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We revisit the well-known chemostat model, considering that bacteria can be attached together

in aggregates or flocs. We distinguish explicitly free and attached compartments in the model

and give sufficient conditions for coexistence of these two forms. We then study the case

of fast attachment and detachment and show how it is related to density-dependent growth

functions. Finally, we give some insights concerning the cases of multi-specific flocs and

different removal rates.
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1 Introduction

Attachment and detachment phenomena of bacteria, whether in biofilms on a support

[5,16] or in the form of aggregates or flocs [26] are well-known and frequently observed in

bacterial growth. Nevertheless, it is only relatively recently that they have been explicitly

taken into account in chemostat-based mathematical models. The Freter model [10, 17],

proposed in the 1980s as a functional model of the intestine bacterial ecosystem, is one

of the very first to explicitly distinguish planktonic biomass from attached biomass. This

model considers specific attachment and detachment terms and has been mathematically

studied in a spatialized form by introducing advection and diffusion terms [1]. Several

works in the biomathematical literature consider extensions to the chemostat model

spatialized with (fixed) attachment on a wall by [2,17,24]. In general, flocculation models

describe the dynamics of the distribution of flocs sizes [26] and their influence on growth

dynamics [11], but comparatively there are relatively a few studies of simplified models

that only distinguish two biomass compartments: planktonic and attached. In [12], it is

shown for such models that total biomass growth follows a density-dependent distribution,

under the assumption that attachment and detachment velocities are large compared to

biological terms. This is in accordance with the experimental observations that have

showed that the kinetics of processes with attached biomass are better represented by

ratio-dependent [13] expressions.

The purpose of the present work is to generalize the existing results concerning these

simplified models.

The majority of models of the literature consider explicit attachment and detachment

term expressions. We adopt here a more general presentation that does not particularize
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Figure 1. Isolated individuals may aggregate to form a floc, or else attach to an already formed

aggregate.

the specific attachment and detachment kinetics terms and thus namely includes existing

models [17, 22, 25]. In every case, the assumptions about faster growth and higher plank-

tonic bacteria removal rates are justified by experimental observations [15]. This allows

us to consider reduced models considering the total biomass instead of planktonic and

attached ones, which provides extensions of the well-know chemostat model with unusual

characteristics.

It should be observed that attachment and detachment velocities can be of a very vari-

able order of magnitude, according to procedures and operating conditions [3], justifying

the fact of considering reduced models or not.

2 A general formulation

Under certain growth conditions and in some environments, microbial species may present

aggregates of microorganisms or flocs of various sizes (see Figure 1). Microorganisms can

also attach themselves to the walls of tanks, pipes, reactors, etc. (or more generally

of any chemostat-based device), and thus create biofilms with varied thicknesses. Over

time, microorganisms, parts of flocs or of biofilms, detach and are released in the liquid

medium as isolated individuals or small-sized aggregates (see Figure 2). These bacterial

assemblages (which can be observed under the microscope) affect the performance of

chemostats at the macroscopic level, namely regarding:

• the growth of biomass: bacterial individuals have differentiated access to biotic resource

(substrate) depending on their position inside or on the periphery of assemblies. In

addition, microorganism secretions of polymers that enable the attachment are generally

achieved to the detriment of their growth.

• the disappearance of biomass: flocs and biofilms are most often less likely to be dragged

away by the chemostat outflow, comparatively to isolated individuals.

The appearance and evolution mechanisms of these assemblies, which at the same time

relate to biology, mechanics and hydrodynamics, are complex, partially understood and

difficult to be modelled at a microscopic scale. Our objective is to study how the conven-

tional model of the chemostat can be enriched with considerations reflecting the effects

of biomass attachment and detachment at the macroscopic level (in other words, without

representing all the refinements that a description would bring at the microscopic level).

We consider that the total biomass of a given species is decomposed into ‘planktonic’

(or ‘free’) biomass made up of non-attached microorganisms (or at least that behave as

such; which may still be the case of small assemblies) and ‘aggregate’ biomass (without
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Figure 2. Individuals can detach from an aggregate. An aggregate can be split into smaller

aggregates.

accurately taking account of the shape and of the size of assemblies). Thus, we write the

concentration x of the total biomass as the sum of concentrations u and v of planktonic

and aggregate biomass, respectively:

x = u + v . (2.1)

This distinction allows us to take into account different growth and death characteristics

according to whether microorganisms are attached or not. We thus denote, respectively, by

μu(·), Du and μv(·), Dv the specific growth and removal rates of planktonic and aggregate

compartments. Du and Dv are positive numbers and μu(·), μv(·) are smooth functions that

verify μu(0) = μv(0) = 0 and positive away from zero. On the other hand, we denote

the specific velocities of attachment of planktonic biomass by α(·) and by β(·) the ones

of detachment of the attached biomass. As a result, we obtain the following chemostat

model, where s denotes the substrate concentration:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= D(Sin − s) − μu(s)u− μv(s)v

du

dt
= μu(s)u− Duu− α(u, v)u + β(v)v

dv

dt
= μv(s)v − Dvv + α(u, v)u− β(v)v.

