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UNIVERSAL ARROWS TO FORGETFUL FUNCTORS
FROM CATEGORIES OF TOPOLOGICAL ALGEBRA

VLADIMIR G. PESTOV

We survey the present trends in theory of universal arrows to forgetful functors
from various categories of topological algebra and functional analysis to categories
of topology and topological algebra. Among them are free topological groups, free
locally convex spaces, free Banach-Lie algebras, and more. An accent is put on
the relationship of those constructions with other areas of mathematics and their
possible applications. A number of open problems is discussed; some of them
belong to universal arrow theory, and other may become amenable to the methods
of this theory.

INTRODUCTION

The concept of a universal arrow was invented by Samuel in 1948 [149] in connec-
tion with his investigations of free topological groups. The following definition is taken
from the book [80].

DEFINITION: If S: D — C is a functor and ¢ an object of C, a universal arrow
from c to S is a pair < r,u > consisting of an object r of D and an arrow u: ¢ — St
of C, such that to every pair < d, f > with d an object of D and f: ¢ — Sd an arrow
of C, there is a unique arrow f':7 - d of D with Sf'ou = f.

In other words, every arrow f to S factors uniquely through the universal arrow

u, as in the commutative diagram

u
¢c —— Sr

I L

c —— 5d

This notion bears enormous generality and strength, and at present it is an essential
ingredient of a metamathematical viewpoint of mathematics (80, 59]. Many mathe-
matical constructions can be interpreted as universal arrows of one or another kind.
Examples are: quotient structures and substructures, products and coproducts, includ-
ing algebraic and topological tensor products, universal enveloping algebras, transition
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from a Lie algebra to a simply connected Lie group and vice versa, compactifications
of all kinds (Stone-Cech, Bohr, and others), completions, prime spectra of rings, and
much more.

We are interested in the particular case where S is a forgetful functor from some
category of topological algebra or functional analysis, D, to another category of topo-
logical algebra or functional analysis or a category of topology, C. Historically the first,
and studied in most detail, was the construction of the free topological group, F(X),
over a topological space X, where C is the category of Tychonoff topological spaces
and continuous mappings and D is the category of Hausdorff topological groups and
continuous homomorphisms. A number of similar constructions have received a com-
prehensive treatment. Among them are free abelian topological groups, free compact
groups, free locally convex spaces. At the same time, in recent years similar construc-
tions have arisen — either explicitly or implicitly — in other areas of mathematics. In
some cases no attempt has been made to establish a bridge between those and former
types of universal arrows — although seemingly such a connection would facilitate a
study of new constructions. Among the disciplines where new types of universal ar-
rows to forgetful functors are likely to play a noticeable role, are infinite-dimensional
Lie theory, supermanifold theory, differential geometry, C*-algebras and “quantised”
functional analysis, and quantum groups.

We do not aim at a comprehensive presentation of the subject outlined in the title
of this paper, nor do we give detailed proofs of the results: such an elaborate approach
would lead to a voluminous treatise. Instead, we discuss a few carefully selected lines
of development which, as we see it, dominated the research over more than 50 years.
We are focussing on the most interesting unsolved problems. Also, we do our best in
predicting the future directions of the theory, paying special attention to recent germs of
it in areas of mathematics bordering topological algebra (Lie theory, functional analysis
and mathematical physics).

This small survey inevitably tends to the results and ideas coming from the Russian
(or, in a more politically correct language, ex-Socialist, to cover Ukrainian, Moldavian,
Georgian, Bulgarian and other contributors) school of universal arrow theorists, where
the author himself comes from. Most probably and to the author’s regret, the contri-
butions from the other two major centres — the Australian and the American schools
— are under represented in this article. The author’s personal tastes and research work
of his own were prevalent in selecting topics for discussion.

Our bibliography, although (intentionally) not complete, is hopefully “everywhere
dense” in the subject (a comparison due to Victor Kac [62]).

https://doi.org/10.1017/50004972700015665 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015665

(3] Universal arrows to forgetful functors 211

1. MAJOR CLASSICAL EXAMPLES

The following are major examples of universal arrows to forgetful functors from
categories of topological algebra, which are the subject of a traditional study in this
area. We mark with a lozenge (©) those notions which will be considered later in
this survey to some extent. By abuse of terminology and notation, we shall sometimes
identify a universal arrow with its target object (however, no confusion should result
from that).

1.9 C = Tych (the category of Tychonoff topological spaces and continu-
ous mappings) and D = TopGrp (the category of Hausdorff topological
groups and continuous homomorphisms). The universal arrow from an
object X € C (a Tychonoff space) to the forgetful functor S: D — C is
the (Markov) free topological group over X, F(X).

This notion was introduced in 1941 by Markov [85] who presented his results in
most detail somewhat later [86]. Among those mathematicians who responded first to
the new concept, were Nakayama [103], Kakutani [64], Samuel [149] and Graev [41];
the latter work has had an enormous impact on later investigations in the area, and the
paper by Samuel, as we have already mentioned, has produced a deep methodological
insight.

2. C = Tych, (the category of pointed Tychonoff topological spaces and
continuous mappings preserving base points) and D = TopGrp (the
base point of a topological group being e, the identity). The universal
arrow from an object X € C (a pointed Tychonoff space) to the forgetful
functor S: D — C is the Graev free topological group over X, Fg(X).

In fact, Markov and Graev free topological groups are very closely related to each
other by means of the following short exact sequence:

e > Z— Fy(X) — Fo(X) > e

The choice of a basepoint * € X does not affect the topological group Fg(X). The
Markov free group of X is isomorphic to the Graev free group of the disjoint sum
X @ {*}. [41, 42]. This is why we consider Markov free topological groups only.
Anyway, the Graev approach seems more convenient in some other cases such as free
Banach spaces and free Banach-Lie algebras over metric spaces.
3. C = Met, (the category of pointed metric spaces) and D = MetGrp
(the category of groups endowed with a bi-invariant metric). The univer-
sal arrow from an object (X,p,*) € C (a pointed metric space) to the
forgetful functor S : D — C is the free group over X\{*} endowed with
the Graev metric p.
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This concept is due to Graev [41, 42]. The metrised group (F(X),p) is of no
particular interest by itself; it deserves attention as an auxiliary device for studying the
free topological group F(X). An amazing example of such a kind is Arhangel’skii’s
theorem from [8]. If one wants to consider Graev metrics on a Markov free group then
one should start with a fixed metric p on the set X @ {e}.

4. C = Tych and D = V is a variety of Hausdorff topological groups,
considered as a subcategory of TopGrp. The universal arrow from an
object X € C (a Tychonoff space) to the forgetful functor §: D — C is
the free topological group over X in the variety V, Fy(X).

Varieties of topological groups can be understood in different senses (see [91, 92,
95] and [138, 139, 140]). It would not be clear what the “right” notion is, until a
non-disputable version of the Birkhoff theorem for topological groups is obtained (see,
however, [158]). Anyway, all of the most important classes of topological groups fit both
definitions. Examples of varieties are: the variety of SIN groups (topological groups
with equivalent left and right uniformities) [99]; that of topological groups with quasi-
invariant basis [66] (= Ro-balanced groups in [9]); of totally bounded, or precompact,
groups; of Ry-bounded groups [46, 9] et cetera. There is a survey on free topological
groups in varieties [95]. A free topological group, Fy(X), in a variety V is actually
the composition of the universal arrow F(X) and the universal arrow from F(X) to
the natural embedding functor V — TopGrp. The notion of a free topological group
relative to classes of topological groups, considered by Comfort and van Mill [27], also
belongs in this problematics.

The following is the most important particular case.

5. C = Tych and D = AbTopGrp (the category of abelian topological
groups and continuous homomorphisms). The universal arrow from an
object X € C (a Tychonoff space) to the forgetful functor §: D — C is
the (Markov) free abelian topological group over X, A(X).

6. C = Tych, and D = AbTopGrp. The universal arrow from an object
X € C (a Tychonoff space) to the forgetful functor S : D — C is the
Graev free abelian topological group over X, Ag(X).

Of course, A(X) (respectively, Ag(X)) is just the abelianisation of F(X) (respec-
tively, Fg(X)).

7. C = Tych and D = CompGrp (the category of compact topological
groups and continuous homomorphisms). The universal arrow from an
object X € C (a Tychonoff space) to the forgetful functor S: D — C is
the free compact group over X, Fo(X).

Remark that the free compact group Fc(X) is nothing but the Bohr compactifi-
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cation, bF(X), of the free topological group, F(X). (The Bohr compactification, G,
of a topological group G [94] is the universal arrow from G to the embedding functor
CompGrp — TopGrp.) We do not touch free compact groups in our survey, and
refer the reader to the series of papers by Hofmann and Morris [50, 51, 52, 53, 54,
55]. Also free compact groups may be viewed as completions of free precompact groups
(or, just the same, free totally bounded groups), that is, free topological groups in the
corresponding variety. Free precompact groups have been studied recently in connection
with some questions of dimension theory [151].

