}, \partial(u v) / \partial x_{j}=\partial u / \partial x_{j} \theta v+\varepsilon u \partial v / \partial x_{j}$, $\partial\left(x_{j}\right) / \partial x_{j}=1, \partial\left(x_{i}\right) / \partial x_{j}=0, i \neq j$. To each system $\mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}$ of m elements in M there corresponds an $m \times n$ Jacobian Matrix $J(\mathbf{g})=\left(\partial g_{i} / \partial x_{j}\right)$ of the partial derivatives. When $m=n$, we shall need the following criterion for \mathbf{g} to be a basis of M (cf. [5], p. 29).

Lemma 1 (BAChmuth [1]). Let $\mathbf{g}=\left\{g_{1}, \ldots, g_{n}\right\}$ be a system of elements of a free metabelian group M_{n}. Then \mathbf{g} is a basis for M_{n} if and only if its Jacobian matrix $J(\mathbf{g})$ is invertible over $\mathbf{Z}\left[a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}\right]$.

An arbitrary system $\mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}$ in M consists of elements of the form $x_{1}^{e_{1}} \cdots$ $x_{n}^{e_{n}} u, e_{i} \in \mathbf{Z}, u \in M^{\prime}$. If \mathbf{g} is primitive $\bmod M^{\prime}$ then there exists a tame automorphism $\alpha \in \operatorname{Aut}(M)$ (i.e. α is induced by an automorphism of F_{n}) such that $\alpha(\mathbf{g})=$ $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M^{\prime}$. A system of the form $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M^{\prime}$, will be called an IA-system. Thus primitive lifting of systems in free metabelian groups reduces to primitive lifting of IA-systems of the form $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M^{\prime}, m \leq n$. We say that an IA-system $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M^{\prime}, m \leq n$, is IA-primitive if it extends to an IA-basis of M of the form $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}, x_{m+1} u_{m+1}, \ldots, x_{n} u_{n}\right\}, u_{i} \in M^{\prime}$. We shall need the following reduction lemmas.

LEmMA 2. If an IA-system $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M_{n}^{\prime}, m \leq n$, is primitive in M_{n} then it is IA-primitive.

Proof. Let $\left\{y_{1}, \ldots, y_{m}, z_{m+1}, \ldots, z_{n}\right\}$ be a basis for M, where $y_{i}=x_{i} u_{i}, i=$ $1, \ldots, m ; z_{j}=x_{1}^{e_{j 1}} \cdots x_{n}^{e_{j n}} v_{j}, j=m+1, \ldots, n, e_{j \ell} \in \mathbf{Z}, v_{j} \in M_{n}^{\prime}$. Using Nielsen transformations of the type $z_{j} \rightarrow z_{j} y_{i}^{k}, k \in \mathbf{Z}$, the basis $\left\{y_{1}, \ldots, y_{m}, z_{m+1}, \ldots, z_{n}\right\}$ can be transformed to a basis of the form $\left\{y_{1}, \ldots, y_{m}, z_{m+1}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ where z_{j}^{\prime} are of the new form given by $z_{j}^{\prime}=x_{m+1}^{e_{j(m+1)}} \ldots x_{n}^{e_{j(n)}} v_{j}^{\prime}, v_{j}^{\prime} \in M_{n}^{\prime}$. Since modulo M_{n}^{\prime}, the subsystem $\left\{z_{m+1}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ generates $\left\{x_{m+1}, \ldots, x_{n}\right\}$, it follows that by using Nielsen transformations on $\left\{z_{m+1}^{\prime}, \ldots, z_{n}^{\prime}\right\}$, the basis $\left\{y_{1}, \ldots, y_{m}, z_{m+1}^{\prime}, \ldots, z_{n}^{\prime}\right\}$ can be further transformed to a basis $\left\{y_{1}, \ldots, y_{m}\right.$, $\left.z_{m+1}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right\}$, where $z_{j}^{\prime \prime}=x_{j} v_{j}^{\prime \prime}, v_{j}^{\prime \prime} \in M_{n}^{\prime}$. This completes the proof of the lemma.

