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Abstract

If P is a partially ordered set and R is a commutative ring, then a certain differential graded /f-algebra
A,(P) is defined from the order relation on P. The algebra A.(Vi) corresponding to the empty poset is
always contained in A.(P) so that A,(P) can be regarded as an /4.(0)-algebra. The main result of this
paper shows that if R is an integral domain and P and P' are finite posets such that A.(P) = A.(P') as
differential graded /4,(0)-algebras, then P and P' are isomorphic.

1991 Mathematics subject classification (Amer. Math. Soc): primary 06A06.

1. Introduction

A common way to study partially ordered sets involves associating certain algebraic
objects with a poset and then trying to gain new insights by considering these associated
objects. For example, the concept of a Cohen-Macaulay poset arises naturally from
the study of Stanley-Reisner rings [1,3]. On the other hand, algebraic constructions
associated with partially ordered sets have also proven to have widespread applicability
within algebra itself, particularly in the area of representation theory [2].

The current work, which grew out of an interest in posets that arise in group
representation theory, is based upon this interplay between partially ordered sets and
algebra. If P is a partially ordered set and R is an integral domain, then we define a
graded ^-algebra A.{P). The definition involves forming a new poset f0 by adjoining
a minimum element 0 to the poset P. For any n > 0 the component An (P) of degree
n is the free /?-module on the symbols \x\ < • • • < xn] whenever x\ < • • • < xn is a
chain in Po. Using the order relation on Po, one can define a multiplication on A.(P),
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2 Jacqui Ramagge and Wayne W. Wheeler [2]

and it also has an ft-endomorphism of degree —1 that makes A.(P) into a differential
graded ^-algebra. The algebra A.(&) corresponding to the empty poset is necessarily
contained in A,(P) so that A,(P) is in fact an /4.(0)-algebra.

Now suppose that P and P' are finite posets and / . : A,(P) -*• A.(P') is an
isomorphism of differential graded /l.(0)-algebras. If/, maps the distinguished basis
of A.(P) to that of A.(P'), then the definition of the multiplication in A.(P) makes
it easy to see that P and P' are isomorphic. The main result of this paper shows that
this conclusion is valid even if / . does not preserve the distinguished basis. Thus one
can recover the poset P from the algebra A.(P) with no additional information.

Section 2 of the paper contains the definition of A.(P) and a proof that it is a
differential graded ,4.(0)-algebra.The proof that the algebra A.(P) determines the
poset P is given in Section 3. Finally, Section 4 gives a description of the graded
center in terms of certain annihilators in A.(P). Although we have chosen to assume
throughout the paper that the coefficient ring R is an integral domain, it should be
noted that this assumption is often not necessary. In particular, all of the results of
Section 2 hold over an arbitrary commutative ring.

2. The definition and basic properties of the algebra

If P is a partially ordered set and R is an integral domain, then we will define a
differential graded /?-algebra A.{P) from the poset P. The first step is to define a new
poset Po in which the points consist of the points in P, together with one additional
point called 0. The order < on Po is given by taking x < v in f0 if either x = 0 and
y e P or x, y e P and x < y in P.

For each n > 0 the component A,,(P) is defined to be the free R-module on the
symbols [JCI < x2 < • • • < *n\ whenever X\ < x2 < • • • < v,, is a strictly increasing
chain in Po. For convenience we will also use the symbol [v, < x2 < • • • < xn] even
when X\, x2,..., xn do not form a strictly increasing chain in Po, but in this case we
set [X] < x2 < • • • < xn] equal to 0 in A,,(P). Note that Aa(P) is a free /?-module of
rank one, generated by the symbol [ ].

Define a multiplication on the (non-zero) basis elements of A.(P) by setting

[ x ] < ••• < x m ] [ y x < ••• < y n ]

[ x { < ••• < x m < y i < ••• < y , , ] i f x m < y x

( - l ) m - ' [ 0 < * , < • • • < * „ _ , < > , < • • • < y n ]

+ ( - l ) m [ 0 < *, < • • • < x m < y2 < • • • < y,,] i f x m i t y l t

and extend this multiplication to all of A.(P) by linearity. In the proofs of the
following propositions it is important to bear in mind that the equation defining this
multiplication applies only to products of non-zero generators of A.(P).
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[3] Posets and differential graded algebras 3

PROPOSITION 2.1. Let P be a partially ordered set. Then A.{P) is a graded
associative algebra with 1.

PROOF. The identity element of A.{P) is given by [ ], and it is clear from the
definition of the product that Am(P)An(P) = Am+n(P). Thus it is only necessary to
show that A.(P) is associative.

Let a, b, c G A.(P) be homogeneous elements. We will prove that (ab)c = a(bc)
by induction on deg b. The equality clearly holds if deg a = 0, deg b = 0, or
deg c = 0, so assume that deg b = 1, deg a > 1, and deg c > 1. To prove that
(ab)c = a (be), it suffices to consider the case in which a, b, and c are non-zero
homogeneous generators. Suppose, then, that a = [xx < • • • < xm], b = [y{], and
c = [zi < • • • < Zp\. If A,,, < y, < Z|, then it is easy to see that (ab)c = a(bc), so
suppose that xm ft y\ but \i < z,. Then

( a b ) c = ([x\ < ••• < * m ] [ y , ] ) [ z , < • • • < zp]

= ( - l y - ' l O < x , < • • • < x m _ , < yAVz\ < • • • < z p ]

+ ( - l ) m [ 0 < x i < • • • < x m ] [ z i < • • • < z p ]

— ( - l ) " ' " ' [ 0 < X\ < ••• < x m _ , < yx < z \ < ••• < zp]

+ ( - l ) m [ 0 < x , < •-• < x m < z , < ••• < z p ]

= [ x , < • • • < x m ] [ y , < z , < • • • < zp]

z ])

= a(bc).