Of course, the notion of the free compact abelian group over X also makes sense,
and the structure of such groups has been described in detail (loco citato).

8.9 (C = Unif is the category of uniform spaces and D = TopGrp. There
are at least four “natural” forgetful functors from D to C; our choice
as S is the functor assigning to a topological group G the two-sided
uniform structure on it; we shall denote the resulting uniform space by
G:. The universal arrow from an object X € Unif (a uniform space) to
the functor S is the free topological group over X, or the uniform free
topological group, F(X).

This was an invention of Nakayama {103]. Free topological groups over uniform
spaces later proved to be a most natural framework for analysing some aspects of free
topological groups, see [110). Free topological groups over uniform spaces provide a
straightforward generalisation of free topological groups over Tychonoff spaces, because
for a Tychonoff space X the free topological group over X is canonically isomorphic
to the free topological group over the finest uniform space associated to X .

9. By replacing the category Tych by Unif in items 2,4,6 one comes to the
obviously defined concepts of a (Graev) free (abelian) topological group
over a uniform space.

10. C = Tych (respectively, Unif) and D = LCS (the category of locally
convex spaces and continuous linear operators). The universal arrow from
an object X € C (a Tychonoff space; respectively, a uniform space) to
the forgetful functor § : D — C (which in the second case is defined
unambiguously, unlike in item 8) is termed the free locally convez space
over a topological (uniform) space X, and denoted by L(X).

This concept is also an invention of Markov [85]. However, for some reason it re-
ceived no immedeate attention from the mathematical community until the papers by
Arens-Eells [4], Michael [88] and Ralkov [142]. The most important of the later devel-
opments is due to Flood [37, 38] who also proposed a spectacular research program on
categorial foundations of analysis (ibidem). (We believe that Flood’s ideas may become
of vital importance in the coming era of noncommutative analysis and geometry.) Some
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of his results were later rediscovered by Uspenskii [168].

A particular case of this construction — the notion of a vector space endowed with
the finest locally convex topology — is well known in functional analysis [{150]; it is
actually the free locally convex space over a discrete topological space X .

11. Like in item 4, one can consider universal arrows from an object of Tych
to the forgetful functor V — Tych where V is a variety of locally convex
spaces in one or another sense. We denote the resulting free locally convez
space over X in the variety V by Ly(X).

We refer the reader to a very solid paper [31] by Diestel, Morris and Saxon, and a
survey [95] by Morris. Other references include [18].

12.¢ If V is the variety of locally convex spaces with weak topology then the
resulting free locally conver space with weak topology over a Tychonoff
space X is denoted by L,(X).

This concept was apparently well known in functional analysis for decades, because
the space Lp(X) is the weak dual of the space Cp(X) of continuous functions on X in
the topology of pointwise (simple) convergence. See, for example, [175] and references
therein.

13. C = Met, and D = Ban is the category of complete normed linear
spaces and linear operators of norm < 1. The universal arrow from an
object X € Met, to the forgetful functor S : D — C (the origin is a
base point) is the free Banach space over a pointed metric space, B(X).

This object first appeared in the paper by Arens and Eells [4]; see also [88, 142,
37, 38, 122]. However, it was considered by functional analysts independently and
from a different point of view: the normed space B(X) is known as the predual of the
space Lip (X) of Lipschitz functions on a pointed metric space X .

14. C = Tych and D is the category of universal topological algebras of a
given signature . In this case the universal arrow from a space X to
the forgetful functor D — C is the free universal topological algebra (of a
given signature) over X .

Such algebras were first considered by Mal'cev [82] and others [158, 138, 140].
We will not touch on them in our survey.

15. C = Tych and D is the category of topological associative rings or as-
sociative algebras. The resulting free topological rings and free topological
algebras have been also considered by Arnautov, Mikhalev, Ursul and
others [14].

Later in our survey we shall consider also a number of less traditional examples
of universal arrows to forgetful functors. All of them are universal arrows to forgetful
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functors of one or another kind.

16.° Let C = TopGrp x TopGrp, D = TopGrp, and let S be the diagonal
functor TopGrp — TopGrpx TopGrp. (Thatis, S(G) = (G,G).) The
universal arrow from a pair (G, H) of topological groups to the functor
S is called the free product of G and H and denoted by G * H. In other
terms, G * H is just the coproduct of G and H in the category TopGrp.

This notion (belonging to Graev [43]) is of the same nature as that of a free
topological group. Both constructions share a number of common properties and indeed,
can be (if necessary) reshaped as a universal arrow to an appropriate forgetful functor.
Let C = TopGrp X TopGrp be as above, and let D denote the category of all
topological groups with two fixed subgroups. Then G*H can be viewed as the universal
arrow from a pair (G, H) to the forgetdul functor from D to C which forgets the first
group and sends a triple (F,G,H) to (G, H).

17.° In an obvious way, the concept of the free product can be defined for
arbitrary families of topological groups, {Gs : @ € A}. This product is
denoted by *5c4Gq -

In all the aforementioned cases, similar methods, which are actually of a categorial
nature, are used to prove the existence, uniqueness and a number of other properties of

universal arrows. We shall summarise those results as follows.

THEOREM 1.1.

(1) In all cases 1-17 the universal arrow exists and is unique.

(2) In all cases apart from 4, the universal arrow is an isomorphic embedding.

(3) In case 4, the universal arrow is a homeomorphic embedding if the variety
V contains at least one non totally path-disconnected topological group.

(4) In all cases apart from 4 and 7, the image of the universal arrow is topo-

logically closed.

2. STRUCTURE OF FREE TOPOLOGICAL GROUPS

Among the first, and most vital, questions to be asked about any universal arrow
to a forgetful functor from a category of topological algebra or functional analysis, is
the question of description of the algebraic-topological structure of the target object
of this arrow. In some cases such a description poses no serious problems, but for
most (especially noncommutative) examples it is rather challenging. Since this question
seems to be best investigated for free topological groups, we find it necessary — and
very instructive — to survey the state of affairs in this area.

The topology of a free topological group F(X) is rather complicated, and among
the achievements of Graev [41, 42] was a description of the topology of F(X) in the

https://doi.org/10.1017/50004972700015665 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015665

216 V.G. Pestov (8]

case where X was a compact space. Later his description was transferred to the so-
called k.-spaces by Mack, Morris and Ordman [81], which result has substantially
widened the sphere of applicability of the original description. We shall present it in
the strongest form.

Denote by X = X & (—X) & {e}, the disjoint sum of a Tychonoff space X,
its topological copy —X = {—z : ¢ € X}, and a one-point space {e}. For each n =
0,1,2,... thereis an obviously defined canonical continuous mapping i, : X™ — F(X).
Denote by F,(X) the subspace of F(C) image of i,; it is closed. A topological space
X is called a ki -space if it can be represented as a union of countably many compact
subsets X,, in such a way that the topology of X is a weak topology with respect to
the cover {X, : n € N}, that is, a subset A C X is closed if and only if so are all
intersections 4 N X,,, n € N. Not only every compact space is a k, space; so is every

countable CW-complex, every locally compact space with countable base, et cetera.

THEOREM 2.1. (Graev-Mack-Morris—Ordman) Let X be a k,-space. Then
every mapping i, is a quotient one, and a subset A of F(X) is closed if and only if so
are all intersections AN F,(X). In particular, F(X) is a k.-space.

The above theorem does not admit any noticeable further generalisation, apart
from some openly pathological cases, such as the spaces X where every G; set is open
(the author, unpublished, 1981). In fact, it was shown in [36] that the mapping i3
is not quotient even for X = Q. Answering both questions raised in that paper, the
author has proved the following result {114, 117, 120].

THEOREM 2.2. Let X be a Tychonoff space. The mapping i, is quotient if and
only if X is a strongly collectionwise normal space (that is, every neighbourhood of the
diagonal in X x X is an element of the finest uniform structure of X ).

The following property of the mappings i,, proved to be extremely useful.

THEOREM 2.3. (Arhangel’skif [6,7]) Let Y be the set of all y € X™ such that
i,2in(y) = {y}. Then i,|y is a homeomorphism.

A very substantial body of results concerning the structure of free topological
groups over k., spaces have been deduced (mostly by Australian and American mathe-
maticians) from Theorem 2.1 [23, 24, 36, 48, 67, 68, 69, 70, 71, 72, 73, 95, 96, 105,
106, 107, 112].