Lemma 3. Let $1 \leq m \leq p \leq n$ be fixed and assume that for each $e \geq 2 \mathrm{ev}$ ery IA-system of the form $\left\{x_{1} v_{1}, \ldots, x_{m} v_{m}, x_{m+1}, \ldots, x_{p}\right\}$ with $v_{i} \in \gamma_{e}\left(M_{n}\right)$ can be lifted to a primitive system of M_{n} of the form $\left\{x_{1} v_{1} w_{1}, \ldots, x_{m} v_{m} w_{m}, x_{m+1}, \ldots, x_{p}\right\}$ with $w_{i} \in$
$\gamma_{e+1}\left(M_{n}\right)$. Then, for any $e \geq 2$, every IA-system of the form $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right.$, $\left.x_{m+1}, \ldots, x_{p}\right\}$, with $u_{i} \in M_{n}^{\prime}$, can be lifted to a primitive system of M_{n} of the form $\left\{x_{1} u_{1} w_{1}, \ldots, x_{m} u_{m} w_{m}, x_{m+1}, \ldots, x_{p}\right\}$ with $w_{i} \in \gamma_{e+1}\left(M_{n}\right)$.

Proof. It suffices to prove by induction on $c \geq 2$ that there is an automorphism α of M_{n} which transforms the given IA-system $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}, x_{m+1}, \ldots, x_{p}\right\}$ to an IAsystem of the form $\left\{x_{1} u_{1, c}, \ldots, x_{m} u_{m, c}, x_{m+1}, \ldots, x_{p}\right\}$ with $u_{i, c} \in \gamma_{c}\left(M_{n}\right)$. For $c=2$ we can choose α to be the identity automorphism. For the inductive step, let $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}, x_{m+1}, \ldots, x_{p}\right\}, u_{i} \in M_{n}^{\prime}$, be already transformed to $\left\{x_{1} u_{1, c-1}, \ldots\right.$, $\left.x_{m} u_{m, c-1}, x_{m+1}, \ldots, x_{p}\right\}$ with $u_{i, c-1} \in \gamma_{c-1}\left(M_{n}\right)$ by some automorphism of M_{n}. By our assertion, $\left\{x_{1} u_{1, c-1}, \ldots, x_{m} u_{m, c-1}, x_{m+1}, \ldots, x_{p}\right\}$ can be lifted to a primitive system of M_{n} of the form $\left\{x_{1} u_{1, c-1} w_{1}, \ldots, x_{m} u_{m, c-1} w_{m}, x_{m+1}, \ldots, x_{p}\right\}$ with $w_{i} \in \gamma_{c}\left(M_{n}\right)$. Put $g_{1}=$ $x_{1} u_{1, c-1} w_{1}, \ldots, g_{m}=x_{m} u_{m, c-1} w_{m}, g_{k}=x_{k}, k=m+1, \ldots, p$. Thus there exists $\alpha \in$ $\operatorname{Aut}\left(M_{n}\right)$ such that $\alpha: x_{i} \rightarrow g_{i}, i=1, \ldots, p$. Then $\alpha^{-1}\left(g_{i}\right)=x_{i}$ and for $i=1, \ldots, m$, $\alpha^{-1}\left(x_{i} u_{i, c-1}\right)=\alpha^{-1}\left(g_{i} w_{i}^{-1}\right)=x_{i} \alpha^{-1}\left(w_{i}^{-1}\right)=x_{i} u_{i, c}$ for some $u_{i, c} \in \gamma_{c}\left(M_{n}\right)$, and $\alpha^{-1}\left(x_{k}\right)=x_{k}$ for $k=m+1, \ldots, p$. This completes the proof of the Lemma.

LEMMA 4. If, for $1 \leq m<n, c \geq 2$, every IA-system $\left\{x_{1} v_{1}, x_{2}, \ldots, x_{m}\right\}$ with $v_{1} \in \gamma_{2}\left(M_{n}\right)$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n} then every IAsystem $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}$ with $u_{i} \in \gamma_{2}\left(M_{n}\right)$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n}.

Proof. By induction on $m \geq 1$. For $m=1$ there is nothing to prove. By the induction hypothesis $\left\{x_{2} u_{2}, \ldots, x_{m} u_{m}\right\}$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n}, so by Lemma 2 it can be lifted to a primitive IA-system. Thus, there is an IAautomorphism $\alpha \in \operatorname{Aut}\left(M_{n}\right)$ and $w_{i} \in \gamma_{c+1}\left(M_{n}\right)$ such that $\alpha: x_{i} u_{i} w_{i} \rightarrow x_{i}, i=2, \ldots, m$ and $\alpha: x_{1} u_{1} \rightarrow x_{1} v_{1}, v_{1} \in \gamma_{2}\left(M_{n}\right)$. Clearly, α transforms the system $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}$ to $\left\{x_{1} v_{1}, x_{2} w_{2}, \ldots, x_{m} w_{m}\right\}, w_{i} \in \gamma_{c+1}\left(M_{n}\right)$. Thus the problem reduces to lifting (via $\gamma_{c+1}\left(M_{n}\right)$) of a system of the form $\left\{x_{1} v_{1}^{\prime}, x_{2}, \ldots, x_{m}\right\}, v_{1}^{\prime} \in \gamma_{2}\left(M_{n}\right)$, to a primitive system of M_{n} which, by hypothesis, is the case.