(2.2)

The positive parameters D and Sin denote the dilution rate and input concentration of the

substrate. As usual in chemostat models, we take unit yield coefficients without loss of

generality. The simplicity of this representation, which does not account for the richness

of forms and possible sizes of aggregates, should be regarded as the considering of an

average microorganism behaviour within aggregates or biofilms, which differs from that

of isolated microorganisms. Since it is difficult to obtain or to justify precise expressions of

the attachment and detachment terms for this type of model, our purpose is to understand

and qualitatively predict the possible effects of these terms on the dynamics of the system

(to this end, we will merely consider simple expressions as possible representatives). It

should be noted that the attachment and detachment terms depend on the operating

conditions (in particular the flow rate), that we consider here to be fixed.

We first show that the solutions of system (2.2) stay non-negative and bounded, as in

the classical chemostat model.
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Lemma 1 The non-negative orthant �3
+ is forwardly invariant by the dynamics (2.2) and

any solution in this domain is bounded.

Proof At s = 0, one has ṡ = DSin > 0. Therefore, s stays positive. One has d
dt

(u + v) �
(μv(s)−Du)(u+ v), which shows that x = u+ v stay positive. At u = 0, resp. v = 0, one has
d
dt
u � β(·)x � 0, resp. d

dt
v � α(·)x � 0. Therefore, the variables u and v stay non-negative.

Finally, on has d
dt

(s+ u+ v) � DSin−Dv(s+ u+ v), which shows that the quantity s+ u+ v

is bounded, and a consequence, s, u and v also. �

Hereafter, we consider the following assumptions, which reflect the considerations

discussed in Section 1:

Assumptions 2.1 The kinetics functions μu(·), μv(·), α(·), β(·) and parameters D, Du, Dv fulfill

the following properties.

(i) The specific growth kinetics μu(·) and μv(·) are smooth increasing functions, null at zero,

that verify:

μu(s) > μv(s), ∀s > 0, (2.3)

(ii) The removal rates of aggregate and planktonic biomass verify:

D � Du � Dv > 0, (2.4)

(iii) The function α only depends on concentrations u and v in an increasing manner and

such that

u > 0 ⇒ α(u, 0) > 0

with
∂α

∂u
(u, v) �

∂α

∂v
(u, v), ∀(u, v).

(iv) The function β depends only on the concentration v in a decreasing manner and such

that v �→ β(v)v is increasing with

v > 0 ⇒ β(v) > 0.

Typical instances of functions μu, μv are given by the Monod expression

μmax
s

Ks + s

(with distinct values of the parameters μmax, Ks for planktonic and attached bacteria), that

is quite popular in microbiology. Assumption (i) expresses the observation that attached

bacteria have generally a more difficult access to substrate. With Assumption (ii), we

first neglect the mortality of planktonic bacteria, compared to the removal rate D, and

considered that the substrate is the reactant that is removed most easily because of the

the size of its molecules (that is usually much smaller that microorganisms, justifying the

assumption Du � D). In a similar way, the attachment slows down the effective removal
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rate of the attached bacteria compared to the planktonic ones (which is represented by the

inequality Dv � Du). Typically, it can be considered that the specific attachment velocity

α(u, v) can be decomposed into a sum of two terms αu(u) and αv(v) that reflect the two

possible types of attachments: on free bacteria or on bacteria already in flocs. Considering

that free bacteria mainly attach on the surface of flocs, and that when the size of flocs

increases, the ratio surface over volume does not increase as quickly as the volume, it can

be expected that the function αv increases more slowly than αu, which is then reflected

by α′u(u) � α′v(v) for all (u, v), justifying Assumption (iii). In general, it is expected that

the detachment velocity v �→ β(v)v increases with the density v of the attached biomass,

but when the flocs size increases, the ratio surface over volume increases more slowly

than the volume, which results in a decrease of the function v �→ β(v)v, thus justifying

Assumption (iv).