The following charming theorem of Zarichnyi [179, 180] connects free topologi-
cal groups with infinite-dimensional topology. The original result was stated for free
Graev topological groups, but it extends to free Markov groups immediately because
topologically the group F(X) is a disjoint sum of countably many copies of Fg(X).

THEOREM 2.4. (Zarichnyi [179]) Let X be a compact absolute neighbourhood
retract and 0 < dim X < co. Then the free topological group F(X) and the free
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abelian topological group A(X) are homeomorphic to an open subset of the locally
convex space with finest topology R“ = lim R™.

Returning to general Tychonoff spaces X, one can still describe the topology of
F(X) with the help of mappings i, , but in a fairly non-constructuve way. The following
construction was performed by Mal’cev [82]. Denote by T, the quotient topology on
F(X) with respect to the direct sum of the mappings ¢,, n € N from the space
@neNf ", It is a Hausdorff, but not necessarily a group, topology. Now construct
recursively a transfinite chain of topologies ) on F(X) by defining Tx41 as the
quotient of the topology on F(X) x F(X) with respect to the mapping (z,y) — 'y,
and ¥, for a limit cardinal 7 as the infimum of the chain of topologies ¥y, A < 7.
It is clear that for some A large enough, the topology T coincides with the topology
of F(X). Denote the least A with this property by A(X). The following question has
been open for more than three decades.

PROBLEM. (Mal’cev [82]) Which values can A(X) assume?

Seemingly, all one knows is that A(X) = 0 for k.-spaces, and A(X) > 0 for most
spaces beyond this class (for instance, for X = Q). In connection with this problem,
see also [135].

Another long-standing problem asked by Mal’cev in the same paper [82] — that
of presenting a constructive description of a neighbourhood system of the identity in
a free topological group — was solved by Tkachenko [163]. Later simpler versions of
Tkachenko’s theorem were obtained by the author [120] and Sipacheva [152]. We shall
give one of the possible forms of the result. It is more reasonable to state it for free
topological groups F(X) over uniform spaces (bearing in mind that for a Tychonoff
space X the free topological grop over X is canonically isomorphic to the free topo-
logical group over the finest uniform space associated to X ). Let X = (X,Ux) be a
uniform space. Denote by j, a mapping from X? to F3(X) of the form (z,y) — =™y,
and by j*, a similar mapping of the form (z,y) — zy™!. If ¥ € (Ux)F(x) is a family
of entourages of the diagonal indexed by elements of the free group over X, then we
put

Ve =aes |z - [12(2(2)) U3*5(¥(2))] - 27" : = € F(X)}

If B, is a sequence of subsets of some group then, following [146], we set

[(B,,)] =def U Uzes, B1r(1) . B,(z) et B,(n),
neEN

where S, is a symmetric group.

THEOREM 2.5. (Pestov[120]) Let (X,Ux) be a uniform space. A base of neigh-
bourhoods of the identity in the free topological group F(X) is formed by all sets of the
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form [(Vw,)], where {¥,} runs over the family of all countable sequences of elements
of (Ux)F ).

Among other results on the algebraic-topological structure of free topological
groups let us mention a nice theorem of Tkachenko [160, 161] stating that the free
topological group over a compact space has the countable chain condition (together
with its subsequent generalisation due to Uspenskii [167]), and a characterisation of
Tychonoff spaces X such that the free topological group F(X) embeds into a direct
product of a family of separable metrisable groups [46].

There exists a very convenient and simple description of the topology of the free
abelian topological group A(X) which has no analog in the non-commutative case. One
can define Graev metrics on A(X) in the same way as for F(X), and it turns out that
they describe the topology of A(X). It follows from this observation that the canonical
morphism from A(X) to the free locally convex space L(X) is an embedding of A(X)
as a closed topological subgroup (see, for example, [162]).

The embedding A(X) < L(X) enables one to describe the topology of A(X)
as the topology of uniform convergence on all equicontinuous families of characters of
A(X), and this way Pontryagin-van Kampen duality comes into play. The first time the
Pontryagin-van Kampen duality for free abelian topological groups was studied by was
Nickolas [106] who showed, answering a question by Noble [108], that the topological
group A[0,1] is non-reflexive (that is, does not verify the statement of the Pontryagin
duality theorem). Later the author obtained the following result.

THEOREM 2.6. (Pestov [121]) Let X be a Dieudonné complete k-space with
dim X = 0. Then the free abelian topological group A(X) is reflexive.

3. DIMENSION OF FREE TOPOLOGICAL BASES

In 1945 Markov in one of his important papers [86] asked whether any two Ty-
chonoff topological spaces, X and Y, with isomorphic free topological groups F{(X)
and F(Y), are necessarily homeomorphic. Soon Graev in his no less important papers
[41, 42] answered in the negative by constructing a whole series of pairs X,Y of spaces
with F(X) & F(Y), and thus the resulting relation of equivalence between Tychonoff
spaces turned out to be substantial. Graev called such spaces X and Y F-equivalent;
we follow the terminology due to Arhangel’skii [7, 9, 10, 11, 12] and call such spaces
Markov equivalent or M-equivalent. Graev paid special attention to the pairs of spaces
X,Y with Graev free topological groups isomorphic, Fg(X) = Fg(Y); however, the
distinction between the two relations of equivalence is — from the viewpoint of their
topological properties — inessential. With the help of Arhangel’skii’s terminology, one
of the central results of the Graev’s paper [41] can be formulated like this.
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THEOREM 3.1. (1948, Graev) If X and Y are M-equivalent compact metrisable
spaces then dim X =dim Y.

(Here dim X stands for the Lebesgue covering dimension of a space X .)

This result — as well as the technique of the proof — has received a lot of attention.
The generalisations of the result came in two directions: firstly, the equivalence relation
was replaced by more and more loose ones, and secondly, the topological restrictions
on the spaces X,Y were weakened.

In 1976 Joiner [60] noticed that the conclusion dim X = dim Y remains trueif X
and Y are both locally compact metrisable spaces such that the free abelian topological
groups, A(X) and A(Y), are isomorphic. (Following Arhangel’skil, we call such spaces
X,Y A-equivalent) Of course, A-equivalence of two topological spaces follows from
their M-equivalence, because the universal arrow A(X) is a composition of the universal
arrow F(X) and the functor of abelianisation TopGrp — AbTopGrp.

Consider the universal arrow from the free abelian topological group A(X) to
the forgetful functor from the category of locally convex spaces with weak topology
to AbTopGrp. The composition of two universal arrows is obviously the free locally
convex space in weak topology, Lp(X). Therefore, we come to a still looser relation of
equivalence between two spaces: X and Y are l-equivalent if L,(X) = Lp(Y). In 1980
Pavlovskii [113] showed that dim X = dim Y if X and Y are l-equivalent spaces
which are esther locally compact metrisable or separable complete metrisable.

So far all proofs relied on a suitable refinement of the original Graev techniques.
A basically new method — that of inverse spectra — was invoked and applied to this
problem by Arhangel’skii [7, 10] who deduced from Pavlovskii’s theorem the following
landmark result.

THEOREM 3.2. (Arhangel’skii 1980) Let X and Y be l-equivalent compact
spaces. Then dim X =dim Y.

Independently a weaker version was obtained by Zambakhidze [177]: the covering
dimension of any two M-equivalent compact spaces is the same. Later this result was
generalised by him to the class of Cech complete, scaly, normal, totally paracompact
spaces [178] (it remained not quite clear how wide this class actually was). About the
same time the result was independently somewhat generalised by Valov and Pasynkov
[173].

Further efforts were boosted by a question asked by Arhangel’skii [9] on whether it
was true that for Tychonoff M-equivalent spaces X and Y one has dim X = dim Y ?

The answer “yes” came from the author, who proved in late 1981 [116] the following
result by combining and adjusting both Graev’s lemma and the spectral technique of
Arhangel’skii:
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THEOREM 3.3. (Pestov, 1981) If X and Y are l-equivalent Tychonoff spaces
then dim X =dim Y.

As a matter of fact, the aforementioned Graev’s lemma, which forms the core of
the proofs, is not a single result but rather a scheme of results, improved and adjusted
from one situation to another. We present it as it appears in [118], not in the most
general form possible, but in a quite elegant one.

GRAEV’S LEMMA 3.4. If X and Y are M-equivalent Tychonoff spaces then
X is a union of countably many closed subspaces each of which is homeomorphic to a
subspaceof Y .

Then one uses addition theorems for covering dimension valid for spaces with count-
able base; to proceed from such spaces to a general situation, the Tychonoff spaces X
and Y are decomposed in inverse spectra of spaces with countable base and the same
dimension as dim X and dim Y'; the property of l-equivalence of the two limit spaces
is partly delegated to the spectrum spaces, in a form strong enough to ensure a version
of Graev’s lemma.