As a corollary to Lemmas 3 and 4 we obtain the following important lemma.
LEMmA 5. If, for any $c \geq 2$ and $1 \leq m<n$, every IA-system $\left\{x_{1} v_{1}, x_{2}, \ldots, x_{m}\right\}$, with $v_{1} \in \gamma_{c}\left(M_{n}\right)$, can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n} then every IA-system $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}$ with $u_{i} \in \gamma_{2}\left(M_{n}\right)$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n}.

Lemma 6. For each $p \in \Delta^{c-2}\left(M_{n}\right), c \geq 3$, the system $\mathbf{g}=\left\{g_{1}, \ldots, g_{n}\right\}$ with $g_{1}=x_{1}\left[x_{1}, x_{2}\right]^{p}\left[x_{2}, x_{3}\right]^{\left(x_{2}-1\right)^{p}}, g_{3}=x_{3}\left[x_{1}, x_{2}\right]^{-p^{2}}\left[x_{2}, x_{3}\right]^{p_{-\left(x_{2}-1, p^{2}\right.}}, g_{i}=x_{i}, i \neq 1,3$, forms a basis for M_{n}. (Notation: $\left[x_{i}, x_{j}\right]^{g+h}=\left[x_{i}, x_{j}\right]^{g}\left[x_{i}, x_{j}\right]^{h}$).

Proof. By Lemma 1 it suffices to show that the Jacobian matrix $J(\mathbf{g})$ of the given system \mathbf{g} is invertible over $\mathbf{Z} A$. Indeed, it is easily seen that with $\pi=\theta p$ (under $\theta: \mathbf{Z} M \rightarrow$
$\mathbf{Z A} A$, the matrix $J(\mathbf{g})$ has the form,

$$
\left[\begin{array}{cccc}
1+\left(a_{2}-1\right) \pi & * & -\left(a_{2}-1\right)^{2} \pi & 0 \ldots 0 \\
0 & 1 & 0 & 0 \ldots 0 \\
-\left(a_{2}-1\right) \pi^{2} & * & 1-\left(a_{2}-1\right) \pi+\left(a_{2}-1\right)^{2} \pi^{2} & 0 \ldots 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The determinant of $J(\mathbf{g})$ is easily seen to be 1 , so $J(\mathbf{g})$ is invertible.
We now establish primitive lifting in M_{n} of a single element of $M_{n, c}$.
THEOREM A. Let g be an arbitrary element of $M_{n}, n \geq 3$, such that g is primitive modulo $\gamma_{c+1}\left(M_{n}\right), c \geq 2$. Then g can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive element of M_{n}.

Proof. Using a tame automorphism of M_{n}, if necessary, we may assume that g is of the form $g=x_{1} u, u \in M_{n}^{\prime}$. By Lemma 5 we may further assume that $u \in \gamma_{c}\left(M_{n}\right)$ and write g as:

$$
g=x_{1} \prod_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}} \prod_{1<i<j \leq n}\left[x_{i}, x_{j}\right]^{q_{i j}}
$$

where $p_{i}, q_{i j} \in \Delta^{c-2}\left(M_{n}\right)$. Define $\mathbf{h}=\left\{h_{1}, \ldots, h_{n}\right\}$ with $h_{1}=x_{1} \Pi_{1<i<j \leq n}\left[x_{i}, x_{j}\right]^{q_{j j}}$, $h_{i}=x_{i}, i \neq 1$. Then the Jacobian $J(\mathbf{h})=\left(\partial h_{i} / \partial x_{j}\right)$ is of the form

$$
\left[\begin{array}{cccccc}
1 & * & * & \ldots & * & * \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