3 Study of the coexistence between the two forms

We assume that

D = Du = Dv,

(the more general case of different removal rates is discussed in Section 5), which allows

to consider the variable z(t) = s(t) + x(t), a solution of the differential equation:

dz

dt
= D(Sin − z),

whose solutions converge exponentially to Sin. Therefore, the system (2.2) has a cascade

structure in the (z, u, v) coordinates:

dz

dt
= f0(z)

du

dt
= f1(z, u, v),

dv

dt
= f2(z, u, v)

(3.1)

and the local stability analysis of its equilibriums is given by the local stability of the

equilibriums of the reduced dynamics:

du

dt
= f1(Sin, u, v),

dv

dt
= f2(Sin, u, v). (3.2)

The global behaviour of the solutions of the system (3.1) is more delicate to be deduced

from the global behaviour of the reduced system (3.2) and relies on the theory of

asymptotically autonomous systems [21]. However, we recall the well-known result when

the reduced system (3.2) has a unique globally asymptotically stable equilibrium, that

states that any bounded solution of (3.1) converge to the unique equilibrium of (3.1). We

consider in the following the reduced dynamics of (2.2) for z = Sin:⎧⎪⎪⎨
⎪⎪⎩

du

dt
= μu(Sin − u− v)u− Du− α(u, v)u + β(v)v

dv

dt
= μv(Sin − u− v)v − Dv + α(u, v)u− β(v)v.

(3.3)

https://doi.org/10.1017/S0956792518000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000141


Properties of the chemostat model with aggregated biomass 977

We study the possible positive steady-states (u�, v�) of this system, that is to say, the

positive solutions of the system:

⎧⎨
⎩

μu(Sin − u− v)u− Du− α(u, v)u + β(v)v = 0

μv(Sin − u− v)v − Dv + α(u, v)u− β(v)v = 0.

(3.4)

It can be immediately noticed that u� = 0 implies β(v�)v� = 0 and v� = 0, α(u�, 0)u� = 0.

The assumptions 2.1 that we consider on terms α(·) and β(·) then allow us to infer that

there is no steady-state where only one of the two forms would be present.

3.1 Coexistence steady-state

Adding equations (3.4), we obtain (u�, v�) as a solution of the system:

{
(μu(s) − D)u + (μv(s) − D)v = 0

u + v = Sin − s.

Consequently, a coexistence steady-state (if it exists) verifies:

u� = (Sin − s�)
D − μv(s

�)

μu(s�) − μv(s�)
, v� = (Sin − s�)

μu(s
�) − D

μu(s�) − μv(s�)
(3.5)

with s� = Sin − u� − v�. According to hypothesis (2.3), we obtain the following necessary

condition:

μu(s
�) > D > μv(s

�).

By defining the break-even concentration by λu, λv for the dilution rate D (that is that

verify μu(λu) = μv(λv) = D with λv > λu, see [14, 23]), we deduce that a coexistence

steady-state must verify:

s� ∈ (λu, λv).

Thus, a necessary condition for the existence of a coexistence steady-state is

λu < Sin. (3.6)

At this stage, it is difficult to prove the existence of solutions without specifying attachment

and detachment functions α(·) and β(·). If we consider that we are only dealing with the

flocs of small size, as a first approximation, it is possible to assume that α is a function

of x = u + v (that is, functions αu and αv are identical), which will be chosen as linear (to

simplify), and that the function β does not depend of v:

α(u, v) = a(u + v) = ax, β(v) = b, (3.7)

where a and b are two positive constants. Thereby, the hypotheses 2.1 are correctly

verified.
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Proposition 3.1 For growth functions μu, μv that verify point i) of Assumptions 2.1 and

attachment and detachment functions α(·), β(·) of the form (3.7), there exists a unique co-

existence steady-state of system (2.2) if and only if the condition:

D < μu(Sin) (3.8)

is verified.

Proof As mentioned previously, it is enough to show the existence of a positive equilibrium

of the reduced dynamics (3.3). I denotes the interval:

I = ]λu, λv[.

To simplify the writing, the following notations are introduced:

ϕu(s) = μu(s) − D and ϕv(s) = μv(s) − D.

For all s ∈ I , we have ϕu(s) > 0 > ϕv(s). The steady-states (s∗, u∗, v∗) are given by

{
0 = ϕu(s

∗)u∗ − a(u∗ + v∗)u∗ + bv∗

0 = ϕv(s
∗)v∗ + a(u∗ + v∗)u∗ − bv∗.

(3.9)

If u∗ = 0 then, from the first equation, it can be deduced that v∗ = 0. Similarly, if

v∗ = 0 then, from the second equation it can be deduced that u∗ = 0. Consequently, the

steady-states are the washout E0 = (Sin, 0, 0) or a steady-state of the form:

E∗ = (s∗, u∗, v∗)

with u∗ > 0 , v∗ > 0 and s∗ = Sin − u∗ − v∗. In order to solve equations (3.9), one uses

a method similar to the characteristic at steady-state method. This method consists in

determining the steady-states of the system formed by the second and third equations of

(2.2), where the variable s is considered to be an input of the system. In other words, the

aim is to solve the system formed by the first and the second equation of (3.9), in which

u∗ and v∗ are the unknowns and s∗ is considered as being a parameter. It thus yields

u∗ = U(s∗), v∗ = V (s∗).

