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Abstract. A Hamiltonian system of n degrees of freedom, defined by the function
F, with an equilibrium point at the origin, is called formally integrable if there exist
formal power series fx, . . . , / „ , functionally independent, in involution, and such
that the Taylor expansion F of F is a formal power series in the fj.

Take n =3, F = Xka2 F
ik), F(k) homogeneous of degree k, F<2)>0 and the eigen-

frequencies in ratio 1:1:2. If F<3> avoids a certain hypersurface of 'symmetric' third
order terms, then the F- system is not formally integrable. If F(3) is symmetric but
F<4) is in a non-void open subset, then homoclinic intersection with Devaney
spiralling occurs; the angle decays of order 1 when approaching the origin.

1. Introduction
Let F be a smooth real-valued function of In real variables x — (q, p), q e W, p e U",
denned in a neighbourhood of the origin. Assume that dF(0) = 0, that is 0 is an
equilibrium for the Hamiltonian system HF in n degrees of freedom, defined by:

* - f ( , r t * - - £ < • * (i.i)
dt dpj dt dqj

The system (1.1) is called integrable near 0 if there exist n functions / i , . . . , / „ ,
defined in an open neighbourhood U of 0, which Poisson commute with each other
and are functionally independent, such that F can be written as a function of/i, . . . , /„
(one often takes F= / n ) . Here the Poisson bracket of/ and g is denned as

f *f* (1.2)
The functional independence means that dfx,..., dfn are linearly independent on a
dense open subset of U. This ensures that there fj = const, for all j define smooth
n-dimensional submanifolds. Because HfJj = 0, these level manifolds are invariant
under the Hj-flows and because

these flows commute. On a compact connected component of a level manifold this
leads to a transitive action of W, making the level manifold diffeomorphic to a torus
and the HF-flow to a quasi-periodic motion on it; (cf. Abraham and Marsden [2,
5.2.23]). The compactness condition is in particular satisfied if the quadratic part
F<2) is definite because then the level surfaces of F near 0 are small spheres invariant
under the /^-flows.
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554 /. /. Duistermaat

The system (1.1) will be called formally integrable if there exist formal power
series / , , . . . , / „ such that {/, f]} = 0 for all i, j , the / , , . . . , / „ are functionally indepen-
dent and the Taylor expansion F of F is a formal power series in / , , . . . , / „ . This
means that the system will behave asymptotically near the equilibrium like an
integrable system up to each order.

Whereas formal integrability leads only to asymptotic information about the flow,
A. A.

the functional independence of/,, . . . , / „ is a stronger statement than the functional
independence of the smooth functions / , , . . . , / „ of which / , , . . . , / „ are the Taylor
series, because formal functional independence already means functional indepen-
dence of a finite part of the Taylor expansions.

Assume that F(2) is positive definite. Then, by a linear canonical transformation
one can arrange that

F(2)=I "Aqj + Pj) (1-3)
. 7 = 1

for some &>,,...,«„> 0, which are the frequencies of the harmonic oscillations in
the various degrees of freedom which are exhibited by the linearized system. The
Birkhoff normal form theorem (cf. [2, 5.6.8]) now states that for every k there is a
canonical transformation of coordinates (of which only the Taylor expansion up to
order k is needed) after which the Taylor expansion of F up to order k Poisson
commutes with F<2). Letting /c-»oo one obtains a formal canonical transformation
4> after which the full Taylor expansion F of F Poisson commutes with F . <t> can
be taken to be the Taylor expansion of a smooth canonical transformation 3> in a
neighbourhood of 0, but the condition {F<2), F} = 0 cannot in general be strengthened
to{F( 2 ) ,F} = 0.

If the ioj are linearly independent over Q then F in normal form Poisson commutes
with the functions

pj = q]+pj, i s js«, (1.4)

so the system HF is formally integrable. If the dimension of J\ Qa>j over Q is equal
to n - 1 , then the orthogonal complement in Z" of to is generated by a non-zero
vector gel."; let vw,..., v(n~V) be a basis in R" of the orthogonal complement of
g. Then the functions

fk=i"?)Pj, lsksn-l, (1.5)
7=i

Poisson commute with F. Therefore, also in this case of simple resonance, the
Hamiltonian system of F is formally integrable. So if one looks for Hamiltonian
systems which are not formally integrable at an equilibrium point, then the order
of the resonance = the codimension of £, Qa)j over Q, has to be at least 2.

The simplest case with w^O for which multiple resonance occurs is in 3 degrees
of freedom, and then this condition means that multiplying the a>j with a common
factor (which can be arranged by a change in the time scale) one can take &»,• e J.
for j = 1, 2, 3. For a survey of the asymptotic analysis of such systems for combina-
tions with small w,, see [7].
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In this paper we study the resonance 1:1:2. It will be shown that HF, in normal
form, is not formally integrable unless F<3> is degenerate in the sense that it enjoys
an additional symmetry by a linear Hamiltonian circle action leaving F(2) invariant.
The key to the proof is the observation that all solutions of the Hamiltonian system
of F(3) on the hypersurface F(3) = 0 are periodic. If P denotes the period function
then the complex continuations of the manifolds P = constant turn out to be infinitely
branched. This then excludes the existence of a nontrivial analytic integral on any
open subset of the complex domain where this infinite branching occurs and whose
intersection with the real domain is HF»>-invariant. Although we do use complex
analytic extensions, our method is different from the one employed in [8].