which is clearly invertible. Thus, by Lemma 1 there is an automorphism $\beta \in \operatorname{Aut}\left(M_{n}\right)$ which maps h_{i} to x_{i} for all i. Modulo $\gamma_{c+1}\left(M_{n}\right), g \beta \equiv x_{1} \Pi_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}}$ and it suffices to prove that $g=x_{1} \Pi_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}}$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive element of M_{n}. For each $i \neq 1$, choose $j \neq 1, i$, and consider the system $\left\{h_{i 1}, \ldots, h_{i n}\right\}$ with

$$
h_{i 1}=x_{1}\left[x_{1}, x_{i}\right]^{p_{i}}\left[x_{i}, x_{j}\right]^{\left.x_{i}-1\right)^{p_{i}}}, h_{i j}=x_{j}\left[x_{1}, x_{i}\right]^{-p_{i}^{2}}\left[x_{i}, x_{j}\right]^{p_{i\left(x_{i}-1\right)} p_{i}^{2}}
$$

$h_{i k}=x_{k}, k \neq 1, j$. Then there is a tame automorphism $\tau_{i} \in \operatorname{Aut}\left(M_{n}\right)$ which maps x_{1} to x_{1}, x_{i} to x_{2} and x_{j} to x_{3}. This automorphism transforms the system $\left\{h_{i 1}, \ldots, h_{i n}\right\}$ to a system of the form $\left\{g_{1}, \ldots, g_{n}\right\}$ where

$$
\begin{gathered}
g_{1}=x_{1}\left[x_{1}, x_{2}\right]^{p}\left[x_{2}, x_{3}\right]^{\left(x_{2}-1\right)^{p}}, \\
g_{3}=x_{3}\left[x_{1}, x_{2}\right]^{-p^{2}}\left[x_{2}, x_{3}\right]^{p-\left(x_{2}-1\right) p^{2}}, \\
g_{i}=x_{i}, \quad i \neq 1,3, p \in \Delta^{c-2}\left(M_{n}\right) .
\end{gathered}
$$

By Lemma 6 the system $\left\{g_{1}, \ldots, g_{n}\right\}$ is a basis for M_{n}. Thus there is an automorphism $\alpha_{i} \in \operatorname{Aut}\left(M_{n}\right)$ such that $\alpha_{i}\left(x_{1}\left[x_{1}, x_{i}\right]^{p_{i}}\right) \equiv x_{1} \bmod \gamma_{c+1}\left(M_{n}\right)$. By successive applications, we obtain $\alpha_{2} \ldots \alpha_{n}\left(x_{1} \Pi_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}}\right) \equiv x_{1} \bmod \gamma_{c+1}\left(M_{n}\right)$. This completes the proof of the theorem.

For the general case, we prove the following.

Theorem B. For $n \geq 4$ and $m \leq n-2$, every primitive system $\mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}$ $\bmod \gamma_{c+1}\left(F_{n}\right) F^{\prime \prime}$ can be lifted (via $\left.\gamma_{c+1}\left(F_{n}\right) F^{\prime \prime}\right)$ to a primitive system of F_{n}.

Proof. Note that a system $\mathbf{g}=\left\{g_{1}, \ldots, g_{m}\right\}$ is primitive $\bmod \gamma_{c}\left(F_{n}\right) F_{n}^{\prime \prime}$ if and only if there is an automorphism $\tau \in \operatorname{Aut}\left(F_{n}\right)$ such that $\left\{g_{1} \tau, \ldots, g_{m} \tau\right\}$ is of the form $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in F_{n}^{\prime}$. Thus without loss of generality we can assume that $\mathbf{g}=$ $\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in F_{n}^{\prime}$. When $n \geq 4$, every automorphism of $F / F^{\prime \prime}$ is tame (Bachmuth and Mochizuki [2], Roman'kov [8]). It suffices, therefore, to prove that for $m \leq$ $n-2$ every IA-system $\mathbf{g}=\left\{x_{1} u_{1}, \ldots, x_{m} u_{m}\right\}, u_{i} \in M_{n}^{\prime}$, can be lifted (via $\left.\gamma_{c+1}\left(M_{n}\right)\right)$ to a primitive system of M_{n}. The case $m=1$ follows from Theorem A. For $m \geq 2$, we consider an arbitrary IA-system $\mathbf{g}=\left\{x_{1} u_{1}, x_{4} u_{4}, \ldots, x_{m+2} u_{m+2}\right\}$ of m elements. By Lemma 5 we may further assume that \mathbf{g} is of the form $\left\{x_{1} v_{1}, x_{4}, \ldots, x_{m+2}\right\}$, where $v_{1} \in \gamma_{c}\left(M_{n}\right)$. As in the proof of Theorem A we may transform the system so that $x_{1} v_{1}$ assumes the form:

$$
x_{1} v_{1}=x_{1} \prod_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}} \text { with } p_{i} \in \Delta^{c-2}\left(M_{n}\right)
$$