If u∗ and v∗ are replaced by these expressions in the first equation of (2.2), an equation

of the single variable s∗ is obtained of the form:

D(Sin − s∗) = H(s∗) with H(s∗) = μu(s
∗)U(s∗) + μv(s

∗)V (s∗),

that is solved, see Figure 3, to find a positive solution s∗. This solution gives a positive

steady-state, provided that U(s∗) and V (s∗) be positive. In the following, the functions

U, V and H are determined and the conditions are given in order for the solution s∗ to

exist.
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H(s)

D(Sin − s)

DSin

E∗

E0

Sinλu λv

s

Figure 3. Existence of a unique positive steady-state.

By summing the first and second equations (3.9), we obtain

ϕu(s
∗)u∗ + ϕv(s

∗)v∗ = 0. (3.10)

This equation admits a positive solution if and only if ϕu(s
∗) and ϕv(s

∗) are of opposite

signs, that is, if and only if s∗ ∈ I . If this equation admits a solution in this interval, then

equation (3.10) can be written as follows:

v∗ = −ϕu(s
∗)

ϕv(s∗)
u∗. (3.11)

By replacing v∗ by Expression (3.11) in the first equation of (3.9), it yields

u∗ = U(s∗) with U(s) =
ϕu(s)(ϕv(s) − b)

a[ϕv(s) − ϕu(s)]
. (3.12)

Note that u∗ defined by (3.12) is positive because s∗ ∈ I . By replacing u∗ by (3.12) in

(3.11), we get

v∗ = V (s∗) with V (s) = − ϕ2
u(s)(ϕv(s) − b)

a[ϕv(s) − ϕu(s)]ϕv(s)
. (3.13)

Substituting the expressions of U(s∗) and V (s∗) given by (3.12) and (3.13) in the expression

of H(s∗) yields a characterization of s∗:

D(Sin − s∗) = H(s∗) with H(s) = D
ϕu(s)(ϕv(s) − b)

aϕv(s)
. (3.14)

Note that for all s ∈ I , U(s) > 0, V (s) > 0 and H(s) > 0 and that:

lim
s→λu

H(s) = 0, lim
s→λv

H(s) = +∞.

In addition, function H is strictly increasing on I . Indeed, we have

H ′(s) =
D

a

ϕv(s)(ϕv(s) − b)ϕ′
u(s) + bϕu(s)ϕ

′
v(s)

ϕ2
v (s)

> 0.
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Consequently, equation (3.14) admits a unique solution s∗ ∈ I =]λu, λv[ if and only if

Sin > λu, which is equivalent to μu(Sin) > D. �

3.2 Study of stability

Under the conditions of stability and global attractiveness of the washout steady-state

of the chemostat model in which only the planktonic biomass would be considered

(see [14, 23]):

D � μu(Sin), (3.15)

one can easily check that the washout (Sin, 0, 0) is also the only steady-state of the system

(2.2), stable and globally attractive. As a matter of fact, by considering the reduced model

(3.3), under this assumption we have

x ∈]0, Sin] ⇒ dx

dt
= (μu(Sin − x) − D)u + (μv(Sin − x) − D)v < 0,

which demonstrates that x(·) asymptotically converges towards 0 for any initial condition.

As any solution of system (2.2) is bounded, we deduce that it converges to the washout

equilibrium. According to the study conducted in Section 3.1, a positive steady-state exists

as soon as the condition (3.8) is verified and is unique. By particularizing the attachment

and detachment functions as we did in Section 3.1, the following stability result is obtained

(the case in which Du and Dv are different from D is addressed in [8]).

Proposition 3.2 Under the assumptions of Proposition 3.1, the coexistence steady-state is a

locally exponentially stable of system (2.2).

Proof As mentioned previously, it is enough to study the local stability for the reduced

dynamics (3.3). The Jacobian matrix of (3.3) for the steady-state (u∗, v∗), which corresponds

to the positive equilibrium E∗ = (s∗, u∗, v∗) of (2.2), is equal to

J∗ =

[
−u∗ϕ′

u(s
∗) + ϕu(s

∗) − a(2u∗ + v∗) −u∗ϕ′
u(s

∗) − au∗ + b

−v∗ϕ′
v(s

∗) + a(2u∗ + v∗) −v∗ϕ′
v(s

∗) + ϕv(s
∗) + au∗ − b

]
.

The trace of this matrix is equal to

TrJ∗ = −u∗ϕ′
u(s

∗) − v∗ϕ′
v(s

∗) + ϕu(s
∗) − a(u∗ + v∗) + ϕv(s

∗) − b.