It is paradoxical that the formal non-integrability is proved by looking at a rather
dull part of the dynamics, namely the periodic HF<«-motion on F<3) = 0. From the
point of view of dynamical systems it would be more interesting to exhibit some
wild behaviour of the solutions as the cause of non-integrability. This will be done
by looking on F<3) = 0 at the hyperbolic periodic solutions of Hf*v+Fm. Their stable
(resp. unstable) manifolds S+ (resp. £~) coincide. (The solutions on them are the
limits of sequences of periodic solutions on F<3) = 0 for which the periods tend to
oo.) Adding a generic fourth order term F*4) in normal form, a Melnikov function
argument shows that S+ and 2~ then intersect at an angle which is of linear order
in the distance to the equilibrium point. Now Devaney [3] has shown that if one
has such homoclinic behaviour and if the flows on 1+ (resp. S~) are spiralling
towards (resp. from) the limit orbit, then wild behaviour, including 'Smale horse-
shoes', has to occur. This wild behaviour certainly excludes the existence of analytic
integrals, but the phenomena themselves are much more interesting from the dynamic
point of view.

Unfortunately, the HFm-flow on 2 + ~ does not spiral, but is of node type, if F(3)

is of the generic non-degenerate type. However, if F<3> is that one of the symmetric
cases where the flows on S+~ are radial, then, for F<4> in a non-void open subset
of 4th order terms, there are homoclinic spirals for the HF-flow. It is another paradox
in this paper that wild behaviour is shown by choosing F(3> in the exceptional
integrable position, and only taking F<4> in a non-void open set. Both the spiralling
coefficient and the angle between the stable and unstable manifold are of linear
order in the distance to the equilibrium point. This is in contrast with the famous
example of Henon and Heiles [4]. There the numerical appearance of non-integra-
bility only at a finite distance from the equilibrium corresponds with the vanishing
of infinite order of non-integrability effects, as a consequence of the formal integrabil-
ity of this 2 degrees of freedom system in 1:1 resonance.

The paper is organized as follows: In § 2 we discuss the normal form of F<3)

which turns out to contain only one essential parameter fj. e [0, 1]. The cases yu. = 0,
resp. n = 1 are the degenerate symmetric cases. In § 3 it is proved that the HFw-
solutions on F(3) = 0 are periodic, and that HF is not formally integrable if
0< ft < 1. The proof of the necessary properties of the period function is an exercise
in complex function theory and is given in the appendix. § 4 contains the proof of
the Devaney effect.
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I would like to thank Richard Cushman for drawing my attention to Devaney's
paper. Also I am grateful to Tonnie Springer for his suggestion to use the mapping
(2.12), which immediately clarified the invariants (2.13), (2.14), found before by
trial and error. In fact the whole paper grew out of a search for a third integral by
brute force calculations, challenged by a statement in [1]. Not finding any up to
order 6, I gave up and started looking at the HF<3>-flow itself. Of course this paper
is still far from a complete analysis of the 1:1:2-resonance. For instance, nothing
has been said about the ifFo>-flow for F<3> ^ 0.

2. Normal form of the 1:1:2-resonance
In order to analyse Birkhoff normal forms it is convenient to introduce the complex
coordinates

2j = qj + iPj, £j = qj-iPj-

Writing F(q, p) = 9{z, £), G(q, p) = 8(z, £), we get

{F,G} = 2«T— — —. (2.1)
j d£j dzj dzj dCj

Also F has real coefficients if and only if in the expansion

^(a)=zvmr, (2.2)
the relation

<km = <W for all m, n e N" (2.3)

holds. Now the F<2) in (1.3) is equal to

F<2> = I W , z / > (2.4)
j

and the condition that {F(2), F} = 0 translates into
<«, n - m) = 0 whenever cmix # 0. (2.5)

From now on we assume that n = 3 and to, = 1, o>2 = 1, <w3 = 2. Then the algebra of
formal power series which Poisson-commute with

F( 2 ) = z,f, + z2£ + 2z3£, = 4 2 +p?+ q22 + p2
2 + 2q2

3 + 2p2
3 (2.6)

is generated by the following 11 functions (with a lot of relations):

pj = ZjCj 0 '= 1,2,3), o- = z,£2, & = z2£u

T\=^2, T2=
X2Z3£l, T3=Z3liC2, (2.7)

Ti = \i3z\, r2 = \£,3z\, f3 = £3z, z2.