Similar computations show that (ab)c — a(bc) when xm < y, and y, ft zu and also
whenxm ^ y, and y, jt r,.

It follows that if a, &, and c are any homogeneous elements of A,(P) with deg b =
1, then (ab)c = a(bc). Assume by induction that n > 1 and that if a, b, and c are
homogeneous with deg b < n, then (ab)c = a(bc). Then

(a[yi < • • • < y,,+i])c = (a([y, < < yn][yn+x]))c

= ((a[y, < ••• <

= (a[yi < ••• <

= a([yx < ••• <

= a([yi < ••• < y n + ] ] c ) .

Hence (ab)c = a(/jc) whenever a, b, and c are homogeneous with deg b < n + 1,
and it follows that A.(P) is associative. This completes the proof.
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If 1 < / < n, then we write [JC, < • • • < i , < • • • < x,,] for [x\ < • • • < JC,_, <
xi+\ < • • • < xn]. Define a sequence of /?-linear maps d : An(P) -> An_1(/)) by
setting

n

d[x{ < • • • < xn] = ^ ( - l ) ' " ' [ x i < • • • < x,• < • • • < xn]

on all non-zero homogeneous generators [xx < • • • < xn]. It is easy to verify that
d2 = 0.

PROPOSITION 2.2. Let P be a partially ordered set, and suppose that a e Am(P)
andb e An(P). Then

d(ab) = (da)b + (-l)ma(db),

and (A.(P), d) is a differential graded R-algebra.

PROOF. We will prove that d(ab) = {da)b + {-\)ma{db) by induction on m. It is
clear that the equation holds if m = 0 or n = 0, so assume that m = 1 and n > 1.
To prove that the equation holds in this case, it suffices to consider the situation in
which a and b are non-zero homogeneous generators. Suppose, then, that a = [x\]
and b = [y\ < • • • < yn]. If x, < yu then

(da)b + (-l)ma(db)
n

= [ j i < • • • < y n ] - ^ ( - l ) ' - ' [ * i < y \ < ••• < % < ••• < y n ]
/=i

= d[Xi < yx < ••• < yn] = d{ab).

Now suppose that X\ ft j , . Then one can check that

(-l)ma(db)
n

= [ y \ < ••• < y n ] - ^ ( - l y ' U i H j i < ••• < h < ••• < y , , ]

/=i

= [yi < ••• < yn]- [xi][y2 < < yn]

i ) ' ~ ' [ 0 <y> < • • • < $ , < • • • < v J
i=2

+ ( - ! ) ' [ 0 < x, < y2 < • • • < y, < • • • < yn])
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= [ ? ! < • • • < y n ] + ^ ( - i ) ' t O < y i < < y , < ••• < y , , ]

< ••• < y , , ] + [ 0 < y 2 < • • • < y n ]

( - l ) ' [ 0 < x x < y 2 < ••• < y,- < ••• < y n ]

;=2

= d [ 0 < v , < • • • < y , , ] - d [ 0 < x { < y 2 < ••• < y n ]

= <*([*,][>-, < • • • < y,,]) = d(ab).

It now follows that if a and b are any homogeneous elements of A.{P) with
deg a = 1, then d(afo) = (da)£ — a(db). Assume by induction that m > 1 and that
if a and /> are homogeneous with deg a < m, then d{ab) = (da)b + (—\)Ati"a(db).
Then

• < ^+,1)6 + ( - D m + 1 U , < < xm+]]db

= [X2 < • • < * m + i ] 6 - U l ] ( r f [ ^ 2 < • • • < Xm + \])b

+ ( - l ) m + 1 [ x , < • • • <xm+l]db

= [x2 < ••• < xm+l]b

< xm+]])b + (-\)m[x2 < < xm+l]db)

< xm+i]b - [x\]d([x2 < < xm+l]b)

= d([xi <x2 < ••• < xm+l]b).

Hence d{ab) = (da)b + {—\)itgaa(db) whenever a and b are homogeneous with
deg a < m + 1, and it follows that A.(P) is a differential graded /?-algebra.

If P is any poset, then the algebra A.(0) corresponding to the empty poset is just
the subalgebra of A.(P) spanned by [ ] and [0]. Thus A.(P) is actually a differential
graded A.(0)-algebra. Unless otherwise specified, therefore, any homomorphism
g. : A.(P) —> A.(P') that we consider will be assumed to be a homomorphism of
differential graded A.(0)-algebras so that g.([0]) = [0]. For simplicity of notation
we generally write g.[x{ < ••• < xn] instead of g.d*, < • • • < xn]).

Let P and P' be partially ordered sets, and let f\ : A, (P) -> A, (/>') be an /?-linear
map given by

for some elements cvv € R. We want to explore the conditions under which fx extends
to a homomorphism/. : A.(P) —>• A. (Pr) of differential graded A. (0)-algebras. The
matrix C = (c,v) will be referred to as the matrix of fx.
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Let /o : A0(P) —> A0(P
f) be the unique /^-linear map satisfying /0[ ] = [ ], and

for n > 2 let /„ : An{P) —> An(P') be the unique ^-linear map defined on basis
elements of An(P) by

f , , [ y \ < ••• < yn] = f \ b \ ] • • • f\[y,,l

In this way we associate an/?-linear m a p / . : A,(P) —*• A.(P') to each /?-linearmap
»- AX{P').

LEMMA 2.3. Let P and P' be posets, and let / , : AX{P) -+ Ai(P') be an R-linear

map with matrix C = (cx>x). Then the R-linear map f. : A.(P) —*• A.(P') satisfies

df\ = fod if and only ifJ2x><,p;t
 c*'* = 1 for all x € Po.