It was shown by Burov [25] that both the result and the scheme of the proof
remain true also for cohomological dimension dimg where the group of coefficients G
is a finitely generated abelian group (for instance, dimz X = dim X).

The weak dual space to L,(X) is the space of continuous functions on X with the
topology of simple (pointwise) convergence, Cp(X). (It follows actually from a version
of the Yoneda lemma). The theory of the linear topological structure of the LCS Cp(X)
has grown out of Banach space theory, after the following observation proved useful [28]:
any Banach space E in weak topology is a subspace of Cp(X) where X is the closed
unit ball of the dual to E with weak™* topology. This theory is developing now on its
own, and a good survey is [13]. A bridge between the theory of spaces Cp(X) and
universal arrow theory is erected by means of the following observation: since the two
LCS’s in weak topology, Lp(X) and Cp(X), are in duality, then two topological spaces
X and Y are l-equivalent if and only if Cp(X) and C,(Y') are isomorphic.

Arhangel’skii was the first to suggest an even weaker relation of equivalence between
two Tychonoff topological spaces, X and Y: two such spaces are called u-equivalent
if the locally convex spaces Cp(X) and C,(Y’) are isomorphic as uniform spaces (with
the natural additive uniformity). Surprisingly, it was possible to make one more step
in extending the original Graev result.

THEOREM 3.5. (Gulko, [44]) If X and Y are u-equivalent Tychonoff spaces
then dim X =dim Y.

The proof of Gul’ko’s result [44] develops along the same lines as the author’s
earlier theorem, but technically it is considerably more sophisticated, and — to the
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best of author’s knowledge — no “soft” version of the proof exists at the moment.

One can consider an even weaker relation of equivalence: two topological spaces,
X and Y, are said to be t-equivalent [45] if the locally convex spaces Cp(X) and
Cp(Y) are homeomorphic as topological spaces. It is not known whether the dimension
is preserved under the relation of t-equivalence. It is worth mentioning that all the
aforementioned equivalence relations (those of M-, l-, u-, t-equivalence) have been
distinguished from each other.

What remains still unclear, is the existence of a reasonable straightforward char-
acterisation of dimension of a Tychonoff space X in terms of the additive uniformity
of the LCS Cp(X), or the linear topological structure of the space Ly(X), or — at the
very least — the algebraic-topological strucuture of F(X). The existing proofs are in
a sense obscure and do not reveal the real machinery keeping dimension preserved by
the equivalence relations.

It is an opinion of the author that emerged from discussions with Gul’ko in April
1991 that a complete understanding of the phenomenon of preservation of dimension is

to be sought on the following way.

CONJECTURE. The Lebesgue dimension of X can be expressed in terms of a certain
(co)homology theory associated with the LCS in weak topology L,(X).

It is not clear if one can use any of the already existing (co)homology theories
for locally convex spaces, because the desired theory should make a sharp distinction
between week and normable topologies. For instance, the space C(X) endowed with
the topology of uniform convergence on compacta instead of the pointwise topology
carries essentially no information about the dimension of X, according to the celebrated
Milyutin isomorphic classification theorem [90].

The following remarkable theorem by Pavlovskii may be also sugggestive; to our
knowledge, no attempt has been made yet to generalise it to arbitrary CW-complexes.

THEOREM 3.6. (Pavlovskii [113]) Two polyhedra (simplicial complexes) X and
Y are l-equivalent if and only if dim X =dim Y.

In addition to Gel’fand-Naimark duality, general interest in the problem of preser-
vation of properties of topological spaces by different functors from the category Tych
to the categories of topological algebra has been heated for a long time by the following
result of Nagata [102].

THEOREM 3.7. (1949, Nagata) Two Tychonoff spaces X and Y are homeo-
morphic if and only if the topological rings Cp(X) and C,(Y) are isomorphic. In
other terms, the functor Cp(-) from Tych to TopRings is a (contravariant) inclusion
functor.

By considering for every Tychonoff space X the universal arrow from X to a

https://doi.org/10.1017/50004972700015665 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015665

222 V.G. Pestov [14]

forgetful functor from the category TopGrp to Tych sending a topological group to
a topological subspace consisting of all elements of order 2, one comes to the following
result [124].

THEOREM 3.8. There exists a (covariant) inclusion functor Tych — TopGrp.

There is no full inclusion functor of such kind [124].
The following question seems very natural in connection with our problematics,

and it was asked independently by many (for example, by Zarichnyy at the International
Topological Conference, Baku-1987):

QUESTION. Is it true that K-groups of M-equivalent Tychonoff topological spaces are
isomorphic?

An obvious idea, to obtain the affirmative answer with the help of universal clas-
sifying groups, fails, because if G is a non-abelian topological group and X and Y
are M-equivalent, then it follows (from Yoneda’s lemma, actually) that K(X) and
K(Y) are isomorphic as sets, not groups: contrary to what is asserted in [173], the set
Hom.(F(X),G) does not carry a natural group structure because of non-commutativity
of G — and the universal classifying groups in K-theory are noncommutitive.

The general classification of topological spaces up to an M-equivalence (as well
as l-equivelence and other relations mentioned in this section) seems a totally hope-
less problem. For numerous results on preservation and non-preservation of particular
properties of set-theoretic topology by M-equivalence, l-equivalence, et cetera, see [7,
9,11, 12, 38, 39, 111, 165, 166].

4. TOWARDS A TOPOLOGICAL VERSION OF THE NIELSEN-SCHREIER THEOREM
The celebrated Nielsen-Schreier theorem states that every subgroup of a free group
is free, and it is equally well known that every subgroup of a free abelian group is free
abelian. The analogous result is no longer true for free (abelian) topological groups
[41, 23, 56]. However, there exist certain sufficient conditions for a subgroup of a free
topological group to be topologically free [24]. Namely, the following result is true.
THEOREM 4.1. (Brown and Hardy [24]) Let X be a k,-space and let H be
a closed topological subgroup of F(X). Suppose there exists a continuous Schreier
transversal s : F(X)/H — F(X) for the subgroup H. Then the canonical Nielsen-

Schreier basis consisting of all elements
S(Hg)xa(ng)—lv 9 € F(X), z€ X,
is a free topological basis for H if endowed with the induced topology.

In particular, an open subgroup of a free topological group over a k, space is
topologically free (ibidem). For a detailed account of corollaries of the Brown-Hardy
techniques and related developments, see [105].
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It seems that there exists no similar result for subgroups of free abelian topological
groups. A recent development is the following:

THEOREM 4.2. (Morris and Pestov {98]) An open subgroup of a free abelian
topological group over a completely regular space X is a free abelian topological group
over a free topological basis of the same covering dimension as dim X .

The following natural question arises as a part of the general topological version of
the Nielsen-Schreier subgroup theorem. Let X and Y be some particular topological
spaces; in which cases can the free (abelian) topological group over X be embedded (not
necessarily in some “canonical” way) as a topological subgroup into the free (abelian)
topological group over Y ? This problem was treated for a long time, and the main
device was the above Theorem 2.1. Main achievements belong in the realm of k,

spaces. We shall mention three astonishing results in this direction.

THEOREM 4.3. [74]If X is a closed topological subspace of the free topological
group F(I) then the free topological group F(X) is a closed topological subgroup of
F(I).

COROLLARY 4.4. [104, 105] If X is a finite-dimensional metrisable compact
space then F(X) is a closed topological subgroup of F(I).

THEOREM 4.5. (Katz and Morrs [69]) If X is a countable CW-complex of
dimension n, then the free abelian topological group on X is a closed subgroup of the
free abelian topological group on the closed ball B™.

Now let us return for a while to Theorem 3.3. This result bears a striking similarity
to the well-known property of free bases of a discrete free (abelian) group: every two
of them have the same cardinality, called the renk of a free (abelian) group. For this
reason, it seems natural to refer to the dimension of any free topological basis of a free
(abelian) topological group as the topological rank of it. The rank of a subgroup of a
free group can exceed the rank of the group itself (the free group with two generators
contains as a subgroup the free group over infinitely many generators), and the same is
true for topological rank, according to the above Theorem 4.4. At the same time, the
rank of a subgroup of a free abelian group cannot exceed the rank of the group itself,
and the following conjecture was put forward in [71, 96]: the topological rank of a free
topological abelian subgroup of a free abelian topological group Ag(X) cannot ezceed
dim X.

In spite of strong evidence in support of the conjecture (for example, Theorem 4.2
above implies that the topological rank of an open subgroup of a free abelian topological
group is the same as the topological rank of the group itself), the problem was recently
solved in the negative for X = [0,1]. A surprising point about the aforementioned
conjecture is that it turned out to be nearly equivalent to Hilbert’s Problem 13 —
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so no wonder it remained open for long! (Fortunately enough, Hilbert’s problem 13
had been solved by Kolmogorov, and the proof of the following is based on his famous
Superposition Theorem.)