By Lemma 6,

$$
\left\{x_{1}\left[x_{1}, x_{2}\right]^{p_{2}}\left[x_{2}, x_{3}\right]^{\left(x_{2}-1\right) p_{2}}, x_{2}, x_{3}\left[x_{1}, x_{2}\right]^{-p_{2}^{2}}\left[x_{2}, x_{3}\right]^{p_{2}-\left(x_{2}-1\right) p_{2}^{2}}, x_{4}, \ldots, x_{n}\right\}
$$

is a basis for M_{n}, which proves that $\left\{x_{1}\left[x_{1}, x_{2}\right]^{p_{2}}, x_{4}, \ldots, x_{m+2}\right\}$ can be lifted to a primitive system of M_{n}. Further, by Lemma 6 , for each $i>3$, the system $\left\{x_{1}\left[x_{1}, x_{i}\right]^{p_{i}}\left[x_{i}, x_{3}\right]^{\left(x_{i}-1\right) p_{i}}\right.$, $\left.x_{2}, x_{3}\left[x_{1}, x_{i}\right]^{-p_{i}^{2}}\left[x_{i}, x_{3}\right]^{p_{i}-\left(x_{i}-1\right) p_{i}^{2}}, x_{4}, \ldots, x_{n}\right\}$ is a basis for M_{n} and for $i=3$, the system

$$
\left\{x_{1}\left[x_{1}, x_{3}\right]^{p_{3}}\left[x_{3}, x_{2}\right]^{\left(x_{3}-1\right) p_{3}}, x_{2}\left[x_{1}, x_{3}\right]^{-p_{3}^{2}}\left[x_{3}, x_{2}\right]^{p_{3}-\left(x_{3}-1\right) p_{3}^{2}}, x_{3}, \ldots, x_{n}\right\}
$$

is a basis for M_{n}. Thus there exist automorphisms $\alpha_{i} \in \operatorname{Aut}\left(M_{n}\right)$ such that with $\alpha=$ $\alpha_{2} \ldots \alpha_{n}$, we obtain mod $\gamma_{c+1}\left(M_{n}\right)$ the congruences $\alpha\left(x_{1} \Pi_{2 \leq i \leq n}\left[x_{1}, x_{i}\right]^{p_{i}}\right) \equiv \alpha x_{1}$, $\alpha\left(x_{i}\right) \equiv x_{i}, i \neq 1,2,3$. Thus $\left\{x_{1} v_{1}, x_{4}, \ldots, x_{m+2}\right)$, where $v_{1} \in \gamma_{c}\left(M_{n}\right)$, can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n} and consequently, by Lemma 5, $\left\{g_{1}, g_{4}, \ldots, g_{m+2}\right\}$ can be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n}.

Remark C. For each $n \geq 3$ there exists an IA-system of $n-1$ elements of $M_{n, c}$ which cannot be lifted (via $\gamma_{c+1}\left(M_{n}\right)$) to a primitive system of M_{n}. Thus the restriction $m \leq n-2$ in Theorem B cannot be relaxed.

Details. Choose $g_{1}=x_{1}\left[x_{1}, x_{3}, x_{3}\right], g_{i}=x_{i}, i \neq 1,3$. We show that for any choice of $g_{3}=x_{3} u, u \in M_{n}^{\prime}$, and any choice of elements $w_{i} \in \gamma_{4}\left(M_{n}\right), i=1, \ldots, n$, the Jacobian matrix $J(\mathbf{g})$ of the system $\mathbf{g}=\left\{g_{1} w_{1}, \ldots, g_{n} w_{n}\right\}$ is not invertible. The matrix $J(\mathbf{g})$ has the form:

$$
\left[\begin{array}{cccccc}
1+\left(a_{3}-1\right)^{2}+\pi_{11} & \pi_{12} & -\left(a_{1}-1\right)\left(a_{3}-1\right)+\pi_{13} & \ldots & \pi_{1, n-1} & \pi_{1 n} \\
\pi_{21} & 1+\pi_{22} & \pi_{23} & \ldots & \pi_{2, n-1} & \pi_{2 n} \\
\pi_{31^{*}} & \pi_{32^{*}} & 1+\pi_{33^{*}} & \ldots & \pi_{3, n-1^{*}} & \pi_{3 n^{*}} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\pi_{n 1} & \pi_{n 2} & \pi_{n 3} & \ldots & \pi_{n, n-1} & 1+\pi_{n n}
\end{array}\right]
$$