The Birkhoff normal form of the third order term therefore is equal to

FO) = z3&axfi + {a2£l+ a3tl£2) + U\<*xz2+lic*2zl+ <*3zxz2). (2.8)

F( 3 ) has real coefficients as a power series in q, p if and only if a,- = a,-, (j = 1,2, 3).
On the space of these F( 3 ) one has the action of G = the group of the linear

symplectic transformations which leave F( 2 ) invariant. The Lie algebra ^ of G is
equal to the space of Hamiltonian vector fields defined by the quadratic functions
Q which Poisson-commute with F( 2 ) , that is

Q = Q,pl + Q2p2+Q3p3+ro-+rd; Q,eR, r e C . (2.9)
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Because G commutes with the /fFm-flow, and the action of the //pm-flow on the
space of F<3)'s in (2.8) is trivial (by definition), we may reduce to the group Go

generated by the Q in (2.9) with Q3 = 0. This is the group of those elements of G
which leave the coordinates q3, p3 fixed. Viewing the standard inner product, resp.
the symplectic form in the (qu q2, p,,p2)-space as the real, resp. imaginary part of
the standard Hermitian inner product in C2 = (z,, z2)-space, z, = qx + ipu z2 = q2+ ip2,
the action of Go on these variables is equal to U{2), the unitary group acting on
C2. Now read off the action of Go on F(3)'s as in (2.8), by looking at its action on

Identifying this complex quadratic form on C2 with the complex symmetric (not
hermitian!) matrix

I„ ~ \

(2.10)( \

«3 a2/'
the Go- action on the F<3)'s translates into

U, S>-+'USU, U unitary, S symmetric. (2.11)

Here 'U denotes the transposed matrix of U, the unitary condition means that
'U = 'U= U~\ Now the mapping

S^SS = S*S, (2.12)

from the space 9* of symmetric complex 2 x2 matrices to the space SP of non-negative
self-adjoint matrices, intertwines the action of U on Sf with conjugation by U~l on
0>. Indeed,

'USU°'USU= U~lSU'USU= U~l(SS)U.

This leads immediately to the invariants

|a,|2 + 2|a3|
2 + |a2|2, (2.13)

= (|a1|
2 + |«3|2)(|a3|2+|a2|2)-|d1a3+a3a2|2, (2.14)

for the action of G on the space of F(3)'s. Also we may conclude that, using the
G-action, we can bring F<3) into the position where SS is a diagonal matrix, that
is we can arrange that

alai+a3a2 = 0. (2.15)

In order not to destroy (2.15) our only further action is to take

Q e , J , <k<AeRmod27r. (2.16)

This leads to ai^e"***,, a2i->e"''a2, a3i-»e'('*+'/')a3. Using this action we can arrange
that a3 is real and then (2.15) implies that either a3 = 0 or a3?^0 and a, + a2 = 0.
In the first case we can, again using this action, arrange that ax>0, a 2 2 0, In the
second case we can arrange that at is also real. It is an easy exercise to show that
the matrix

\a3 -a,/ '
ax,a3eU,
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is equivalent to

0 - V a f + c

by the action of a real orthogonal transformation U (for which 'USU = 'U~[SU),
which can then be turned into -Ja\-\-a\- I. So we have proved:

THEOREM 2.1. By a linear symplectic transformation leaving F<2> invariant, the third
order term of F in Birkhoff normal form can be brought into the form

with Bi>B2>0. The relation with the coefficients in (2.8) is given via the formulae
(2.13), (2.14) by

T=B2 + B2
2, D = B2B2

2. (2.18)

Each level manifold T= constant, D = constant is equal to exactly one G-orbit, which
contains exactly one normal form of the type (2.17) with B{> B2>0. If B{> B2>0
then the group of linear symplectic transformations leaving F<2) and F<3) invariant,
modulo the H^-action, is discrete. If Bx = B2= B>0 then we have the independent
third integral

Ptq2, (2.19)

andifB,>0, B2 = 0 then

G = q2
2 + p2

2 (2.20)

is an independent third integral.

It can be observed that if B, > 0 then a rescaling x = (1/ Bt)x of the variables leaves
F( 2 ) invariant, but makes Bx = 1. So

M=j62//3,e[0,l] (2.21)

is the only essential parameter in F<3), which originally had 56 coefficients.

3. The HF^.flow on F( 3 ) = 0
From now on we assume that F<2> (resp. F<3)) is as in (2.6) (resp. (2.17)), Bi>B2>0.
When analyzing the //F<3>-flow we keep in mind that it commutes with the //F«>-flow,
which is a circle action, and leaves the level surfaces of F( 2 ) invariant. So we
may view the /fFo)-flow as acting on the space of /fFu>- orbits on a hypersurface
F<2) = constant, leading to a Hamiltonian action on the so-called reduced phase
space which is 4-dimensional, cf. [2]. However, since the reduced phase space has
singularities, in practice it is more convenient to work in the original coordinates
and to remember the invariance of F<2) and the HF<2>-symmetry at the appropriate
moment.