THEOREM 4.6. (Leiderman, Morris and Pestov [78]) For a completely regular
space X the following are equivalent.

(i) The free abelian topological group A(X) embeds into A(I) as a topolog-
ical subgroup.
(it) The free topological group F(X) embeds into F(I) as a topological sub-
group.
(iii) X is homeomorphic to a closed topological subspace of A(I).
(iv) X is homeomorphic to a closed topological subspace of F(I).
(v) X is homeomorphic to a closed topological subspace of R™.
(vi) X is a k., space such that every compact subspace of X is metrisable
and finite-dimensional.
(vil)) X is a submetrisable k, space such that every compact subspace of X
is finite-dimensional.

The following particular case of the topological version of the Nielsen-Schreier the-
orem has received a complete solution. If X is a subset of a set Y, then the free group
over the set of generators X is a subgroup of the free group over Y. Now let X be a
topological subspace of a Tychonoff space Y ; there is still a canonical continuous group
monomorphism F(X) — F(Y), but it need not be a topological embedding. Graev
has shown [41, 42] that if Y is compact and X is closed in Y then F(X) — F(Y) isa
isomorphic embedding of topological groups. This result was transferred to k,-spaces.
It it known that a necessary condition for the monomorphism F(X) — F(Y) to be
topological is that the restriction Uy|x of the universal uniformity Uy from Y to X
coincides with the universal uniformity Ux of X . (It is just an immedeate consequence
of the fact that both left and two-sided uniformities on F(X) induce on X its universal
uniform structure — which in its turn follows from the existence of Graev’s pseudo-
metrics on F(X) and was essentially known to Graev; perhaps Flood [37] was the first
to state the condition in an explicit form.) In {114, 115, 117] and [110] it was shown
independently, as an answer to a question by Hardy, Morris and Thompson [48], that
the above condition Uy |x = Ux is sufficient in the case where X is densein Y. A final
positive answer was obtained by Sipacheva [153] after a series of results of intermediate
strength (169, 171].

THEOREM 4.7. (Sipacheva [153]) Let X be a topological subspace of a Ty-
chonoff space Y. Then the monomorphism F(X)— F(Y) is a topological embedding
if and only if Uy |x = Ux .
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A similar result for free abelian topological groups and free locally convex spaces
was earlier obtained by Flood (37]. The noncommutative case treated by Sipacheva
proved to be much more difficult.

OPEN PROBLEM. Describe those subgroups of a free (abelian) topological group F(X)
over a completely regular space X which are themselves free (respectively, free abelian)
topological groups.

5. COMPLETENESS

Our next topic can be also traced back to Graev’s papers [41, 42]. Graev deduced
from his description of the topology of the free group over a compact space that any
such free topological group is Weil complete (that is, complete with respect to the left
uniform structure). The result remains true for free topological groups over k,-spaces.

Examples of topological groups which are complete in their two-sided uniformity
but not Weil complete (and therefore admit no Weil completion at all) have been known
for decades, but seemingly it remains still unclear whether or not free topological groups
admit Weil completion. This question was asked by Hunt and Morris [56].

An obvious necessary condition for a free topological group to be Weil-complete is
the Dieudonné completeness of X, that is, completeness of X with respect to the finest
uniformity Ux . There are only a series of partial results stating the Weil completeness
of free topological groups over particular spaces [169].

However, it seems in a sense more natural to examine free topological groups for
another form of completeness — completeness with respect to the two-sided uniformity
(sometimes also called Ratkov completeness), [141, 109]. There exists a fascinating
comprehensive result for completeness of this kind, and the question about the validity
of such a result was first asked independently by Nummela [110] and the author (in
oral form, talk at Arhangel’skii’s seminar on topological algebra at Moscow University,
February 1981).

THEOREM 5.1. (Sipacheva, [153]) The free topological group F(X) over a Ty-
chonoff space X is complete if and only if X is Dieudonné complete.

The idea of the proof is based on the notion of a special universal arrow, F,(X),
introduced by Tkachenko {163, 164|. Say that a subspace Y of a topological group G 1is
Tkachenko thinif for every neighbourhood of the identity, U, the set (J{yUy ™' :y € Y}
is a neighbourhood of the identity. Consider the category of pairs (G,Y) where G is
a Hausdorff topological group and Y is a Tkachenko thin subset of G, and obvious
morphisms between them, and let S be the functor from this category to Tych of the
form (G,Y) — Y. Now by F,(X) one denotes the universal arrow from a Tychonoff
space X to the functor §. There is a canonical continuous algebraic isomorphism
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F(X) — F,(X), and it can be shown without serious difficulties that the topological
group F,(X) is complete if and only if X is Dieudonné complete (163, 164]. In the
case where X is compact, just F,(X) = F(X) [163, 164]. Sipacheva proved that
the free topological group F(X) has a base of neighbourhoods of the identity that are
closed in the topology of the topological group F,(X).

The completeness of the free abelian topological group A(X) over Dieudonné com-
plete spaces X was established in [162] (and, as a matter of fact, much earlier — in
(371).

Let X be a set, and let V and W be any two uniformities on X generating the
same Tychonoff topology. (Such a triple (X,V,W) is termed sometimes a bi-uniform
space.)

QUESTION. Does there exist a topological group F(X,V, W) algebraically generated
by X (free over X ) such that V is the restriction to X of the left uniform structure of
G, and W is the restriction to X of the right uniform structure?

This question can be obviously reformulated in terms of universal arrows to for-
getful functors. This concept may help in understanding how the completeness works.

6. APPLICATIONS TO GENERAL TOPOLOGICAL GROUPS

In this section we consider some applications of free topological groups to the gen-
eral theory of topological groups. We remark that perhaps one owes the very existence
of the concept of free topological group to a stimulating applied problem of such a kind:
in his historical note [85] Markov was openly guided by the idea to answer a question
asked by Pontryagin and to construct the first ever example of a Hausdorff topological
group whose underlying space was not normal. (The free topological group over any
Tychonoff non-normal space X is such.)

Free topological groups provide flexible “building blocks” for erecting more sophis-
ticated constructions. Also, the following theorem is of crucial importance.

THEOREM 6.1. (Arhangel’skii [5]) Let f be a quotient mapping from a topo-
logical space X onto a topological group G. Then the continuous homomorphism
f:F(X) - G extending f is open and therefore G is a topological quotient group of
F(X).

Seemingly, analogs of this theorem exist for other types of universal arrows as well,
and one wonders whether this result can be given a universal categorical shaping. Such
results are invaluable for examining questions of existence of couniversal objects of one

kind or another.

1. NSS PROPERTY. A topological group G has no small subgroups if there is a neigh-
bourhood U of the identity element e such that the only subgroup in U is {e}. This
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is abbreviated to NSS. The crucial role of the NSS property in finite-dimensional Lie
theory (especially in connection with Hilbert’s Fifth Problem) is well known.

In 1971 Kaplansky wrote [65, p.89): “The following appears to be open: if G is
NSS and H is a closed normal subgroup of G, is G/H NSS? This is true if in addition
G s locally compact (...) (Of course it is an old result for Lie groups.)”

Very soon Morris [93] answered in the negative by constructing a counter-example.

Moreover, he proved the following result.

THEOREM 6.2. Let X be a submetrisable Tychonoff topological space (that
is, a Tychonoff space admitting a continuous metric). Then the Graev free abelian
topological group Ag(X) over X is an NSS group.

The proof of this result is so transparent that it deserves a special discussion. The
free (Graev) abelian topological group Ag(X) admits a continuous one-to-one group
homomorphism into the additive group of the free Banach space over the metric space
(X,p). (Here p stands for a continuous metric on X ). Since the additive group of a
Banach space is obviously an NSS group (the unit ball contains no nontrivial additive
subgroups) then so is Ag(X). We shall return to this proof later.

The above result was generalised to the noncommutative case by considerable suc-
cessive efforts of Morris and Thompson [100], Thompson [159], and Sipacheva and
Uspenskii [154]:

THEOREM 6.3. Let X be a submetrisable Tychonoff topological space. Then
the Markov free topological group F(X) over X is an NSS group.

It was asked in [100] whether the following result is true.
THEOREM 6.4. Each topological group is a quotient group of an NSS group.

The author [114, 117] has deduced Theorem 6.4 from Theorems 6.3 and 6.1, and
later it turned out that such a deduction follows at once from the above Theorems 6.3
and 6.1 in conjunction with [61], see [8, 9].