Note that based on equations (3.9), it can be deduced that

ϕu(s
∗) − a(u∗ + v∗) = −b

v∗

u∗
< 0, ϕv(s

∗) − b = −a
(u∗ + v∗)u∗

v∗
< 0. (3.16)

Further, as ϕ′
u(s

∗) > 0 and ϕ′
v(s

∗) > 0, it can be deduced that TrJ∗ < 0. The determinant

of this matrix is equal to

DetJ∗ = Au∗ϕ′
u(s

∗) + Bv∗ϕ′
v(s

∗) + C
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with

A = a(u∗ + v∗) + b− ϕv(s
∗), B = a(u∗ + v∗) + b− ϕu(s

∗),

and

C = ϕu(s
∗)ϕv(s

∗) + ϕu(s
∗)(au∗ − b) − ϕv(s

∗)a(2u∗ + v∗).

By using Expressions (3.16), it yields that

A = a
(u∗ + v∗)2

v∗
> 0, B = b

u∗ + v∗

u∗
> 0.

Moreover, we have

C = ϕu(s
∗)

(
ϕv(s

∗) − b
)

+ a
(
u∗ϕu(s

∗) − v∗ϕv(s
∗)

)
− 2au∗ϕv(s

∗).

Utilizing (3.10), we get

C = ϕu(s
∗)

(
ϕv(s

∗) − b
)

+ 2au∗ϕu(s
∗) − 2au∗ϕv(s

∗).

Utilizing (3.16), we have

au∗
(
ϕu(s

∗) − ϕv(s
∗)

)
= −ϕu(s

∗)
(
ϕv(s

∗) − b
)
.

Consequently,

C = −ϕu(s
∗)

(
ϕv(s

∗) − b
)
> 0.

Thereof, it can be deduced that DetJ∗ > 0, and as a consequence, the real parts of the

eigenvalues of J∗ are strictly negative. �

4 The case of fast attachments/detachments

Depending on species and on hydrodynamic conditions, attachment and detachment

velocities may prove to be large compared to growth kinetics and to dilution rate. In this

case, it is possible to consider that the attachment and detachment terms, α(·) and β(·),
respectively, can be rewritten in the form

α(·)
ε

,
β(·)
ε

,

where ε is a positive number supposed to be small, and functions α(·), β(·) verify the same

Assumptions 2.1. Thus, the model (2.2) is written as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= D(Sin − s) − μu(s)u− μv(s)v

du

dt
= μu(s)u− Du− 1

ε
(α(u, v)u− β(v)v)

dv

dt
= μv(s)v − Dv +

1

ε
(α(u, v)u− β(v)v) .

(4.1)
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It is convenient to write this dynamic by replacing the variables u and v by x = u+ v and

p = u/x⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= D(Sin − s) − μ̄(s, p)x

dx

dt
= μ̄(s, p)x− Dx

dp

dt
= (μu(s) − μv(s)) p(1 − p) − 1

ε
(α(px, (1 − p)x)p− β((1 − p)x)(1 − p)) ,

(4.2)

by defining:

μ̄(s, p) := p μu(s) + (1 − p) μv(s).

Observe that this dynamic system is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= fs(s, x, p)

dx

dt
= fx(s, x, p)

dp

dt
=

1

ε

[
εfp(s, p) + g(x, p)

]
,

where we posit:

g(x, p) := −α(px, (1 − p)x)p + β((1 − p)x)(1 − p).

When ε is small and the terms fs(s, x, p), fx(s, x, p) and εfp(s, p) + g(x, p) are of the same

order of magnitude, the velocity dp
dt

is then very large compared to velocities ds
dt

, dx
dt

.

Variables s and x can then be considered as almost constant and the approximation of

the dynamics of variable p as ‘fast’

dp

dt
=

1

ε
g(x, p), (4.3)

where s is considered as a constant parameter (the term εfp(s, p) being negligible with

regard to g(x, p)). If for any x, the differential equation (4.3) admits a unique steady-

state p̄(x), then this expression can be carried to the system (4.2) to obtain the ‘slow’

approximation of the dynamics of the variables s and x:⎧⎪⎪⎨
⎪⎪⎩

ds

dt
= D(Sin − s) − μ(s, x)x

dx

dt
= μ(s, x)x− Dx,

(4.4)

by defining:

μ(s, x) = μ̄(s, p̄(x)).