Because F<3> is linear in (q3,p3), it follows that for the //F»>-flow:

^ • p 3 - ^ • 43 = F( 3 ) = constant. (3.1)
dt dt
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That is, the curve t-*(q3(t),p3(t)) in IR2 satisfies Kepler's law of sweeping out equal
area in equal time. In particular, if F<3) = 0 then, in R2\{0}, this curve moves on a
straight line through the origin. On the other hand, if q3 = p3 = 0, dq3/ dt = dp3/dt = 0,
then we are dealing with the (q3, p3)-coordinates of a solution of the //F">-flow at
a critical point of F(3), so in that case the curve remains at the origin in the
(q3, p3)-plane. So for each HFm-solution on F<3) = 0 there is a straight line through
the origin on which the (g3,p3)-coordinates remain for all time. Using the / f r -
action we can turn this line into the position q3 = 0, which we will assume we have
done from now on. The HFw-system now reads:

da, dp,

^ = 2 p P q j ^ =
d

-jjj- = 2/32p3q2

d-JJJ = -2/32p3p2,

and

We also have to keep in mind that

qi+Pi + q + P
and

) = constant,

(3.2)

(3.3)

(3.4)

(3.5)

Writing u(t) = 4\'op3(s) ds, (3.2) is equivalent to

q,(t) = e^qj(0), Pj(t) = e ^ ^

so (3.3) now reads

(j=\, 2),

This is a Newton equation for w with mass = ̂  and potential function

V(u)= I {e-^pjiOf+e
7 = 1

The total energy of this Newton system is equal to

+V(u) = 2p3(0)2+i (p,(0)2+%(0)2) =

(3.6)

(3.7)

(3.8)

because £ is a constant of motion and M(0) = 0. The potential energy function is
convex, and it is a well with infinitely high walls if

and {quq2)*Q. (3.9)
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In this case t>-*u(t) is periodic, which implies that the solution of (3.2), (3.3) is
periodic as well. The period is given by

•=V2 r + [ £ -
J u_

(3.10)

Here M_ and u+ are the two zeros of w-» E - V(u). The formula only holds on the
part of the hypersurface F(3) = 0 where (3.9) is valid. It is also assumed in (3.10)
that q3 = 0, but the period can be found at the other points of F<3) = 0 by using the
invariance of P under the /fFo>-action.

If we let the initial values (on the manifold determined by (3.4), (3.5)) converge
to a point where g,(0) = q2(0) = 0, (p,(0), p2(0)) # 0 then the period runs to +oo. The
limiting solution satisfies q,(t) = O, q2(t) = 0,

lim (pM,p2(t)) = 0,
(->±OO

whereas p3(t) is strictly increasing,

lim p3(t) = —J\E, W

So the limiting solution is a saddle connection between the equilibrium points
9i = <?2 = Pi — Pi ~ 0, q3 = 0, p3 = ±4\E of Hpu\ For HFw+Fu) = HFm + HFm these are
the initial points on the transversal section q3 = 0 of the stable = unstable manifold
of the hyperbolic periodic solution in the (q3, /»3)-plane.

The next argument will show that if G is a smooth function on an open set U
such that V= l / n (F(3) = 0) is /fF(3)-invariant, and {F<2), G}, {F(3), G} and the total
derivative d{F(3), G} all vanish on V, then G is a function of F<2) and P on V.

The function P is real analytic and, in view of the above convergence to oo, it is
not constant on F<2) = E, F<3) = 0, for any E > 0. It follows that for any E>0,dP*0
on an open dense subset ft of the manifold determined by (3.4), (3.5), (3.9). The
assumptions for G ensure that, on V, Ha commutes with HF^\ so HOP = 0. It
follows that G is invariant under the flows of //F«>, HF<3> and Hp, the latter regarded
as the Hamiltonian flow on F<3) = 0 of any smooth extension P of P to an open
neighbourhood of F(3) = 0, the flow on F<3) = 0 modulo Hp^i is independent of the
choice of the extension. Now on ft n U, dP is linearly independent of dFi2) and
dF°\ so the HpW, HF«>, //P-flows together sweep out a 3-dimensional submanifold
of the 6 -3 = 3-dimensional manifold F<2) = £, F(3) = 0, P = constant. The con-
clusion is that, on ft n U, G is locally constant on F(2) = E, F(3) = 0, P = constant.
That is, G is a function of F<2), F(3) and P on each connected component of
ftnt/n(F(3) = 0).

Now suppose that G is analytic on U, so it has a complex analytic extension to
some open neighbourhood U of U in C2". If G is not functionally dependent on
F<2) on F<3) = 0 then the manifolds F(2) = E, F(3) = 0, G = c extend to closed complex
analytic manifolds in U for the generic values of E, c, which coincide with the
complex analytic continuations of manifolds F(2) = E, F<3> = 0, P = constant. If the
latter analytic continuations exhibit infinite branching near a point x e U, then we
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arrive at a contradiction, so G has to be a function of F(2) on F<3) = 0. Now treating
F<3) as a coordinate we can locally near x write G= G0+G}F

i3) where Go is a
function of F<2) and G, is analytic. Because G, = {G-Go)/F

<3) Poisson-commutes
with F(2) and F<3>, the same argument gives that G, is a function of F(2> on F(3) = 0.
Continuing this procedure we obtain that G is a power series in F<3) with coefficients
which are functions of F(2), that is G is a function of F<2) and F(3> near x. By
analytic continuation this conclusion is then true in the connected component of x
in U.