An elaborate proof of Theorem 6.3 can be found in [154]. The proof is definitely
“hard” — it relies on combinatorial techniques of words and their cancellations in free
groups. The concept of free Banach-Lie algebra enables us to provide a purely Lie-
theoretic (and certainly “soft”) proof of Theorem 6.3. (See Section 8 below.)

2. ZERO-DIMENSIONALITY. Our next story is about quotient groups of zero-dimensi-
onal topological groups, and it is strikingly similar to the preceding development. In
1938 Weil (see the note 8] for this and the next references) claimed that open con-
tinuous homomorphisms of topological groups do not increase dimension. This state-
ment was later refuted by Kaplan by means of a counterexample. Arhangel’skii [6]
shows that every topological group with a countable base is a quotient group of a zero-
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dimensional group. (Zero-dimensionality here and in the sequel is understood in the
sense of Lebesgue covering dimension dim.) Possible ways to represent any topological
group as a quotient group of a zero-dimensional one were discussed by Arhangel’skii in
[5], but until late 1980 the above conjecture remained open.

THEOREM 6.5. (Arhangel’skii [8,9]) Any topological group is a topological quo-
tient group of a group G with dim G =0.

Subtle topological considerations involving Graev metrics on free groups played a
crucial role in the proof of the main auxiliary result: if a submetrisable topological space
X 1is a disjoint union of a family of spaces each of which has a unique non-isolated
point then dim F(X) = 0. Then the fact that every Tychonoff space is a quotient of a
space with the above property is used, together with Arhangel’skii’s Theorem 6.1.

This result brought to life a variety of satellite theorems and examples refining the
statement. Of them by far the most important one is, from the author’s viewpoint, the
following.

THEOREM 6.6. (Sipacheva [153]) If X is a Tychonoff space and dim X = 0
then dim F(X)=0.

3. TOPOLOGISING A GROUP. As the last example, we discuss a problem of Markov [86]
remaining open for 40 years. A subset X of a group G is called unconditionally closed
in G if X is closed with respect to every Hausdorff group topology on G. Markov
asked [86] whether a group G admits a connected group topology if and only if every
unconditionally closed subgroup of G has indez > c¢. (Obviously, this condition is
necessary.)

The first counterexample was constructed by the author in [125]. Denote by L*(X)
the universal arrow from a uniform space X to the forgetful functor from the category
of pairs (E,Y), E a LCS and Y a bounded subset of E (with obviously defined
morphisms), to Unif, of the form (E,Y) - Y where Y inherits the additive uniformily
from E. If G is a topological group and H a closed subgroup, then the left action of
G on the quotient space G/H with a natural quotient uniform structure [146] lifts to
a continuous action of G on L*(G/H). The double semidirect product

Gl = (G x I¥(G)) x L*(X),

where X is the disjoint sum of a family of copies of a quotient space of G x L*( G), serves
as a counterexample to the Markov question in the case where G is an uncountable
totally disconnected topological group.

Later it was observed by Remus [143] that the infinite symmetric group S(X) with
pointwise topology provides another — much more transparent — counterexample to

Markov’s conjecture.
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The author’s techniques were also used by him to construct an example of a group
admitting a nontrivial Hausdorff group topology but admitting no non-trivial Hausdorff
metrisable topology [123].

Another problem of Markov still remains open. A subset X of a topological group
G is called absolutely closed if it is closed in the coarsest topology on G making all
mappings of the form

z — w(z)
continuous as soon as w(z) is a word in the alphabet formed by all elements of G and
a single variable z. This topology is an analog of the Zariski topology in affine spaces;
we think it is natural to call it the Markov topology on a group.

PrOBLEM. (Markov [86]) Prove of refute the conjecture: every unconditionally closed
subset of a group is absolutely closed.

Denote by Tar(G) the Markov topology on a group G, and by TA(G) the topology
intersection of all Hausdorfl group topologies on G. It is clear that Tap(G) C TA(G).
Markov’s problem can be be now put in other terms: is it true that for an arbitrary

group G one has Tm(G) = TA(G) ?

7. PREE PRODUCTS OF TOPOLOGICAL GROUPS

Graev [43] presented a constructive description of the topology of the free product
G * H of two compact groups. Later his result was generalised to topological groups
whose underlying spaces are k, [97], and a version of the Kurosh subgroup theorem
was established [104, 107].

One can ask about the free products of topological groups almost the same natural
questions as for free topological groups: to give a reasonable description of the topology
in the general case, to prove (or refute) that the free product of two (an arbitrary family
of) complete topological groups is a complete group; to prove (or refute) that if H, is a
topological subgroup of G, for every a € A then *,c4Hq is a topological subgroup of
*oc4Gqo. However, here is a question deserving, from our viewpoint, special attention
— and not only because of its respectable age.

The construction of the free product of groups is a generalisation of the construction
of a free group: indeed, the free group F(X) over the set X of free generators is just
the free product *,exZ. of | X| copies of the infinite cyclic group Z. This is obviously
not the case with free topological groups and free products of topological groups —
unless X is discrete. In 1950 Graev mentioned this and remarked that “the question
of ezistence of a natural consiruction which would embrace both free topological groups
and free products of topological groups still remains open.”

This problem has been solved for topological groups whose underlying spaces are
k., [24]. Let 7 : G — X be a quotient mapping between two completely regular spaces,
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and let every fiber of the map, G. = f'(z), ¢ € X, be endowed with a structure
of a group in such a way that a) with the topology inherited from G, the group G,
is topological, and b) the restriction of 7 to the subspace Eg = {eg, : ¢ € X} is a
homeomorphism. Then the topological quotient space G/Eg, obtained by identifying
all elements eg,, ¢ € X with each other, becomes a so-called topological groupoid [47).
There exists a universal arrow from any topological groupoid G to the forgetful functor
from TopGrp to the category of topological gropoids and relevant morphisms; it is
called the universal topological group of G and denoted by U(G) [47]. It is easy to
see that if X is discrete then U(G/Eg) is just the free product of topological groups
*zexGz, and if all the groups G, are isomoprhic to the discrete group Z then U(G/Eg)
is the free topological group F(X). The problem is:

OPEN QUESTION. Is the universal arrow from a topological groupoid of the form G/Eg
an embedding of G/E¢ into U(G/Eg) as a topological subgroupoid?

It was shown [24, 104] that it is the the case if G is a k., space. If the answer
to the above question is “yes” in the completely regular case as well, then the above
construction can be accepted as a fully satisfactory solution of the 1950 Graev problem.

The Graev problem can be connected with deformation theory and quantum
groups. In quantum physics, one considers deformations of algebraic-topological objects
(such as Lie groups) as families of objects, A, depending on a continuous parameter
%, which is assumed to be a “very small” real number approaching zero. Physically, h
is Planck’s constant, and the case k = 0 corresponds to the (quasi) classical limit of
a theory; what is deformed, is the object Ag. The absence of nontrivial deformations
for classical simple Lie groups and algebras was a reason for introducing new kind of
objects — the quantum groups [33, 84, 144, 147, 176)].

While there exists a rich mathematically sound deformation theory for Lie algebras,
deformations of Lie groups are often treated at a heuristic level. The conjectural Graev
construction would enable one to consider the family Gj, A > 0 of Lie groups as a
veritable continuous path in the topological space L£(G) of all closed subgroups of the
topological group G = U(G/Eg), endowed with an appropriate topology. Such spaces
have been thoroughly studied [137] in connection with extending the Mal’cev Local
Theorems to the case of locally compact groups. It is known that there exist numerous
“natural” topologies on the set £(G), including the Vietoris, Chabeauty, and other
topologies (loco citato).

8. FREE BANACH-LIE ALGEBRAS AND THEIR LIE GROUPS

The free Banach-Lie algebra, lie(E), over a normed space E is the universal arrow
from E to the forgetful functor S from the category BLA of complete Lie algebras
endowed with submultiplicative norm to the category Norm of normed linear spaces.
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THEOREM 8.1. (Pestov [130]) The free Banach-Lie algebra exists for every
normed space E, and E — lie(E) is an isometric embedding. The Lie algebra lie(E)
is centreless and infinite-dimensional if dim E > 0.

One can also define the free Banach-Lie algebra over an arbitrary pointed metric
space X (we shall denote it liex ) as the universal arrow from X to the forgetful functor
from BLA to Met, (zero goes to the basepoint). Obviously, it is just the composition
of the free Banach space and free Banach-Lie algebra arrows.

A Banach-Lie algebra g is called enlargable if it comes from a Banach-Lie group.
Every free Banach-Lie algebra is enlargable, and we shall denote the corresponding sim-
ply connected Banach-Lie group by £&(E) (respectively, £&x ). Since every Banach-
Lie algebra g is a quotient Banach-Lie algebra of the free Banach-Lie algebra over
the underlying Banach space of g, then we come to an independent proof of a result
due to van Est and Swierczkowski (157]: every Banach-Lie algebra is a quotient of an
enlargable Banach-Lie algebra.