PROOF. Let x e Po. Then df\[x] = d^,eP,cyx[x'] = E.>e/>,;c->[ ], and
fod[x] = M ] = [ ]. Hence dfx[x] = fod[x] if and only if l]r.e/.;cy.v = 1,
as desired.

LEMMA 2.4. Let P and P' be posets, and let / , : A, (P) - • A, (Pr) be an R-linear

map with matrix C = (c> r ) . Suppose that f\[0] = [0] and that dfx = fod. Then the
following conditions are equivalent:

(1) Ifx, yeP0 andx £ y, then [0]fi[x]fdy] = 0.
(2) If a, b e A.(P), then f.(ab) = f.(a)f.(b).
(3) Ifx •/: y in Po and 0 # x' < y' in P^, then cx.xcY.y = 0.

PROOF. Let x, y e Po with x -ft y. Then

[0]f[x]fdy] = [0] J2 C^x'] H c.v.v[y'] = J2 <V.v<Vy[0 < x' < y'].

and it follows that (1) and (3) are equivalent.
Now suppose that (2) holds. If x, y € Po and x -ft y, then

[0]f[x]f[y] = h([0][x][y]) = /3([0][0 < y] - [0][0 < x]) = 0.

Thus we see that (2) implies (1).
Finally, we show that (3) implies (2). To prove that f.(ab) = f.(a)f.(b) for all

a, b € A.(P), it suffices to consider the case in which a and b are homogeneous basis
elements. In fact, it is enough to prove that

fn+\{[x][yi < • • •<) ' „ ] ) = f\[x]fn[yi < • • • < yn]

https://doi.org/10.1017/S1446788700001257 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001257


[7] Posets and differential graded algebras 7

whenever x G Pg and yt < • • • < yn in PQ. The result is immediate if n = 0, so
assume that n > 1. If x < Vi,then

/ « + i ( [ • * ] [ v i < < % ] ) = f n + \ [ x <yi < ••• < y n ]

as desired. Thus we may assume that x •£. y\.

We now prove that if n > 1 and x jt yu then / n + ^ t ^ l t ^ , < ••• < yn]) =

fi[x]fn[yi < • • < yn]. First suppose that n = 1. Then (3) implies that

y'€/"0#.v'<y' V'6/"

> .Co,, [0 < or'] + X ! E c--cv .v, ([0 < / ] - [0 <

( . y . , X ! c*'*cy'y\~
v'e/" ^

( 5 Z v v C > v i ) t 0

Since d/| = /ocf, Lemma 2.3 implies that

v'e/"

(2.5) •v'e/'°

Now suppose that n > 2. Using (2.5) and (1), we see that

fdxVnbi < • • • < % ] = / , W / . t ^ i ] • • • My,]

= [0]/.[>,]•••/,[ytt] - [0]/,[jc]/1,[j2] • • • / , [yn]

= f n + \ [ 0 < yi < ••• < y n ] - f n + d 0 <x < y 2 < ••• < y n ]

= fn+\([x][yi < • • • < y n ] ) .

Thus (2) follows, and this completes the proof.
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PROPOSITION 2.6. Let P and P' be partially ordered sets, and let f : Ai(P) ->•
A\(P') be an R-linear map with matrix C = (cyv). Then f\ extends to a homomorph-
ism / . : A.(P) —> A.(P') of differential graded A.(0)-algebras if and only if the
following conditions are satisfied.

(1) cm= landcvo = Oforallx' e P'.
(2) T.reP.cs< = lforallxeP0.
(3) If x ft y in PQ andO ^ x' < y' in Po\ then cX'Xcy>y = 0.

PROOF. Note that f extends to a homomorphism / . of differential graded A.(0)-
algebras if and only if the following conditions are satisfied:

(1') / „ [ ] = [ ] and / , [0 ] = [0].
(2') dfB+] = fnd for all n>0.
(3') f.iab) = f.(a)f.(b) for all a, be A.(P).

Thus it suffices to show that conditions (1), (2), and (3) are equivalent to conditions (1'),
(2'), and (3'). We have defined f0 so that fo[ ] = [ ], and / , [0] = [0] precisely when
coo = 1 and c l 0 = 0 for all x' e P'. Thus (1) is equivalent to (1').

Suppose that (1'), (2'), and (3') hold. Then Lemma 2.3 implies that (2) holds, and
Lemma 2.4 implies that (3) holds.

Conversely, suppose that / , satisfies (1), (2), and (3). Then / . also satisfies (1'),
and Lemma 2.3 implies that df = fod. By Lemma 2.4 it follows that / . satisfies (3'),
so it only remains to show that dfn+\ = fnd for n > 1. If [vi < • • • < y,,+\] is any
basis element of An+i (P), then by induction it follows that

dfn+\[y\ < ••• < y n + l ]

= d(fn[y\ < ••• < % 1 / i b W i j )

= {fR-xd[yx < < %])/,[?„+,] + ( - i r / J y . < • • • < yn]fod[yn+i]

= fn{(d[yt < < yn])[y»+i] + (-l)"[yi <•••< yn]d[yH+i])

= f n d [ y x < ••• < y n + l ] .

This completes the proof.

COROLLARY 2.7. Let f : P ->• P' be a map ofposets. Then the following condi-
tions are equivalent.

(1) There is a homomorphism f. : A.(P) —> A.(P') of differential graded A.(0)-
algebrassatisfying f\[x] = [f(x)]for allx e P.
(2) There is a homomorphism f. : A.(P) ->• A.(P') of differential graded /4.(0)-

algebras such that /„ satisfies

Mx\ < ••• <xn] = [f(xi) < < / (*„)] for all n > 1.
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[9] Posets and differential graded algebras 9

(3) If f(x) < fiy),thenx < yforallx,y e P.