We shall prove that if ySj > y32> 0, then the analytic continuation of the mani-
folds F<2> = E > 0, F<3) = 0, P = constant have infinite branching near the points
<7i = a2 = Pi =/72 = 0- This then leads to the following:

THEOREM 3.1. Let /3, > fi2 > 0. Let G be an analytic function on a connected neighbour-
hood ofthe manifold qx = q2 = q3 = 0, p2 + pl + 2pl = E>0 or of the manifold p, = p2

 =

<j3 = 0, q2
l + ql + 2pj=E>0. If G Poisson-commutes with F<2) and F(3), then G is

functionally dependent on F(2) and F<3). In particular, HF is not formally integrable if

For the last conclusion, let G be a formal power series which Poisson commutes
with F. Assume by induction on k that G = £,afc G(" + a function of F(2) and F.
Regarding the homogeneous terms of order k (resp. k + 1) in 0 = {F, G}, one obtains
the equations {F(2), G(k)} = 0 (resp. {F(2), G(lc+1)} + {F(3), G(k)} = 0). Using the fact
that F(2) Poisson commutes with F<3> it follows that

(adF(2))2(G('c+1)) = 0.

Because ad F(2>: G>->{F<2), G} is a semi-simple linear transformation of the space
of polynomials of degree fc+ 1, the conclusion is that

(adF(2))(Gk+l) = 0,

and therefore {F(3), G<fc)} = 0 as well. Now the first part of the theorem yields that
G(k) is a function of F<2) and F<3) on a non-void open subset. By the implicit
function theorem, G((t) = r(F<2), F<3)) for an analytic function Y on a non-void open
subset of regular values for the mapping A = (F<2), F(3)):C6-»C2. F has a unique
analytic continuation to the set of all regular values of A because the fibres of A
are connected. Now A is surjective and for every converging sequence vv, in C2 one
can find a converging sequence z, in C6 such that A(ZJ) = w,. Therefore F extends
to an entire analytic function: C2-»C Comparing homogeneous terms in the Taylor
expansion of Gik) = F(F<2), F<3)) at the origin in C6, one obtains

F(F(2),F(3>)= I c,,(F(2))l(F<3))>,
2i+3j = k

so F is actually a polynomial. Replacing F<3) by F-F(2) modulo terms of order
>4, one obtains that G(k) is a function of F(2) and F, modulo terms of order sfc +1.

In order to investigate the manifolds P = constant we rewrite

p = \
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with

\ -(e-
x + e^e + exij,2er) + e>*x-n)Y!idx, (3.12)

f
Jx

With this notation, (3.5) is equivalent to

^2eV = q2p2/E2. (3.14)

First consider the restriction of P to the submanifold of F(2> = F, F( 3 ) = 0, where
<7i =0 , p2 = 0. This corresponds in (3.12) with e = 0 and the conclusion is that P is
a function of q\ • p2fl. So the manifolds P = constant exhibit arbitrarily often branch-
ing, arbitrarily close to qx = q2 = P\ = p2 = 0, if /x is irrational.

We may therefore assume from now on that /x is rational, say:

(3.15) fj. = k/I with k, I positive integers, relatively prime, k> I.

In the appendix we shall prove the following properties of the function 3P(e, 17) in
(3.12), with /ji as in (3.15):

LEMMA 3.2. (i) 9* has an analytic continuation to {(e, 17) eC 2 ; erf • A(e, rj) ^ 0},

where A is a polynomial in 2 variables. Near (e, 17) = (0, 0) the zero set of A has k
branches, 'e is a continuous function of rj\ and

(ii) There is a neighbourhood U of ]0, oo[x{0} in C2 such that on {(e,r))eU;
17 7* 0} we can write

9{e, V) = 4>(e, V) • log T, + ^(e, r?17'). (3.17)

/fere <f> can be extended to a complex analytic function on a full neighbourhood of
(0,0) in C 2 and i/> is a complex analytic function on {(e, £ ) e C 2 ; (e, £ ' ) e t / } . Fwr-

thermore,

andifk=\: (3.18)

(iii) Along every branch of A(e,r]) = 0 the analytic continuation of Sf develops
logarithmic singularities with non-zero coefficients.