This result can be strengthened. The couniversality of the Banach space l; among
all separable Banach spaces is well-known [79]. (Actually, it is due to the fact.that [ is
the free Banach space over a discrete metric space). Therefore, [ie(l;) is a couniversal
separable Banach-Lie algebra, and the universality property is transfered to the Lie
group £6(l,).

THEOREM 8.2. There exists a couniversal connected separable Banach-Lie group.

Of course, the same is true for groups containing a dense subset of cardinality < 7.

One can show using results of Mycielski [101] and an idea of Gelbaum [39] that for
any metric space X , the exponential image of X\{0} in the Lie group &£x generates
an algebraically free subgroup. Now let Y be a submetrisable pointed space admitting
a one-to-one continuous mapping to X. The composition of this mapping and the
exponential mapping expg Sx determines a continuous monomorphism Fg(Y) - &£k,
and since any Banach-Lie group has the NSS property then it is shared by Fg(Y'). This
is the promised “soft” proof of the Morris-Thompson-Sipacheva-Uspenskii theorem. In
fact, it is just an extension of Morris’s original argument (see Theorem 6.2 above)
to the non-commutative case: indeed, Banach spaces are exactly simply connected
commutative Banach-Lie groups!

In view of the existence of a couniversal separable Banach-Lie group, the following

question seems most natural.

QUESTION. Does there exist a universal separable Banach-Lie group?
One should compare it with the following fascinating result of Uspenskit [170].

THEOREM 8.3. (Uspenskii) The group of isometries of the Banach space C (I*0)
endowed with the strong operator topology is a universal topological group with a
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countable base.

In contrast, the general linear group GL(E) of any Banach space E, endowed with
the uniform operator topology, cannot serve as a universal Banach-Lie group because
there exist separable enlargable Banach-Lie algebras g which do not admit a faithful
linear representation in a Banach space [172].

The universal arrow from a Lie algebra, g, to the forgetful functor from the category
of associative algebras to the category of Lie algebras is well-known; this is the universal
enveloping algebra, U(g), of g [32].

It seems that little is known about a topologised version of this, that is, the universal
arrow from a locally convex Lie algebra, g, to the forgetful functor from the category of
locally convex associative algebras to the category of locally convex Lie algebras. Let us
denote this arrow by iy : g — Ur(g). Is 7, an embedding of topological algebras? (That
is, does a topological version of the Poincaré-Birkhoff-Witt theorem hold?) Is Ur(g)
algebraically isomorphic to U(g)? What about the convergence of the exponential
mapping for Ur(g)?

The only result in this connection I am aware of is the following.

THEOREM 8.4. [22] The universal enveloping algebra U(g) of a finite-
dimensional Lie algebra g can be made into a normed algebra if and only if g is
nilpotent.

This means that, firstly, a metric version of the universal arrow makes no sense and,
secondly, in general the algebra Ur(g) is non-normable even if g is finite-dimensional.

A detailed analysis of the structure of the locally convex associative algebra Ur(g)
would be helpful in connection with enlargability problems for g.

9. THE LIE-CARTAN THEOREM

The Lie-Cartan theorem says that finite-dimensional Lie algebras are enlargable,
and it seems that the question of the existence of a “direct” proof of the Lie-Cartan
theorem, which would be independent of both known proofs (the cohomological one
by Cartan [26] and the representation-theoretic one by Ado [1]), is still open. For a
detailed discussion, see the book [136], where it is claimed that the above question for
a long time received attention from both French and Moscow schools of Lie theorists.

In this Section we discuss the idea of a conjectural proof based entirely on universal
arrows type constructions (free topological groups and free Banach-Lie algebras).

It is well known how by means of the Hausdorff series H(z,y) one can associate
in the most natural and straightforward way a local Lie group (or, rather, a Lie group
germ in the sense of [145]) to any Banach-Lie algebra g [22]. This is why, according to
a result of Swierczkowski [155], the problem of enlarging a given Banach-Lie algebra g
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is completely reduced to the problem of embedding a local Banach-Lie group U into a
topological group G as a local topological subgroup.

Let g be a Banach-Lie algebra. Fix a neighbourhood of zero, U, such that the
Hausdorff series H(z,y) converges for every z,y € U. (For example, set U equal
to a closed ball of radius less than (1/3)log (3/2) [22].) Denote by N} a normal
subgroup generated by all elements of the form z~!(z.(—y)]y, z,y € U. Clearly enough,
the subgroup N does not depend on the particular choice of U. Denote by Gy the
topological group quotient of F(g) by Ny, and by ¢4 : g — G, the restriction of the
quotient homomorphism 7, : F(g) — G4 to g. One can prove that my is a universal
arrow of a certain type.

It is well known (in different terms, though — [156]) that the enlargability of g is

equivalent to any of the following conditions:

(a) the intersection NgNg is discrete in g;

(b) the restriction of ¢4 to a neighbourhood of zero in g is one-to-one;

{c) the topological group Gy can be given the structure of an analytical
Banach-Lie group in such a way that ¢; is a local analytical diffeo-
morphism; in this case Lie (G;) = g, ¢3 = expg,, and Gy is simply
connected.

Although one can show that the closedness of AV in general is not sufficent for any
of these conditions to be fulfilled, it s so in the following particular case.

THEOREM 9.1. ([131] A Banach-Lie algebra g with finite-dimensional centre is
enlargable if and only if the subgroup N is closed in F(g). In this case the quotient
topological group G carries the natural structure of a Banach-Lie group associated to
g.

The proof of this result goes as follows: firstly, it is reduced to separable Banach-
Lie algebras with the help of a local theorem [126], and then certain perfectly direct
and functorial constructions are used, including the free Banach-Lie algebra over the
underlying Banach space of g, the Banach-Lie group associated to it, and their quo-
tients. Now only one obstacle remains between us and a direct proof of the Lie-Cartan
theorem.

CONJECTURE. The closedness of the subgroup A in the free topological group F(g)
over the underlying topological space of a finite-dimensional Lie algebra g can be proved
relying solely on the description of the topology of free topological groups over finite-
dimensional Euclidean spaces.

In fact, we conjecture that the subgroup N is topologically free over a k., space,
and thence complete and closed in any larger topological group.

We already know that N is always closed in F(g) for g finite-dimensional (it
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follows from the Lie-Cartan theorem), and it is tempting to think that the genuine
reason why the statement of Lie-Cartan theorem is always true for finite dimensional Lie
algebras, is not (co)homological but entirely in the realm of general topology, namely:
finite dimensional Lie algebras are k, spaces, while infinite dimensional ones are not.

10. LoCcALLY CONVEX LIE ALGEBRAS AND GROUPS

Infinite-dimensional groups play a major role in contemporary pure and applied
mathematics [62, 63]. Many of them cannot be given the structure of a Banach-Lie
group (for example, groups of diffeomorphisms of manifolds, some of their subgroups
preserving a certain differential-geometric structure, Kac-Moody groups). At the same
time, in all particular examples of an infinite-dimensional group there is associated in
some natural way an infinite-dimensional Lie algebra, and therefore it is appealing, to
try to develop a version of Lie theory with all its attributes general enough to embrace
all particular examples of infinite-dimensional groups.

Such attempts have led to the theory of Lie groups modeled over locally convex
spaces (bornological and sequentially complete [89]), especially Lie groups modeled over
Fréchet spaces [76]. We shall call a Fréchet-Lie group a group object in the category
of smooth Fréchet manifolds, that is — in this case — just a smooth manifold modeled
over a Fréchet space which carries a group structure such that the group operations are
Fréchet C°.

There is a striking difference between the Banach and Fréchet versions of Lie theory.
For example, although there is a well-defined notion of the Lie algebra, Lie (G), of a
Fréchet-Lie group G (which is a Fréchet-Lie algebra), the exponential mapping expg :
Lie (G) — G need not be C* nor a local diffeomorphism; therefore there is in general
no canonical atlas on a Fréchet-Lie group. Moreover, the following question seems to
be still open:

QUESTION. [89, 76] Does the exponential map expg : Lie (G) — G always exist for a
Fréchet-Lie group G?

Because of such misbehaviour of Fréchet-Lie theory, some mathematicians question
its ability to serve as a basis for infinite-dimensional group theory. Among them is
Kirillov who once (Novosibirsk, January 1988) even expressed the opinion that obtaining
an answer to the above question either in the positive or in the negative sense would
be disadvantageous all the same!

Nevertheless, we believe that this question should be answered in order to un-
derstand the proper place of Fréchet-Lie theory, and now we want to present a new,
universal arrow type construction of locally convex Lie algebras, which may give a clue.