PROOF. First suppose that (1) holds. We will prove by induction on n that /„ is
given by

/ „ [ * , < ••• < x n ] = [fixi) < ••• < f i x n ) ]

for all n > 1. This equation is true for n = 1 by assumption. Let [x\ < • • • < xn+]]
be a non-zero homogeneous generator. Because xn < xn+i and / is a map of posets,
it follows that /(*„) < f(xn+l). Thus

even if fix,,) = fixn+]). Hence

fn + l[xl < • • • < Xn + l] = f,, + \{[X\ < < Xn][xn + ]])

= fn[x\ < ••• < * n ] / i [* n + i ]

l ) < " •</(*»)][/(*»+!)]
•••</(*„+!)].

and (2) follows.
It is trivial that (2) implies (1), so assume that (1) holds. If x e P, then the

matrix C = (tvv) of /, satisfies cA.v = 1 if x' = fix) and c,., = 0 if x' ^ fix).
Proposition 2.6 shows that if x •£. y in Po and 0 ^ x' < y' in F,J, then c,'.vcyv = 0. But
if x, y e P are elements such that fix) < / (y) , then cfix) ,.,C/(v),v = 1, so it follows
that x < v. Hence (1) implies (3).

Finally, suppose that (3) holds. Extend / to a map / : Pb —> FQ by defining
/(0) = 0, and let /, : /\,(P) ^ ^,( /") be the tf-linear map satisfying /,[x] =
[fix)] for all x e Po. Then all of the conditions of Proposition 2.6 are satisfied, and
it follows that /, extends to a homomorphism / . : A.iP) -> A.iP') of differential
graded A.(0)-algebras, as desired.

Finally, we end this section with the following simple but useful observation.

PROPOSITION 2.8. / / P is a poset, then A.iP) is contractible. In fact, if s. :
A.iP) —> A.iP) is the map of degree one satisfying s.ix) = [0]x for every homo-
geneous element x e A.iP), then s. is a contracting homotopy.

PROOF. Let x e A.iP) be homogeneous. Because d is a derivation, it follows that
ds.ix) + s.dix) = d([0]x) + [0](dx) = x, as desired.
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3. Isomorphic algebras

In this section our goal is to show that if P and P' are finite posets such that
A.(P) ~ A.(P') as differential graded 4.(0)-algebras, then P = /" . While this fact
is obvious if there is an isomorphism from A.{P) to A.(P') that maps each basis
element [x\ < • • • < xn] of A.(P) to a basis element of A.(P'), not all isomorphisms
arise in this way. Nevertheless, it is easy to see that certain invariants associated
with the posets are the same. For example, the rank of A\ (P) is just the cardinality
\P0\ = \p\ + 1, so it follows that |PI = \P'\.

Another invariant that can easily be recovered from the algebra A.(P) is the height
of the poset. Recall that an element x e P is said to have height h P (x) = n if n is the
largest number such that there is a chain X\ < • • • < * „ = .v in P. The height h(P)
of the poset P is defined to be the supremum of the heights of its elements. If P is
finite with h(P) = n, then h(P0) = n + \ so that An+](P) ^ 0 but Am(P) = 0 for all
m > n+l. Thmh(P) = h(P') if P and P' are finite posets such that A. (P) = A.(P').
A connection between A.(P) and the heights of individual elements in P is given by
the following lemma.

LEMMA 3.1. Let P be a poset, and let x G P. If there is an element a e An_] (P)
such that [0]a[x] ^ 0, then hP(x) > n.

PROOF. It suffices to consider the case in which n > 2. Suppose that a e An_x (P)
is an element such that [0M*] ^ 0. Then there is a basis element [y{ < • • • < yn_t] e
/l,,_i(P) such that [0]|ji < • • • < %_i][x] ^ 0, so the product [yt < ••• < yn-t][x]
does not lie in the ideal [0]A.(P) generated by [0]. Hence vi ^ 0 and _y,,_i < x so
that y\ < • • • < %_i < x is a chain in P. Thus hP(x) > n, as desired.

PROPOSITION 3.2. Suppose that P and P' are finite posets and f. : A.(P) -+
A.(P') is an isomorphism such that C = (cv.v) is the matrix of f. Let H c P and
H' c P' be the subposets consisting of all elements that are not of maximum height,
and let x' e P'. Then x' e H' if and only ifcxx ^ Ofor some x € H.

PROOF. Suppose thatx' e P' is an element such that c, v = Oforallx e H. Because
/ . is an isomorphism, there are distinct elements mx, ... ,ms e P — H and b\,..., bs e
R — {0} such that [x1] = blf[m]] + • • • + bsf[ms]. Let 0 < x\ < • • • < xn~\ < m,
be a chain of maximum length in Po, and set a = b\[m\] + • • • + bs[ms] e A\(P).
Then [0 < x, < • • • < xn-\]a y= 0, so

0 ± /f l+1([0 < x, < < xn^]a)

It follows by Lemma 3.1 that

hp(x') >n = hP{mx) = h(P) = h(P').
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Hence x' £ H', as desired.
Conversely, suppose that x' e P' — H' and x e P are elements such that cx>x ^ 0.

Let 0 < x\ < • • • < .v,',_, < x' be a chain of maximum length in PQ, and let
b e An_,(P) be the element with fn-\{b) = [x\ < • • • < JC^_,]. Then

u-]) = [o < *; < < *;_,] J ]

is non-zero because c v v [0 < jtj < • • • < x'n_i < x'] ^ 0. Hence [0]b[*] ^ 0, and

Lemma 3.1 implies that

hP{x) >n = hP(x') = h(P') = h(P).