We shall now prove that lemma 3.2 implies that the analytic continuation of the
tangent bundle of the curves SP = constant has infinite branching over 77, for 77 near
0. This then completes the arguments preceding theorem 3.1.
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The tangent at (e, 77) of the complex curve 9 = constant is given by

~(e, V) ^(e, TJ) • log ^

Winding around 0 with r\ arbitrarily many times, one sees that (3.19) can only be
finitely valued if

f<.,,)/f(.,,) = ̂ ,,>/^,,>, (3-20)
de / dr) de I drj

that is, the level curves of 3> coincide with the level curves of <f>- This property
continues if we replace 3P by any analytic continuation §>. If 0* has a logarithmic
singularity with non-zero coefficient along a smooth complex curve B, then the
curves 9 = const, for large values of the constant approach B. It follows that 4> is
constant along B. Therefore <j> is constant along rj = 0, where we already knew it
to be equal to - 1 , and on every branch through (0,0) of A(e, rj) = 0.

But (3.18) implies that (0,0) is a non-degenerate critical point of <f>, so near
(e, TJ) = (O, 0) the set <t>(e, 77) = -1 is the union of the set 17 =0 and the set e =x(v)
for some analytic function \ with *(0) = 0. </> being constant on the zero set of A,
we read off from lemma 3.2 (i) that k has to be equal to 1. Furthermore, if k= 1
then (3.18) and (3.16) imply that

2 ' 1 | 2 ) . (3.21)

Writing c, = l- (1 - ( I / / ) ) ' " 1 for the limit of - e / V " 1 in (3.16) for k = 1, and -d, for
the right hand side in (3.21), it follows that c( = d,.

However, it turns out that c,+ 1/d,+1 > c,/d, and because c4/d4 = § |<l , cs/d5 =
262 144/240 625 > 1, c, 1* d, for all /. So for each k, I we arrive at a contradiction
with the assumption that (3.19) is finitely branched over 17.

Remark. The comparison of c, with d, would not be needed if Sf also developed
logarithmic singularities around e = 0. However, it turns out that 9P is finitely
branched around e = 0.

4. Homoclinic spirals
The equations (3.2) show that the limit behaviour as t-*±<x> on the stable and
unstable manifolds qx = q2=q^ = ^ (resp. px =/>2=<73 = 0) is of node type if jS,>)82>
0. Therefore small perturbations can only lead to spiralling homoclinic orbits if
Pi — Pi-, which we assume from now on. Rescaling we may even take j8, = B2 = 1. A
straightforward calculation shows that on qx = q2 = q3 = 0 the solutions with p3(0) = 0
are given by:

^ > ^2<°> £ / 2 r t ; (4.1)
coshV2rf coshV2rf

here r = Vp,(0)2 + p2(0)2 = V.E, if E is the constant value of F(2). The system HF
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with /3| = /S2 has the third integral

G = -qlp2 + Piq2, HG = lq2- 9i~)+\P2- PiT~)- (4-2)
\ dqx dq2/ \ dpi dp2/

So the Hamiltonian flow defined by the 4th order term F(2)G also commutes with
the HFBi-flow. Furthermore, Hp<»o = FmHa on g, = q2 = <j3 = 0. So the solutions of

CF<2>G on qx = q2 = q3 — 0, with p3(0) = 0, are given by:
(pM\ 1 / cos cEt sin cEA//>,(0)\

\p2(t)/ cosh VlE A -sin cEt cos cEt)\p2(0)/'

(4.3)

This motion is obviously spiralling from and towards (pt, p2) = (0,0) if c ¥= 0. Now
consider the fourth order term

K = (qiq2 + Plp2)
2. (4.4)

If x(t) is a homoclinic solution for HFw+cFma+d^ then the integral of

(HFm+cFmo+dKG)(x(t)) = d-{K, G}(x(t)) (4.5)

over the whole /-axis is equal to

G(x(oo))-G(x(-oo)) = 0. (4.6)

Seeking, for small d, the homoclinic solution near the solution xo(t) of //F<
3>+cF<2)G

described in (4.3), one is therefore led to look at the zeros of the function introduced
by Melnikov [5]:

/• oo f oo

{K,G}(xo(t))dt=\ 2Pl(t)p2(t)(p2(t)
2-Pl(t)

2)dt
J —OO J —OO

i!!llJL a (l+W)- sin 40. (4.7)
24V2 smh (ir/2)a>

Here £ =p,(0)2 + /?2(0)2, p1(0)=V£cos 0, p2(0)=yfE sin 0, <o=4cy/~E/2.
Since (4.7) has simple zeros as a function of 8 at w = 2TTA:/8, fc = 0, 1 , . . . , 7, one

can apply an implicit function argument to prove that nearby (at distance O(d))
the point (0,0,0, v £ cos 0, JE sin 6,0) in (q, p)-space, there exists, for d sufficiently
small, a homoclinic solution of HFm+cFmG+dK, and that along this homoclinic
solution the stable and unstable manifold of the hyperbolic solution in the (q3, p3)-
plane intersect at an angle of order d. By continuity this homoclinic solution will
still spiral if c ̂  0 and d is sufficiently small. Also note that for c = 0, HK vanishes
on the star sin 46 — 0, so in this case (4.3) describes the homoclinic solution exactly.
Also note that if we let V E = the distance to the equilibrium point go to zero then
both the spiralling ratio and the angle between the stable and unstable manifold
will asymptotically be linear in v £ with a non-zero coefficient, because the order
of HF<") is -IE times the order of Hpu>. This also ensures that higher order terms in
the Taylor expansion of F cannot destroy the homoclinic spirals. Summarizing, we
have proved:

