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The basic investigations of time-dependent transport are made for secondary electron (SE) 

relaxation and attenuation by means of Monte Carlo simulations, [1,2]. These MC calculation of 

ballistic electron scattering in dielectrics are based on interactions with optical and acoustic 

phonons as well as on impact ionization of valence band electrons, i.e. the creation of so-called 

tertiary electrons (TE) and cascading, see Fig. 1 to 3. The strongest cooling of SE occurs over 

femtoseconds and is given by the impact ionization process, whereas the electron-phonon scattering 

leads to slower attenuation. 

The electron beam induced selfconsistent charge transport and secondary electron emission in 

insulators are described by means of an electron-hole flight-drift model (FDM) implemented by an 

iterative computer simulation, [3-5]. Ballistic secondary electrons and holes, their attenuation and 

drift, as well as their recombination, trapping, and field- and temperature-dependent Poole-Frenkel  

detrapping are demonstrated in Fig. 4. 

As a main result the time dependent spatial distributions of currents j(x,t), charges σ(x,t), field 

F(x,t), as well as, the secondary electron emission rate σ(t) and the surface potential V0(t) are 

obtained as demonstrated partially in Fig. 5. This charging process corresponds fairly to the 

conventional SEE resistance model discussed in more detail on the previous M&M conference, see 

Ref. [6]. There a certain sample resistance Ri  controls the charging of the semiconducting or semi-

insulating sample and the actual landing energy Eꞌ0 of the electron beam is increased or diminished 

by the surface potential V0≷ 0 :               Eꞌ0 = E0 +eV0 = E0 + e(σ-1) i0Ri.  (1) 

Whereas the switching-on of the secondary electron emission proceeds over milliseconds due to 

selfconsistent charging, see Fig. 5,  the switching-off process occurs much faster, even over femto-

seconds as demonstrated in Fig. 6 and will be described more detailed in Ref. [7]. 

Thus a rapid electron beam switching becomes possible with formation of ultra-short electron beam 

pulses offering an application in stroboscopic electron spectroscopy and microscopy. 
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Fig. 1 Trajectories of primary (PE), 

secondary (SE), and tertiary (TE) 

electrons excited in silica with a PE 

incident energy E0 = 100 eV.  

  Fig.2 Secondary electron energy 

relaxation n(E) with time t in 

silica. The initial rapid cooling is 

due to cascading. 

 

 

 

 

Fig.3 Mean energy <E> and 

the number n(t) of secondary 

electrons in silica as a 

function of relaxation time t. 

 

 

Flight-Drift Model 
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SE Switching-on 
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Fig.4 Scheme of the flight-drift 

model FDM including the ballistic 

flight with attenuation followed by 

drift, trapping, detrapping or re-

combination of electrons and holes.  

 

  Fig.5 Overall secondary electron 

emission rate σ (top) and surface 

potenial V0 (below) of a bulk 

(3mm) alumina target as a 

function of irradiation time t. 

 Fig.6 Switching-off process of 

ballistic electrons towards the 

surface (top) and the very rapid 

decay of the secondary 

emission rate (below). 
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