This reduction technique (which consists in replacing ε by 0) is well-known in physics

under the name of quasi-steady state approximation method. At the mathematical level,

the rigorous proof of the convergence of the solutions of the system (4.2) towards those
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of the reduced system (4.4) makes use of the theory of singular perturbations (see for

instance [18]). When the slow manifold is globally attractive, that is when p̄(x) is a

globally asymptotically stable of the dynamics dp/dτ = g(x, p) for any fixed x > 0 (where

τ = t/ε is the ‘fast’ time), then Tikhonov’s theorem applies. Recall that this theorem

asserts that for any initial condition of (4.2) with x(0) > 0 and any time interval [0, T ]

with T > 0, the solution s(·), x(·) of (4.2) converge uniformly on [0, T ] to the solution

of (4.4). Furthermore, when the solution of the reduced dynamics (4.4) converges to an

asymptotically stable equilibrium, then one can take T = +∞ (see for instance [20]). The

Proposition below shows that the existence and the global asymptotic stability of the slow

manifold, under Assumptions 2.1.

Proposition 4.1 Under Assumptions 2.1, there exists a unique function p̄ : �+ �→ [0, 1] C1,

strictly decreasing, such that g(x, p̄(x)) = 0 for all x > 0. In addition, p̄(x) is the unique

globally asymptotically stable steady-state of the scalar equation (4.3), for all x > 0.

Proof For any x > 0, we have g(x, 0) = β(x) > 0 and g(x, 1) = −α(x, 0) < 0 (following

Assumptions 2.1). According to the intermediate value theorem, there therefore exists

p̄(x) ∈]0, 1[ such that g(x, p̄(x)) = 0. Let us determine the partial derivatives of the

function g

∂g

∂x
= −

[(
∂α

∂u
(u, v)p +

∂α

∂v
(u, v)(1 − p)

)
p− β′(v)(1 − p)2

]
u=px,v=(1−p)x

∂g

∂p
= −

[(
∂α

∂u
(u, v) − ∂α

∂v
(u, v)

)
u + α(u, v) +

1

u + v

d

dv
(β(v)v)

]
u=px,v=(1−p)x.

For x > 0, Assumptions 2.1 guarantee ∂g
∂x

< 0 and ∂g
∂p

< 0. Thus, the function p �→ g(x, p)

is strictly decreasing, guaranteeing the uniqueness of the solution p̄(x) of g(x, p) = 0.

According to the implicit function theorem, the function p̄ is also differentiable for any

x > 0 and its derivative is written as

p̄′(x) = −
∂g

∂x
(x, p̄(x))

∂g

∂p
(x, p̄(x))

< 0.

The function p̄ is thus C1 on �+ \{0} and strictly decreasing. Thereby, for all fixed x > 0,

p̄(x) is the unique steady-state of the differential equation (4.3), and since ∂g
∂p

< 0 for every

(x, p), it can be thereof deduced that the steady-state p̄(x) is globally asymptotically stable

for the scalar dynamics (4.3). �

For instance, for functions considered in (3.7), we get

p̄(x) =
1

1 +
a

b
x
. (4.5)
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Figure 4. Simulations for μu(s) = s
1+s

, μv(s) = 0.7s
1+s

, Sin = 2, D = 0.5, a = 1, b = 0.5 with ε = 2 (left)

and ε = 0.5 (right).

Figure 4 presents simulations with functions (3.7) and compares the solutions (in plain

line) of the original system (4.2) with the ones (in dashed line) of the reduced dynamics

(4.4). It shows that the slow-fast approximation is good even for value of ε that are not

so small.

Remark 1 Thanks to Assumptions 2.1, it yields that

∂μ

∂x
(s, x) =

∂μ̄

∂p
(s, p)|p=p̄(x).p̄

′(x) = (μu(s) − μv(s)).p̄
′(x) < 0

and thus the model (4.4) for the total biomass x has a density-dependent growth, decreasing

with respect x.

4.1 Consideration of several species

When several species are in competition, we can similarly decompose the biomass of each

species i into planktonic biomass ui and attached biomass vi (without differentiating the

composition of flocs that can mix individuals from different species):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds

dt
= D(Sin − s) −

n∑
j=1

μuj (s)uj −
n∑

j=1

μvj (s)vj

dui

dt
= μui (s)ui − Dui − αi(u1, · · · , un, v1, · · · , vn)ui + β(v1, · · · , vn)vi

(i = 1 · · · n)
dvi

dt
= μvi (s)vi − Dvi + αi(u1, · · · , un, v1, · · · , vn)ui − β(v1, · · · , vn)vi.

The specific attachment functions αi then depend (a priori ) on all others quantities uj ,

vj since a free individual of species i can attach to free biomass or biomass with any

species attached. Analogously, the specific detachment functions βi depend a priori on all
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quantities vj of biomass attached where an individual i could have attached. To simplify,

it will be possible, for example, to assume that the αi are functions of the total planktonic

and attached biomass u =
∑

j uj and v =
∑

v vj , and the βi functions of v only, with

the same Assumptions (2.1). The combinatorics of the possible specific cases makes the

mathematical study much more complicated, but when the attachment and detachment

velocities can be considered to be fast, the quasi-steady state approximation makes it

possible to write a dynamic system for biomass xi = ui + vi by expressing the terms ui and

vi according to all the xj on the ‘slow’ manifold defined by the system of equations:

αi(u1, · · · , un, v1, · · · , vn)ui − βi(v1, · · · , vn)vi = 0 i = 1 · · · n.