THEOREM 4.1. Assume that {F(2\ F} = 0. There is a non-void open subset ft of
homogeneous polynomials of degree 4 (in normal form) such that if the Taylor expansion

https://doi.org/10.1017/S0143385700002649 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002649


1:1:2-resonance 565

of F at the equilibrium-point up to degree 4 is of the form F( 2 ) + F ( 3 ) +F ( 4 ) , with F ( 2 )

as in (2.6), F(3> as in (2.17) with @t = (32>0 andF(4)eCl, then the stable and unstable
manifolds of the hyperbolic solution in the (q3,p3)-plane, for the HF-flow close to the
equilibrium, intersect along a homoclinic spiral, if intersected with the transversal
hypersurface q3 = 0. Both the spiralling coefficient and the angle of intersection are of
linear order in the distance to the equilibrium point, with a non-zero coefficient.

The assumption that F has F(2) as an exact integral allows the reduction to the flow
on the space of //F«>-orbits on the manifold F(2) = constant. The reduced flow is a
Hamiltonian system with 2 degrees of freedom with a hyperbolic equilibrium at the
(%, />3)-plane. It is to this system that one can apply the results of Devaney [3] and
conclude the existence of horseshoes and corresponding wild behaviour. For the
original system itself the set where the wild behaviour occurs is //Fw>-invariant and
therefore of one dimension higher.

If F(2> is only a formal integral for the HF-system, then it is expected that the
3-dimensional stable and unstable manifolds in the 5-dimensional space F = constant
intersect only along 1-dimensional orbits. The intersection of the stable and unstable
manifold then has 2 angles, one decreasing linearly but the other vanishing of infinite
order as one approaches the origin. Also, since one cannot reduce to a 2 degrees
of freedom system, the results of Devaney can no longer be applied by mere citation,
and it is an interesting question what aspects of the wild behaviour will survive.

As a final remark, a complete description should tell what happens if we take the
coefficients of F(2> + F(3) + F(4) in a full transversal slice to the action of the group
of local canonical transformations of coordinates. However this may be asking for
too much to be feasible.

Appendix: the period function if fj, = k/l
In (3.12) the singularities of the integrand at the endpoints x_, x+ are of order
|x-x±|~5 and therefore absolutely integrable. We begin with the substituting of
variables ex/l = z, so that

where z_, z+ are the two consecutive positive real zeros of the rational function
under the square root sign. Consider the closed curve y in the complex plane which
travels along the real axis from z_ + 0 to z+-0, then around z+ in the positive
direction, where the integrand picks up a minus sign, then back along the real axis,
and finally around z_ in the positive direction, so that the integrand is single-valued 1

I
along y. So |

<yl \ I2 / J z j
and the right hand side does not change under a homotopy of y in the complement
in C of 0 and the zeros of the polynomial

ir(e, V, z) = z'-(1 + z'-ke + z2l(k2/I2)er, + z'+k
V); (A.3)

(the restriction about the origin can be removed if / is even). If we now let e, r\
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move in C2 then z_ = z_(e, 17), z+ = z+(e, 77) move along and we can homotope y
with it as long as neither z_(e, 17) nor z+(e, 77) coalesce with a zero of ir{e, 77, •)
other than z_, z+ (coalescence with 0 cannot occur). If we write A(e, 17) for the
discriminant of 7r(e, 77, •) from which we delete common factors e (resp. 17) of all
terms, then this argument already shows that 9 has a multi-valued analytic extension
to the set of (e, 77) e C2 such that £77 • A(e, 77) ^ 0. More precisely, 9 is a function
of the class introduced by Nilsson [6]: the local branches span a finite-dimensional
space and the singularities of 0* when approaching the zero set of er)h(e, 77) are
'of tempered growth'.

Let us now investigate what happens to the roots of ir(e, 77, •) if (e, rj)e C2 is
sufficiently close to (0,0). In this case we have / roots of the form

m = 0 , . . . , / - l . (A.4)

If \z\ = 0-^min{\(k2/l2)sr)\-[/l, \-q\-l/k}:= R with O < 0 < 1 , then

| z ' - (z2'(fc7/2)£T, + z'+S,)l ^ |z|'• (1 - 0),

and

So applying Rouche's theorem, the number of roots of TT(E, 77, •) within the circle
of radius R is equal to the number of roots of

in that region, which is qual to /. This already happens if we keep e bounded and
then take 77 sufficiently small. So the roots of TT not given by (A.4) have absolute
value at least of order min {]ei7|~!/', |T7|~I/'C}. This means that the roots z_ m are all
simple and that coalescence of roots can only occur between the other, large roots.
For e ̂  0, 77 5̂  0, A(e, 77) = 0 if and only if there exist z e C such that

7r(e,77,z) = 0, ^ ( e , T?,Z) = 0. (A.5)
dz

For given small (e, 77), the equations (A.5) are equivalent to the equations

zk-(l-(fc//))7, = l-r , , -z'-(l-{k/imk/l)eV = l-r2, (A.6)

where r, =2(z- ' + z-fc
e) + (l -(k/l))z['k • e and r2 = ((//fc)+ l)(z~' +z~ke) +

((//fc) — l)z'~fc• e are asymptotically small.