Thus x £ H, and this completes the proof.

COROLLARY 3.3. Suppose that P and P'are finite posets and f. : A.(P) - • A.(P')
is an isomorphism. Let H c P and H' c P' be the subposets consisting of all
elements that are not of maximum height. Then f, restricts to an isomorphism
h. : A.(H) - • A.(H').

PROPOSITION 3.4. Let P and P' be finite posets, and let f. : A.(P) -> A.(P') be
an isomorphism such that C = (c l v) is the matrix of f\. If x € P and x' e P' are
elements with cvv ^ 0, then hP(x') < h?(x).

PROOF. The proof proceeds by induction on h(P). The result is obvious if h{P) =
1, so assume that h(P) > 1. Let H c P and H' c P' be the subposets consisting
of all elements that are not of maximum height. Corollary 3.3 implies that if x e H
and .v' e P' are elements such that cxx ^ 0, then x' e H'. Then hH\x') < hH(x) by
induction, and the result follows in this case. On the other hand, if x e P — H, then

= h{P')>hP.{x')

for all x' e P', as desired.

DEFINITION 3.5. Let P be a finite poset, and let a e AX(P). Writea = ^xePoax[x].
The set supp a = [x € P \ ax ^ 0} will be called the support of a in P.

Let P' be another poset, and let / . : A.{P) —> A.(P') be an /4.(0)-isomorphism.
Two elements x e P and x' e P' will be called mutually f.-supportive (or simply
mutually supportive when / . is understood) provided that x' € supp /] [x] and x e
supp / , ~ V ] .
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Note that the support of an element a e A, (P) is defined to be a subset of P, not
of Po; we do not consider 0 to lie in the support of a even if a0 ^ 0.

It will be important to observe that if / . : A.(P) —> A.(P') is an isomorphism
and x € P, then there is always an element x' e P' such that x and x' are mutually
supportive. Indeed, suppose that C is the matrix of fx and D is the matrix of /f'.
Then 1 = 5^v.errfr,'Cy.v, and there is an element x' e P^ such that dXX'Cx-x ̂  0.
Because / i is an isomorphism with /i[0] = [0], it is easy to see that x' =̂  0. Then
x e P and x' e P' are mutually supportive. Moreover, any two mutually supportive
elements must have the same height by Proposition 3.4.

If P is a finite partially ordered set, then it will sometimes be useful to consider
total orders on Po in addition to the original partial order. For convenience we will
generally specify a total ordering on Po simply by listing all of the elements x0, ..., xn

of Po in increasing order. The symbol < will still be reserved for the partial order on

DEFINITION 3.6. Let P be a partially ordered set with | P | = n, and write PQ =

{x0, XX, ..., x,,}. We will say that JCO.*I> . . . , * „ is a tall order on Po if; < j whenever

hPa{Xi) < hPo(Xj).

Suppose that x0, X\,..., xn is a tall order on Po, and suppose that x, < x, for some
i and j . Then hP{)(Xi) < hP(l(Xj), so / < j . Thus the total ordering on Po specified by
xo,Xi,..., xn is compatible with the original partial ordering. In particular, x0 = 0.

Now suppose that P and P' are finite partially ordered sets, and let / . : A.(P) —»•
A.(P') be an /4.(0)-isomorphism. Suppose that x0, v,, is a tall order on Po

and x'o,..., x'n is a tall order on PQ. If C is the matrix of / i , then for simplicity
write Cjj for cy.r. For any integer m with 1 < m < n let P{m) be the subposet
of P given by P(m) = [xu ... ,xm], and let P'(m) be the subposet of P' given by
P'(m) = {* ; , . . . ,* ;} . Let f[m) : Ax(P(m)) -»• A,(P'{m)) be the /Minear map
satisfying

for 0 < i < m. Then Proposition 2.6 shows that /,'"" extends to a homomorphism
/.(m) : A.(P(m)) -+ A.(P'(m)) of differential graded A.(0)-algebras. We will say
that the orderings x0,..., xn of Po and x'o, ..., x'n of /*„' are /.-compatible if /.(m) is an
isomorphism such that xm and x'm are mutually /.<m>-supportive for 1 < m < n. Note
that this condition implies that x'm e supp / , [xm] for all m.

PROPOSITION 3.7. Assume that R is afield. Let P and P' be finite posets of height
one, and let / . : A.(P) —> A.(P') be an A.(0)-isomorphism. Let 0 = x0, X\, . . . , xn

be any ordering of Po. Then there exists an /.-compatible ordering x'o,..., x'n of PQ.
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PROOF. The proof proceeds by induction on n — \P\. tfn = l,then P = {x,}. Let
jfo = 0, and let x\ be the unique element of P'. Because X\ and x[ must be mutually
/.-supportive, the orderings x0, X\ and x'o, x[ are /.-compatible.

Now suppose that n > 1. Let x = x,, e P, and let x' e P' be an element such
that x and x' are mutually /.-supportive. Let C be the matrix of / , , and let D be the
matrix of / ," ' so that cv ( ^ 0 and dxx. / 0. Set Q = P - {x} and Q' = P' - \x'},
and let g\ : A,(Q) —> A\(Q') be the /?-linear map satisfying

J?. \y] = (co, + <

for all >• e (2o- By Proposition 2.6 the map g, extends to an A.(0)-homomorphism
g. '• A,(Q) —> /4.(£?')> and we will show that g, is an isomorphism.