For example, by considering simple functions like we did in (3.7):

αi(x1, · · · , xn) =

n∑
j=1

aijxj , βi = bi,

where parameters aij reflect how easily an individual of species i attaches to an individual

of species j, the following expressions are obtained for the proportions qi = ui/xi on the

slow manifold, which is uniquely defined by

q̄i(x1, · · · , xn) =
1

1 +
1

bi

n∑
j=1

aijxj

as in Section 4 (under the assumption of fast attachments and detachments), and the

reduced system is then written as

⎧⎪⎪⎨
⎪⎪⎩

ds

dt
= D(Sin − s) −

n∑
j=1

μj(s, x1, · · · , xn)xj

dxi

dt
= μi (s, x1, · · · , xn) xi − Dxi (i = 1 · · · n),

by setting:

μi(s, x) = q̄i(x1, · · · , xn)μui (s) + (1 − q̄i(x1, · · · , xn))μvi (s).
The dynamics of the fast variables qi is given by the system

dqi

dτ
= −αi(x)qi + bi(1 − qi) (i = 1 · · · n),

(where τ = t/ε) for which (q̄1, · · · , q̄n) is clearly the unique globally asymptotically stable

equilibrium, for any fixed (x1, · · · , xn). Therefore, Thikonov’s theorem applies. Notice that

μi are density-dependent growth functions, decreasing with respect to the xi. This then

exactly corresponds to the context of density-dependent competition model, which shows

that a coexistence between species is possible [6,19]. It is thus concluded that a mechanism

of (fast) attachment and detachment of biomass is a possible (theoretical) explanation for

the maintaining of biodiversity in a chemostat.
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Figure 5. One can have λu > λv (left) as well as λu < λv (right).

5 Consideration of distinct removal rates

In this section, we consider that the removal rates of planktonic and attached bacteria are

distinct, and accordingly to Assumptions (2.1) one has Dv < Du � D. This section follows

part of the work [7, 8]. The reduction technique, we use in Section 4 gives the following

reduced model: ⎧⎪⎪⎨
⎪⎪⎩

ds

dt
= D(Sin − s) − μ(s, x)x

dx

dt
= μ(s, x)x− d(x)x,

(5.1)

where we posit:

d(x) = p̄(x)Du + (1 − p̄(x))Dv.

Notice that the dynamics of the fast variable p is given by equation (4.3), exactly as

in Section 4. Therefore, Proposition 4.1 applies. Let us underline that having a density

dependent removal rate in the chemostat model has not being considered (and justified)

before in the literature.

As in Section 3.1, we consider break-even concentrations λu, λv associated to functions

μu and μv but here for the distinct removal rates Du, Dv (which are numbers that verify

μu(λu) = Du and μv(λv) = Dv). Differently to the case of identical removal rates, for which

Assumptions 2.1 implies the inequality λu < λv , this later inequality is no longer necessarily

satisfied, as depicted on Figure 5.

The model (5.1) admits clearly the washout (Sin, 0) as an equilibrium, and let us study

the possibility for the system to have another steady state. A positive equilibrium (s�, x�)

of dynamics (5.1) has to fulfill

s� = γ(x�) := Sin −
x�d(x�)

D
(5.2)

and

μ(s�, x�) = d(x�). (5.3)
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Notice that when s < min(λu, λv), resp. s > max(λu, λv), one has μ(s, x) < d(x), resp.

μ(s, x) > d(x), for any x. Therefore, one has

s� ∈ [min(λu, λv),max(λu, λv)].

Since the functions μu and μv are increasing, the map s �→ μ(s, x) is increasing for any x

and by the Implicit Function Theorem, we deduce the existence of an unique solution of

(5.3) as s� = φ(x�). Therefore, a positive equilibrium (if it exists) has to fulfill

Γ (x�) := γ(x�) − φ(x�) = 0.

Notice that one has Γ (0) = Sin − λu and Γ (+∞) = −∞. Therefore, the existence of a

positive equilibrium is guaranteed when λu < Sin. Notice that this last condition is exactly

the one that guarantees the existence of a positive equilibrium for the chemostat model

without attachment: ⎧⎪⎪⎨
⎪⎪⎩

ds

dt
= D(Sin − s) − μu(s)u

du

dt
= μu(s)u− Duu.