These equations have at most one solution, and they have one if and only if

{{\-{k/l))-n)'-k/{-{k/l)e)k = (\-r{)
l/{\-r2)

k. (A.I)

This proves lemma 3.2(i).

We now investigate what happens if e remains close to a positive real value and
77^0. In this case the large roots of v(e, T/, •) are asymptotically given by the 1st
roots of l/({k2/l2)eri). Letting 77 (starting at a positive real value) run through a
small circle around 0 in the positive direction, the large roots turn over an angle
asymptotically equal to -2v/l. Homotoping y along, 3P{e, 77) has changed to (A.2)
with y replaced by a closed curve y which winds once around z_, once around a
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large root z+ which is approximately equal to e~2l"/lz+ and not around any of the
other roots or 0.

Repeating the procedure we end up with a branch of £P(e, 17) which is equal to
(A.2) as above but with z+ replaced by any of the large roots of ir(e, 77, •).

In particular, if we substitute -q = £' and let turn £ around the origin once, 9{e, rj)
has changed to 9{e, 77) = (A.2) with y replaced by the curve y which is equal to:

(i) From z_ —0 to z +0 along a small semicircle around z_ in the lower half
plane, in the positive direction.

(ii) The circle 8 around the origin, from z_ + 0 back to z_ + 0 in the negative
direction, with radius just big enough that all bounded roots of v(e, 17, •) are
enclosed. The integrand is single valued along S.

(iii) From z_ + 0 to z+ —0 along the real axis.
(iv) Once around z+ in the positive direction, so that the integrand has picked

up a minus sign.
(v) From z+ —0 to z_ + 0 along the real axis.
(vi) S in the positive direction.
(vii) From z_ + 0 to z_-0 along a small semi-circle around z_ in the upper half

plane, in the positive direction.
The integral over (i) + (iii) + (iv) + (v) + (vii) is equal to the integral over y, the one
over (ii) + (vi) is equal to —2 times the integral over 5. Therefore

# ( e , T)) = 9>{E, •n) + 2ml<j>(e, 77),

with

^i^[( j i^ j (A.8)

It follows that

( e , £)^<3>(e, £')-<f>(e, £ ) - l o g £ = i/»(0, f ) (A.9)
def

is single valued around £ = 0. Since a straight forward estimate yields that 9 is
bounded by a constant times log (1/|£|), the conclusion is that i/> is analytic at £ = 0.

Furthermore, putting 17 = 0 in (A.8) and using the substitution of variables z = \/y
one obtains that

ct>{e, 0) = -[l-{y' + yke)]%=0=-\. (A.10)

A similar calculation yields

9 * (0,0) = -l + l(k2/l2), (AM)
Be Bri

(A.12)

iffc=l,

which completes the proof of lemma 3.2(ii).
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If we approach a branch B of A = 0 then two large roots of 7r(e, T?, •) coalesce. The
previous description of the behaviour of the large roots as 77 runs around 0 shows
that 2P has an analytic continuation to an integral §> as in (A.2) with y replaced
by a closed curve y which winds around one of the two coalescing roots. Going
with (e, 77) around B means that these roots make a full turn around their common
midpoint. Homotoping y along we get a new curve y which is equal to y plus ±2
times a loop A around both roots. If the roots coalesce at z = p then the value of
the integral is equal to ±2m{-p'2~\{d2/'dz2)v(e, 7], p))~~2. This proves lemma 3.2(iii).

Added in proof. The theorem that HF is not formally integrable if )31>/32>0 has
been proved in a much more algebraic fashion by A. Stimemann in his Diplomarbeit
at the ETH Zurich, 1984. I also found the following mistakes in the present paper:
In (3.15), fc>l should be fc<l.
A more serious mistake is that the value for 82<p/de dr)(0,0) in (3.18) and (A.I 1) is

k2 k2

-l-i-p instead of - | + |-p-.

As a result the comparison of the coefficients c;, dt at the end of §3 becomes c2 = d2,
C/> dt for l>2. So the conclusions of theorem 3.1 remain valid for /3,>/32>O,

On the other hand, for /?i = 2/32, the function

satisfies {F<2), G} = 0 and {F(3), G} = 0, making the HFm+Fm-Row completely
integrable. Apparently I missed this case in my search for third integrals of order
6. In this case the complete integrability is not explained by an obvious symmetry.
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