Let B be the matrix of g[, and let Bo be the submatrix obtained by deleting the row
and column corresponding to the basis element [0]. Because g\[0] = [0], expanding
by minors along the column corresponding to [0] shows that det B = det Bo. But Bo

is also the submatrix of C obtained by deleting the rows corresponding to [0] and [x']
and the columns corresponding to [0] and [x]. Because D = C~' and /i[0] = [0], it
follows that dXX' = det B(l/ det C. But dXX' / 0, so det B = det Bo ^ 0. Hence g. is
an isomorphism.

It now follows by induction that there exists an ordering x'o,..., x'n_x of Q'o that is
g.-compatible with the ordering x0, . . . , xn_i of Qo. Setx,', = x'. Because g. = /.<"~l),
the orderings x0,..., xn of Po and x'Q,..., x'n of Fo' are /.-compatible. This completes
the proof.

The next result is essentially a convenient restatement of Proposition 2.6(3).

LEMMA 3.8. Suppose that P and P' are finite posets and f. : A.(P) - • A.(P')
is an A.($)-isomorphism. Let x,y € P and x',y' € P' be elements such that
x' € supp /i [x] and y' e supp / t [y]. If x' < y', then x < y.

PROOF. Let C be the matrix of / , . Then cx,x / 0 and cv-v / 0, so cX'Xcv-v ^ 0. If
x' < y', then Proposition 2.6(3) implies that x < y.

Suppose that P is a poset, S is a subset of P, and y e P. We will write S < y
if x < y for all x e S. Recall that f<v denotes the subposet of P consisting of all
elements x such that x < y. Thus S < y if and only if S c P<Y.

LEMMA 3.9. Assume that P and P' are finite posets and / . : A.(P) ->• A.(P') is
an isomorphism. Let H c P and H' c P' be the subposets consisting of all elements
that are not of maximum height, and let h. : A.(H) —>• A.(H') be the isomorphism
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obtained by restricting f. to A,(H). Suppose that there exist isomorphisms ofposets
\jt : H -*• H' and \j/' : H' —> H and tall orders x0, •.., xm on Ho and x'o,..., x'm on
HQ such that x0, ... ,xm is h.-compatible with 0, V^C-̂ i). • • •. ty(Xm) and x'o,..., x'm is
h~l -compatible with 0, ir'{x\),..., f'(x'm). If S C H, let e(S) denote the number of
y e P-H suchthatS = P<y;ifS' c H', let e\S') denote the number of y' e P'-H'
such that S' = P'<y,. Thene(S) = e'(f(S))forallS c H.ande'(S') = e{ir'{S'))for
all S' C / / ' .

PROOF. If S c / / , let g(S) denote the number of elements y e P - / / such that
S < .y; define ^'(5") similarly for any S' c / / ' .

Fix X c / / , and suppose that there is an element y' e P' — H' such that \j/(S) <
y'. Let y be an element of P such that / e supp / , [>] . Then y e P — H by
Proposition 3.4. Let x be an element of 5, and let / be the index such that x = xh

Then *,• and i/f(x,) are mutually /^''-supportive, and the definition of h^ shows that
ifr(Xj) € supp f\[Xj]. But if{x,) < y', so Lemma 3.8 implies that x = x, < y
and hence S < y. Because this holds for every _y such that y' e supp f\[y], the
element a e A] (P) such that / , (a) = [ / ] is an /?-linear combination of an element
of A{{H) and elements [y] such that S < y. It follows that g(S) > g'(f(S)) for all
5 c / / . Similarly, g'(S') > g(ir'(S')) for all S' c / / ' . In particular, if S C / / , then
g(S) > g'WiS)) > g{f\j/(S)). By induction it follows that

g(S) > g'W(S)) > gWir)'(S))

for all / > 1. But ty'ty : H -> H is a bijection, so it permutes the subsets of / / . Thus
there is an integer; > 1 such that (\lr'jJr)'(S) = S for all S c / / , andg(5) = g'(Vf(5'))
for all 5 c H.

We now use induction on \H — S\ to show that e(S) = e'(\j/(S)) for all S c / / . If
| / / - 5| = 0, then 5 = / / and ^ ( 5 ) = / / ' . But «>(//) = j?(//) = g'(// ') = e'(// '),
so the result holds in this case.

Now assume that S C H and | / / — 5| > 0. Let Si, . . . . S, be all of the distinct
subsets of H that contain S properly. Then \j/(Si),..., \jr{S,) are all of the distinct
subsets of H' that contain V'C^) properly. By induction it follows that

for al l / , so

1=1 /=i

Similarly, e'(S') = e(\l/'(S')) for all S' c / / ' , and this completes the proof.

THEOREM 3.10. Assume that R is afield. Let P and P' be finite posets, and let
f, : A.(P) -> A.(P') be an isomorphism. Then there exist isomorphisms ofposets

https://doi.org/10.1017/S1446788700001257 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001257


[15] Posets and differential graded algebras 15

0 : P -*• P' and 0 ' : P' —> P and tall orders x0, • • • ,xn on Po and x 0 , . . . , x'n on

Pg such that x0, . . . , xn is /.-compatible with 0, 0 ( x , ) , . . . , 0 ( x n ) and x'o,..., x'n is

/~x-compatible with 0, <p'(x\),..., <j>'(x'n).

PROOF. The proof proceeds by induction on h(P). First suppose that h(P) = 1.
By Proposition 3.7 there are /.-compatible orderings x 0 , . . . , xn of Po and y'o,..., y'n
of PQ. Define 0 : P -* P ' by setting 0(x,) = y. for 1 < i < n. Then 0 is an
isomorphism of posets having the desired properties. The same argument applied to
/."' gives the isomorphism 0' : P ' —> P .