where each $\pi_{i j} \in \Delta^{3}(A)$ and $\pi_{3 i^{*}} \in \Delta(A)$. If $J(\mathbf{g})$ is invertible then it remains invertible under the endomorphism mapping a_{3} to a_{3} and a_{i} to 1 for each $i \neq 3$. Since, for any i, $\sum_{j=1}^{n}\left(\partial w_{i} / \partial x_{j}\right)\left(a_{j}-1\right)=\sum_{j=1}^{n} \pi_{i j}\left(a_{j}-1\right)=0$, it follows that $\pi_{i 3}$ gets mapped to 0 under the above endomorphism. Thus the resulting matrix $J(\mathbf{g})^{*}$ is of the form

$$
\left[\begin{array}{ccccc}
1+\left(a_{3}-1\right)^{2}+\pi_{11}^{\prime} & \pi_{12}^{\prime} & 0 & \pi_{1, n-1}^{\prime} & \pi_{1 n}^{\prime} \\
\pi_{21}^{\prime} & 1+\pi_{22}^{\prime} & 0 & \pi_{2, n-1}^{\prime} & \pi_{2 n}^{\prime} \\
\pi_{31^{*}}^{\prime} & \pi_{32^{*}}^{\prime} & 1 & \pi_{3, n-1^{*}}^{\prime *} & \pi_{3 n^{*}}^{\prime} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\pi_{n 1}^{\prime} & \pi_{n 2}^{\prime} & 0 & \pi_{n, n-1}^{\prime} & 1+\pi_{n n}^{\prime}
\end{array}\right]
$$

where $\pi_{i j}^{\prime} \in \Delta^{3}\left\langle a_{3}\right\rangle$ and $\pi_{3 i^{*}}^{\prime} \in \Delta\left\langle a_{3}\right\rangle$. The determinant of $J(\mathbf{g})^{*}$ is of the form $1+\left(a_{3}-\right.$ $1)^{2}+\left(a_{3}-1\right)^{3} \pi$ and if it is invertible then we must have $1+\left(a_{3}-1\right)^{2}+\left(a_{3}-1\right)^{3} \pi=a_{3}^{k}$ for some $k \in \mathbf{Z}$. Working modulo $\Delta^{2}\left\langle a_{3}\right\rangle$ shows that k must be zero, so that $\left(a_{3}-1\right)^{2}+$ $\left(a_{3}-1\right)^{3} \pi=0$ which, however, is not possible in the cyclic group ring $\mathbf{Z}\left\langle a_{3}\right\rangle$.

Primitive lifting in F_{3} of a single element. Let $g=x_{1} u, u \in \gamma_{c}\left(M_{3}\right)$. By Theorem A, g can be lifted (via $\gamma_{c+1}\left(M_{3}\right)$) to a primitive element of M_{3}. Since M_{3} admits wild automorphisms (Chein [4]), lifting g to a primitive element of F_{3} does not follow instantly as was the case for $n \geq 4$. For simplicity of notation we let $M=M_{3}$ be generated by x, y, z. In preparation we first prove,

THEOREM D. Every IA-element of the form $g=x[y, z]^{p(x, y, z)}$ can be lifted $\left(\right.$ via $\left.F_{3}^{\prime \prime}\right)$ to a primitive element of F_{3}.