We examine now the possibilities of having more than one positive equilibrium. The

function γ is such that γ(0) = Sin and γ(+∞) = −∞. So, it has to decrease somewhere on

the interval [0,+∞). From the Implicit Function Theorem, we can write

φ′(x) =
d′(x) − ∂μ

∂x
(φ(x), x)

∂μ
∂s

(φ(x), x)
=

p̄′(x)
∂μ
∂s

(φ(x), x)
(Du − Dv − μu(φ(x)) + μv(φ(x))) .

When λu < λv , one has μu(s) � Du and μv(s) < Dv for any s ∈ [λu, λv). As p̄′(x) < 0

(see Proposition 4.1) and ∂μ
∂s

(φ(x), x) > 0, we deduce φ′(x) > 0 for any x such that

φ(x) ∈ [λu, λv). At the opposite, when λu > λv , one has φ′(x) < 0 for any x such

that φ(x) ∈ [λv, λu). This leaves open the possibility of having the functions γ and φ

simultaneously decreasing with more than one intersection of their graphs (and then

having the function Γ non-monotonic with alternate signs of Γ ′(x�) at the solutions x�).

At a positive equilibrium E∗ = (s∗, x∗), the Jacobian matrix is

J(E∗) =

⎡
⎢⎢⎣
−D − x∗

∂μ

∂s
(s∗, x∗) −x∗

∂μ

∂x
(s∗, x∗) − d(x∗)

x∗
∂μ

∂s
(s∗, x∗) x∗

∂μ

∂x
(s∗, x∗) − x∗d′(x∗)

⎤
⎥⎥⎦

with determinant:

detJ(E∗) = Dx∗
(
d′(x∗) − ∂μ

∂x
(s∗, x∗)

)
+ x∗

∂μ

∂s
(s∗, x∗)

d

dx
[xd(x)](x∗).

One can easily check that it can be also written as

detJ(E∗) = −Dx∗
∂μ

∂x
(s∗, x∗)Γ ′(x∗),
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Figure 6. Example of bi-stability with μu(s) = 2s
1+s

, μv(s) = 1.5s
0.8+s

, Du = 1, Dv = 0.5, Sin = 0.9,

D = 1, a/b = 4.

which shows an alternation of stability of the equilibriums E∗ depending on the sign of

Γ ′(x∗). We illustrate the possibility of having multiple-stability in the case λv < λu < Sin
with the functions α, β given in (3.7), that provide the simple expression (4.5) of the

function p̄(·), and Monod expressions for functions μu, μv . Even in this simple case, the

expression of the function Γ is too complicated to conduct an analytic study. Figure 6

presents the phase portrait of the reduced dynamics (5.1) and shows its bi-stability for the

numerical values of the parameters that have been chosen.

In the reference [7], it is shown that under the additional assumption that the map

x∗ �→ x∗p̄(x∗) is increasing, the multiplicity can indeed occur only when λu > λv , and

that generically each equilibrium is necessarily either a stable node or a saddle point.

Therefore, Tikhonov’s theorem, that has been recalled in Section 4, allows to claim that

for any initial condition of the system (2.2) such that (s0, x0) does not belong to the stable

manifold of a saddle equilibrium of the reduced dynamics (5.1), the solution s(·), x(·)
converges to the solution of the reduced dynamics on the [0,+∞) time interval, that is

for almost any initial condition.

Finally, this shows that multiple stability can occur in the chemostat model with

attachment and distinct removal rates, even though the growth functions are monotonically

increasing. This fact is quite remarkable comparing to the classical chemostat model (i.e.,

without attachment) for which a multiple stability is possible only for non-monotonic

growth functions (see, for instance [14]). Nevertheless, the analysis of all the generic

behaviours of the solutions of the model with several species (and different removal rates)

remains today an open problem. Dynamics in dimension higher than two potentially

reserve a richness of possible behaviours. In particular, the possibility of having unstable

nodes leave open the possibilities of having limit cycles, as illustrated in [9].

https://doi.org/10.1017/S0956792518000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000141


Properties of the chemostat model with aggregated biomass 989

6 Conclusion

In this work, we have proposed a generic framework of chemostat models with free

and attached biomass compartments. Under general assumptions, we have shown that

a coexistence of the two forms is possible and leads to a unique positive equilibrium,

which is moreover globally asymptotically stable. When the assumptions about fast

attachment and detachment are justified, we have also shown that reduced models with

the total biomass instead of planktonic and attached ones provide natural extensions of

the classical chemostat model with a density-dependent growth function, such as in the

Contois model [4]. This allows coexistence of multiple species when each of them can

be present in the two forms: planktonic and attached (with same or different species).

We have also shown that the consideration of different removal rates for the free and

attached biomass could lead to some non-intuitive behaviours, such as multiple stability,

that is today widely not well-understood in presence of several species.
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