Now suppose that h(P) > 1. Let H c P and H' c P ' be the subposets consisting
of all elements that are not of maximum height. Then/z(//) = h{P) — \, and /.restricts
to an isomorphism /z. : A.(H) —>• A.(H'). By induction there are isomorphisms of
posets ^ : / / -> / / 'and ^ ' : H' ->• / / and tall orders x 0 , . . . ,xm o n / / 0 a n d x 0 , . . . , x'm
on //Q such that X0, . . . , xm is A. -compatible with 0, ijr(x\),..., ir(xm) a n d x 0 , . . . ,x'm
is h~] -compatible with 0, f'(x[),..., f'(x'm).

Write the power set <?>(H) of H as £?(H) = { S t , . . . , S2«.}, where the subsets
5 , , . . . , 52» are indexed so that |S, | < • • • < |S2».|. For 1 < / < 2m set

Then P - / / is the disjoint union of T , , . . . , T2°,, and P ' - / / ' is the disjoint union of
71,',..., 72'm. Moreover, |7}| = |7;.'| for all / by Lemma 3.9.

Choose an ordering xm+\,... ,xn on P — H such that if x5 e 7}, x, e 77, and
/ < j , then s < t. Similarly, choose an ordering y'm+l, • • •, y'n on P ' — / / ' such that
if )>j G Tj', y't e 7 '̂, and / < j , then 5 < t. Let C denote the matrix of fu and
assume that C is written with respect to the ordered bases [ x 0 ] , . . . , [xn] of A{(P) and
[0], [^(*i)], • • •. [^(xm)], [y'm+i], • • •, [y'n] of A ^ P ' ) . Then C is a block upper trian-
gular matrix: the first diagonal block C\ has columns indexed by [x0], . . . , [xm] and
rows indexed by [0], [\jf(X])], . . . , [rlr(xm)]; the other diagonal block C2 has columns
indexed by [ x m + ] ] , . . . , [xn] and rows indexed by [ ) ^ + 1 ] , . . . , [y'n]. In particular,
detC = (detC,)(detC2).

Suppose that y' e T- and y e Tj are elements with cv> ^ 0. If x e S,, then
i/f (x) < y'. Because x0, ... ,xm is ^.-compatible with 0, if{xx),..., if(xm), it follows
that rj/(x) e supp h\[x] = supp / i[x] and hence x < y by Lemma 3.8. Then S, < y
so that Si c P<v = 5y. Hence / < ; , and the submatrix C2 is itself block upper
triangular: the z'th diagonal block of C2 has columns indexed by elements in 7) and
rows indexed by elements in 7)'.

Let x € PQ and x' e P' . If x e //0, set cx,x = cx-x; if x e 7̂  and x' e 7].', set
cX'X = c, ,; and if x e T: and x' e P ' — 7)', set cx>x = 0. Finally, set

Cn, = 1 —
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for all x e P$. By Proposition 2.6 the matrix C = (c v v ) determines a homomorphism

/ . : A.(P) —> A.(P'). Because C is a block upper triangular matrix with the same

diagonal blocks as C, it follows that det C = det C / 0. Thus / . is an isomorphism.

Moreover, / . restricts to an isomorphism / . : A.(T,) —>• A,(T-) for all /. Let

0 = ti0, t(\,..., tim< be the ordering on (7]-)o obtained by regarding 7} as a subset of the

ordered set P — H = { x m + 1 , . . . , x,,}. By Proposition 3.7 there is an / .-compatible

ordering t'i0,..., t\nh of {T{\. Then the function V, : T, ->• T/ given by V, ('/./) = t'u
for 1 < ;' < w, is a bijection.

Because P — H is the disjoint union of T|, . . . , r2™, it is possible to define a function

(f> : /» ->• / " b y setting

if JC € H

if jr € 7]-,

and it is clear that (p is a bijection. Suppose that .v < _y in P. If x, y e H, then

</>(*) < (j)(y) because i/f is an isomorphism of posets. If x and y are not both in H,

then A- e S, and y € 7} for some /. Then </>()0 = iff/iy) e 7"/, so ^(5,-) < <j>(y). But

(/>(x) = ir(x) e i/r (S,), so 0(A") < </>(j). Hence 0 is an isomorphism of posets.

Finally, the ordering x0, . . . ,xm of Ho is /z.-compatible with 0, </>(A'I), . . . . </>(Am),

and for each / the orderings ti0, ..., tinh of (7;)0 and 0, <p(tn)...., </>(/,„,,) of (7].')0 are

/ . -compat ible . It follows that the ordering xQ,..., x,, of Fo is / . -compatible with the

ordering 0, (p(x\),..., (j>(xn) of f0'.

The same argument shows that there exist an isomorphism of posets <p' : P' -> P

and a tall order x'o, . . . , *,', on FQ that is / . " ' -compatible with the ordering 0, <f>' {x\)....,

0'(*,',)> and this completes the proof.

COROLLARY 3.11. / / P and P' are finite partially ordered sets such that A.(P) =

A.(P'), then P = P'.

PROOF. By working over the quotient field of R, we may assume that R is itself a

field. Then the result follows immediately from Theorem 3.10.

4. Annihilators and the graded center

The purpose of this section is to give a description of the graded center of A.(P)

in terms of the elements that annihilate all homogeneous elements of positive degree

in A.(P). Recall that the graded center Z.(P) is defined to be the /?-submodule

generated by all homogeneous elements z e A.{P) such that az = ( - l)(deg aMt% z)za
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for all homogeneous elements a € A,(P). Note that if z € Zm(P) and a e An{P) are
any two homogeneous elements, then

z) = d(az)

= {-\)m"d(za)

= (-\)mn{dz)a + {-\)m{"-X)z(da)

= (-\)m"(dz)a

Hence a(dz) = ( -1 )<'"-""(dz)a, and it follows that dz 6 Zm_,(F). Thus Z.(P) is a
differential graded A.(0)-subalgebra of A,{P).