Proof. The proof consists in exhibiting a tame automorphism of M which maps x to $x[y, z]^{p(x, y, z)}$. For each $i, j, k \in \mathbf{Z}$, consider the tame automorphisms $\alpha_{j k}$ and β_{i} of M given by $\alpha_{j k}=\left\{x \rightarrow x[y, z]^{y^{j} z^{k}}, y \rightarrow y, z \rightarrow z\right\}, \beta_{i}=\left\{x \rightarrow x, y \rightarrow x^{-i} y x^{i}\right.$, $\left.z \rightarrow x^{-i} z x^{i}\right\}$, and define the tame automorphism $\delta_{i j k}=\beta_{i}^{-1} \alpha_{j k} \beta_{i}$. It is easy to see that each $\delta_{i j k}$ is of the form $\delta_{i j k}=\left\{x \rightarrow x[y, z]^{i^{i} y^{\prime} z^{k}}, y \rightarrow y^{u}, z \rightarrow z^{u}\right\}, u \in M^{\prime}$. If $\delta_{i j^{\prime} k^{\prime} k^{\prime}}$ is also of the form $\delta_{i^{\prime} j^{\prime} k^{\prime}}=\left\{x \rightarrow x[y, z]^{x^{\prime} y^{\prime} y^{\prime} z^{\prime}}, y \rightarrow y^{u^{\prime}}, z \rightarrow z^{u^{\prime}}\right\}, u^{\prime} \in M^{\prime}$, then we see that $\delta_{i j k} \delta_{i^{\prime} k^{\prime}}=\left\{x \rightarrow x[y, z]^{x^{\prime} y z^{\prime} z^{\prime}+x^{\prime} y^{\prime} y^{\prime} z^{\prime \prime}}, y \rightarrow y^{u^{\prime \prime \prime}}, z \rightarrow z^{u^{\prime \prime \prime}}\right\}$. Since $p(x, y, z)$ is a \mathbf{Z}-linear sum of group elements of the form $x^{i} y^{j} z^{k}, i, j, k \in \mathbf{Z}$, it follows that there is a tame automorphism $\mu \in g p\left\{\delta_{i j}, i, j, k \in \mathbf{Z}\right\}$ which has the form $\mu=\left\{x \rightarrow x[y, z]^{p(x, y, z)}\right.$, $\left.y \rightarrow y^{w}, z \rightarrow z^{w}\right\}, w=w(x, y, z) \in M^{\prime}$. This completes the proof of the theorem.

We can now prove the following main result of this section.
THEOREM E. Every primitive element of $M_{3, c}, c \geq 2$, can be lifted (via $\gamma_{c+1}(M) F^{\prime \prime}$) to a primitive element of F_{3}

Proof. We may assume that $c \geq 3$ (the case $c=2$ being trivial) and by Lemma 5 that the given primitive element g has the form $g=x u, u \in \gamma_{c}(M)$. Since u is of the form

$$
u=[y, z]^{q(x, y, z)}[x, y, z]^{p(x, y, z)}[x, z, z]^{p^{\prime}(x, y, z)}[x, y, z]^{p^{\prime \prime}(x, y, z)}
$$

with $q(x, y, z) \in \Delta^{c-2}(M)$ and $p(x, y, z), p^{\prime}(x, y, z), p^{\prime \prime}(x, y, z) \in \Delta^{c-3}(M)$, it suffices to prove that each of the elements of the form $x[y, z]^{q(x, y, z)}, x[x, y, y]^{p(x, y, z)}, x[x, y, z]^{p(x, y, z)}$, with $q(x, y, z) \in \Delta^{c-2}(M)$ and $p(x, y, z) \in \Delta^{c-3}(M)$ can be lifted (via $\left.\gamma_{c+1}(M)\right)$ to primitive elements of F_{3}.

Primitive lifting of $x[y, z]^{q(x, y, z)}\left(\bmod \gamma_{c+1}(M)\right)$ follows from Theorem D. For primitive lifting of $x[x, y, y]^{p(x, y, z)}\left(\bmod \gamma_{c+1}(M)\right)$ we only need to establish a tame automorphism of M which maps x to $x[x, y, y]^{p(x, y, z)}\left(\bmod \gamma_{c+1}(M)\right)$. Indeed, for the given $p(x, y, z) \in \Delta^{c-3}(M)$ we choose, using proof of Theorem D , a tame automorphism μ of M given by $\mu=\left\{x \rightarrow x[y, z]^{-p(x, y, z)}, y \rightarrow y^{w}, z \rightarrow z^{w}\right\}, w=w(x, y, z) \in M^{\prime}$ and a tame automorphism $\lambda=\{x \rightarrow x, y \rightarrow y, z \rightarrow z[x, y])$ of M. Then modulo $\gamma_{c+1}(M)$ we observe that

$$
\begin{aligned}
\mu(x) & =x[y, z]^{-p(x, y, z)}, \\
\lambda(\mu(x)) & =x[y, z[x, y]]^{-p(x, y, z)} \equiv x[x, y, y]^{p(x, y, z)}[y, z]^{-p(x, y, z)}, \\
\mu^{-1}(\lambda(\mu(x))) & \equiv x[x, y, y]^{p(x, y, z)} .
\end{aligned}
$$

Also, $\mu^{-1}(\lambda(\mu(y))) \equiv y\left(\bmod M^{\prime}\right), \mu^{-1}(\lambda(\mu(z))) \equiv z\left(\bmod M^{\prime}\right)$. Thus $u \lambda \mu^{-1}$ has the required form:

$$
\mu \lambda \mu^{-1}=\left\{x \rightarrow x[x, y, y]^{p(x, y, z)}, y \rightarrow y u, z \rightarrow z v\right\}
$$

modulo $\gamma_{c+1}(M)$.
For primitive lifting of $x[x, y, z]^{p(x, y, z)}$, we choose $\mu=\left\{x \rightarrow x[y, z]^{-p(x, y, z)}, y \rightarrow y^{w}\right.$, $\left.z \rightarrow z^{w}\right\}, w=w(x, y, z) \in M^{\prime}$, as before and choose $\rho=\{x \rightarrow x, y \rightarrow y[y, x], z \rightarrow z\}$. Then, modulo $\gamma_{c+1}(M), \mu \rho \mu^{-1}$ has the required form $\mu \rho \mu^{-1}=\left\{x \rightarrow x[x, y, z]^{p(x, y, z)}\right.$, $y \rightarrow y u, z \rightarrow z v\}$. This completes the proof of Theorem E.

Concluding Remarks. Since every IA-automorphism of M_{2} is inner (Bachmuth [1]), $g=x_{1} u$ can be lifted to a primitive element of M_{2} if and only if u is of the form $\left[x_{1}, v\right]$. Thus, for $c \geq 3$, not every primitive element of $M_{2, c}$ can be lifted to a basis of M_{2}.

The existence of non-tame automorphisms of M_{3} was first shown by Chein [4]. Specifically, the automorphism $\{x \rightarrow x[y, z, x, x], y \rightarrow y, z \rightarrow z\}$ of M_{3} cannot be lifted to an automorphism of the free group F_{3}. It is easily seen that every endomorphism in M_{3} of the form $\left\{x \rightarrow x[y, z]^{p(x, y, z)}, y \rightarrow y, z \rightarrow z\right\}$ is an automorphism of M_{3}. So, for each $p(x, y, z) \in \mathbf{Z} M_{3}$, the element $x[y, z]^{p(x, y, z)}$ is primitive in M_{3} and we call it a Chein element of M_{3}. By Theorem D, it follows that every Chein element of M_{3} can be lifted to a primitive element of F_{3}. It is natural to ask: can every primitive element of M_{3} be lifted to a primitive element of F_{3} ? Finally, by Timoshenko's results primitivity in $M_{n}, n \geq 4$, is algorithmically decidable. We conclude by asking: is primitivity in M_{3} algorithmically decidable?

Acknowledgement. The third author thanks the Department of Mathematics of the University of Manitoba for its warm hospitality during the preparation of this article.

References

1. S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118(1965), 93-104.
2. S. Bachmuth and H. Y. Mochizuki, $\operatorname{Aut}(F) \rightarrow \operatorname{Aut}\left(F / F^{\prime \prime}\right)$ is surjective for free group F of rank ≥ 4, Trans. Amer. Math. Soc. 292(1985), 81-101.
3. Joan S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41(1974), 634-638.
4. Orin Chein, IA automorphisms of free and free metabelian groups, Comm. Pure Appl. Math. 21(1968), 605-629.
5. Narain Gupta, Free group rings, Contemporary Math. 66(1987), Amer. Math. Soc.
6. Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse Math. Grenzgeb. 89(1977), Springer-Verlag.
7. V. A. Roman'kov, The automorphism groups of free metabelian groups. Questions on pure and applied algebra. Proc. Computer Centre, USSR Academy of Sciences, Novosibirsk, 1985, 35-81, Russian.
8. E. I. Timoshenko, Algorithmic problems for metabelian groups, Algebra and Logic 12(1973), 132-137 (Russian Edition: Algebra i Logika 12(1973), 232-240).
9. \qquad On embedding of given elements into a basis of free metabelian groups, Russian, preprint.
10. U. U. Umirbaev, On primitive systems of elements in free groups, to appear.

University of Manitoba
Winnipeg, Manitoba R3T 2N2

University of Manitoba
Winnipeg, Manitoba R3T 2N2

Kompleksny Otdel
Pr. Mira 19-a
Omsk 644050
USSR