If S is any subset of A,(P), then Ann S will denote the ideal consisting of all
two-sided annihilators of S; in other words,

Ann S = [x e A.(P) \ xs = sx = 0 for all s e S}.

Let A+(P) denote the ideal of A.(P) generated by all homogeneous elements of pos-
itive degree. Then the annihilator Ann A+(P) = Ann A] (P) is a homogeneous ideal
of A,(P). Let I.(P) denote the differential graded ideal generated by Ann A+(P).
The first result of this section gives an explicit description of Ann A+(P).

PROPOSITION 4.1. Let P be a finite non-empty poset. Then Ann A+(P) is the span
of all elements of the form [0 < m < • • • < M], where m is minimal and M is
maximal in P. In particular, if P contains no connected components of height one,
thenh(P) = 0.

PROOF. If m is minimal and M is maximal in f, then the definition of the mul-
tiplication in A.(P) shows that [0 < m < • • • < M] e Ann A+(P). Conversely,
suppose that x = X^=i c, [xOi < • • • < xni] is a homogeneous element of Ann A+(P)
with c,• ^ 0 for 1 < / < s. Because [0]x = 0, it follows that xOi = 0 for all /. If
n = 0, then it is easy to see that P is empty, so we may assume that n > 0. Let m be
a minimal element of P. Then

s

0 = [m]x = — 2_]c,[0 < m < xh < • • • < xni],

and it follows that m ft v1( for all i. Because this relation holds for every minimal
element m of P, we conclude that xXi is minimal for all /. Similarly, if M is a maximal
element of P, then the fact that 0 = x[M] implies that xni is maximal for all /. This
proves the first statement, and the second follows easily.

PROPOSITION 4.2. Let P be a finite non-empty poset. If a and b are homogeneous
elements of I.(P), then ab = 0.
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PROOF. Becausea,6 € I.(P), it is possible to write a = a' +da" andb = b' + db"
for some homogeneous elements a', a", b', b" e Ann A+(P) c A+(P). Then

ab = (a' + da")(b' + db") = (da")(db") = d(a"(db")) = 0,

as desired.

PROPOSITION 4.3. Let P be a finite poset. Then Z.(P) is the differential graded
A.(@)-algebra generated by Ann A+(P). Moreover, if P is non-empty, then Z.(P) =
A.(0) © I.(P) as graded R-modules.

PROOF. We begin by showing that Z.(P) = A.(0) + /.(F). It is clear that A.(0) +
I.(P) ^ Z. (f) , and we will prove that Zn(P) = An(0) + /n(P) for all n by downward
induction on n. If N is the largest degree such that AN(P) ^ 0, then certainly
Zn(P) = A«(0) + /n(P) = Oforalln > N,andZN(P) = As(P) = AN(0) + IN(P).

Now suppose that 1 < n < N and that Zn+i(P) = A,,+,(0) + 1,,+dP). Let
x € Zn(P)- Then x = [0](dx) + d([0]x), and by induction [0]x e Zn+](P) =
An+,(0) + In+i(P) = In+i(P)- Hence d([0]x) e In(P), and it suffices to show that
[0](dx) € An(0) + In(P). Ifn = 1, then [0](dx) is a multiple of [0], so it lies in A, (0).
Thus we may assume that 2 < n < N. Write dx = Y^=\ c'rlx'u < • • • < -^n-i.;]. and
let j e 4 Then

s

— ] / — 1

= (dx)[0][y] = [0][y](dx)

If any term in this last sum is non-zero, then it follows that cy[0 < y < xXj <
• • • < xn-\j] ^ 0 for some j with 1 < j < s. But such a term cannot occur
in the sum £],(—1)"~'c,[0 < jtw < ••• < jfn_K/ < j ] because « > 2. Thus
[y][O](rfjc) = (-l)"[0](rf*)[y] = -[0][y](dx) = 0, and it follows that [0](dx) e
An(P) n Ann A^P) c /„(/>). Hence Z^P) = An(0) + ln(P) for all n > 1. But
Z0(P) = A0(F) = Ao(0) + /0(F), so Z.{P) = A.(0) + /.(Z3), as desired.

To show that the sum A.(0) + /.(/*) is direct when P is non-empty, it suffices to
show that I0(P) = 0 and R[0] D IX(P) = 0. Both of these facts follow easily from
Proposition 4.1.

If P is a finite non-empty poset, let P* denote the dual of P. By Proposition 4.1
there is an /?-linear map / . : Ann A+(P) —> Ann A+{P*) satisfying

/ J O < m < • • • < M] = [0 < M < • • • < m],
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and / . extends uniquely to an isomorphism of differential graded /4.(0)-algebras

/ . : Z.(P) —> Z.(P*) by Proposition 4.3. Thus we obtain the following result.

COROLLARY 4.4. If P is a finite poset, then Z.(P) = Z.(P*).

It often happens, however, that two posets P and Q satisfy Z.(P) = Z.{Q) even

when Q ^ P and Q ^ P*. Such an example is given by the following posets P

and Q:

b2 bj b4 vx v2

Indeed, Ann A+(P) is given by the span of {[0 < a < b,] | 1 < / < 4}, whereas

Ann A+(Q) is given by the span of {[0 < M, < vj] | 1 < /, j < 2}. If / is

any bijection between these sets, then it is easy to see that / extends uniquely to a

differential graded / l . (0)-isomorphism between Z.(P) and Z.(Q).
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