It is convenient to present the results in the spirit of the A-normed spaces and
algebras of Antonovskii, Boltyanskii and Sarymsakov [2].
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Let A be a directed partially ordered set. A vector space E is said to be A-
normed if there is fixed a family of seminorms p = {ps : § € A} with the property
Ps < py < 8§ < v. (The family p is called a A -norm because it can be treated as a
single map E x E — R® where R2 is the so-called topological semifield, and it satisfies
close analogs of all three axioms of a usual norm.)

Let A be an algebra. We shall say that a A-norm p = {ps : § € A} on A is

submultiplicative if

(i) for every 8,7 € A such that § < v and for every z,y € A one has
ps(z *y) < py() - p4(y), where * denotes the binary algebra operation;

(1) for every § € A there is a vy such that for every z,y € A one has
ps(z *y) < p+(2) - P+(y)-

One can show that the topology of every locally convex topological algebra is given
by an appropriate submultiplicative A-norm. For example, the locally multiplicatively
convex topological algebras introduced by Arens and Michael [3, 87] are characterised
by the existence of a A-norm with the property ps(z *y) < ps(z) -ps(y) forall z,y € 4
and every § € A.

For a fixed directed set A the class of all complete A-normed Lie algebras forms a

category with contracting Lie algebra homomorphisms as morphisms. We shall denote
this category ALA.

THEOREM 10.1. For every A-normed vector space (E,p) there exists a uni-
versal arrow from this space to the forgetful functor from ALA to the category of
A-normed spaces. It is an isometric embedding of (E,p) into a A-submultiplicateively
normed Lie algebra lie(E).

In the particular case where A is a one-point set, the above construction coincides
with the construction of a free Banach-Lie algebra over a normed space considered
earlier.

If A has countable cofinality type (in particular, is countable) then the Lie algebra
lie(E) is a Fréchet-Lie algebra.

The algebra lie(E) is centreless and infinite-dimensional (unless dim E = 1). It
is completely unclear whether such Fréchet-Lie algebras are enlargable (that is, come
from Fréchet-Lie groups). The property of being centreless gives hope that the answer
is “yes,” at least in some cases. However, if A = N and the corresponding sequence of
seminorms, p, grows “fast enough,” there is a good evidence that [ie(E,p) can have no

exponential map.

THEOREM 10.2. Let (E,|-||) be a normed space. Define a A-norm p, where
A = N, by letting p, = n!||-||, n € N. Suppose there exists a Fréchet-Lie group, G,
associated to the Lie algebra lie(F). Then there is no exponential map lie(E) —» G.
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One can also study free locally convez Lie algebras over locally convex spaces,
that is, universal arrows from an LCS E to the forgetful functor from the category
of locally convex topological Lie algebras and continuous Lie algebra homomorphisms
to the category of locally convex spaces. We shall denote the free locally convex Lie
algebra over E by Qé[ie(E). If X is a Tychonoff space, then one can consider the free
locally conver Lie algebra over X, defined either as the composition of the free locally
convex space L(X) and the free locally convex Lie algebra, or directly as the universal
arrow from X to the forgetful functor from the category of locally convex topological
Lie algebras and continuous Lie algebra homomorphisms to the category Tych. We
denote this Lie algebra by LCliex .

P. de la Harpe has kindly drawn my attention to the following problem.

PROBLEM. (Bourbaki [22]) Is it true that every extension of a Lie algebra g by means
of a g-module M is trivial (in other terms, H*(g, M) = (0) for every g-module M) if
and only if g is a free Lie algebra?

The property H?(g, M) = (0) is readily verifiable for a free Lie algebra g, but the
validity of the inverse implication is not known.

It is not clear yet whether free locally convex Lie algebras can help in answering
the above question (supposedly in the negative), but at the very least, they enjoy a
similar property for continuous second cohomology.

THEOREM 10.3. Let X be a separable metrisable topological space, and let
M be a complete normable locally convex L£C€liex-module. Then every locally con-
vex extension of the Lie algebra LCliex by means of M is trivial. In particular,
HZ(Leliex, M) = (0).

The proof follows the argument for free Lie algebras, but the Michael Selection
Theorem (Theorem 1.4.9 in [174]) is involved.

In some cases one managed to establish the triviality of algebraic second cohomology
for locally convex (and even Banach) Lie algebras [29].

11. SUPERMATHEMATICS

The (unhappy but hardly avoidable) term “supermathematics” is used to designate
the mathematical background of dynamical theories with nontrivial fermionic sector
in the quasi-classical limit £ — 0. The “supermathematics” includes superalgebra,
superanalysis, supergeometry et cetera, all of these being obtained from their “ordinary”
counterparts by incorporating odd (anticommuting) quantities [15, 16, 17, 30, 83).

In one of those approaches an important role is played by the so-called ground
algebras, or algebras of supernumbers; in another approach, algebras of this type come
into being as algebras of superfunctions over purely odd supermanifolds. As a matter

https://doi.org/10.1017/50004972700015665 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015665

[29] Universal arrows to forgetful functors 237

of fact, those algebras turn out to be universal arrows of a special kind, and they also
find an independent application in infinite-dimensional differential geometry.

We shall give the necessary definitions. The term “graded” in this paper means
“Zy-graded”. A graded algebra A is an associative algebra over the basic field K
together with a fixed vector space decomposition A = A® @ A?, where A° is called the
even and Al the odd part (sector) of A, in such a way that the parity 7 of any element
z € AU A defined by letting z € A;,E € {0,1} = Z,, meets the following restriction:

zy =z + 3y, z)yeAOUAl

If in addition one has

zy = (-1)"yz, z,y € A°UA?

then A is called graded commutative.

THEOREM 11.1. [128,129] Let E be a normed space. There exists a universal
arrow ApE from E to the forgetful functor from the category of complete submulti-
plicatively normed graded commutative algebras to the category of normed spaces. It
contains B as a normed subspace of the odd part (ApE)" in such a way that EN {1}
topologically generates AgE and every linear operator f from E to the odd part A!
of a complete normed associative unital graded commutative algebra A with a norm

||f||mD < 1 extends to an even homomorphism f: AB E — A with a norm ||f‘ <1.
op

Algebraically, AgE is just the exterior algebra over the space E, endowed with
a relevant norm and completed after that. It enjoys one more property. A Banach-
Grassmann algebra [57] is a complete normed associative unital graded commutative
algebra A satisfying the following two conditions.

BG: (Jadczyk-Pilch self-duality). For any r,s € Z, = {0,1} and any bounded A°-
linear operator T: A" — A’ there exists a unique element a € A™* such that Tz = az
whenever z € A™. In addition, ||a|| equals the operator norm ||T|,, of T

BG,. The algebra A decomposes into an I; type sum A ~ K& J§ & A! where
K =R or C and J} is the even part of the closed ideal J, topologically generated by
the odd part A!. In other words, for an arbitrary z € A there exist elements zp €
K, z% € J?, and z! € A! suchthat z = zp +2%+ 2! and ||z| = ||zB| + ”x%” + ||:cl||

THEOREM 11.2. [129] Let E be a normed space. The following conditions are
equivalent:

(i) dim E = oo;
(ii) ABE is a Banach-Grassmann algebra.

The algebra Apl; (denoted by B,,) was widely used in superanalysis [57].
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Algebras of the type AgE appear in infinite-dimensional differential geometry: in
[75], Klimek and Lesniewski used them for constructing Pfaffian systems over infinite-
dimensional Banach spaces after it became clear that the previously considered Pfaffians
over Hilbert spaces are insufficient for applications in mathematical physics.

If one wishes to study algebras of superfunctions on purely odd (that is, including
fermionic degrees of freedom only) infinite dimensional supermanifolds modeled over
locally convez spaces, then another universal arrow comes into being. A locally convez
graded algebra A carries two structures - that of a graded algebra and of locally convex
space — in such a way that multiplication is continuous and both even and odd sectors
are closed subspaces of A. A topological algebra A is called locally multiplicatively
convez, or just locally m-convez, if its topology can be described by a family of submul-
tiplicative continuous seminorms. (Equivalently: A can be embedded into the direct
product of family of normable topological algebras.) [3, 87]. An Arens-Michael algebra
[49] is a complete locally m-convex algebra.

THEOREM 11.3. [127,128] Let E be a locally convex space. Then there exists
a universal arrow Aypm E from E to the forgetful functor from the category of graded
commutative Arens-Michael algebras to the category of locally convex spaces.

Two particular cases are well-known: A 4pR™0 is the DeWitt supernumber algebra
[30], and AamR¥ is the nuclear (LB) algebra considered in [77]. (Here R¥0 stands
for the direct product of countably many copies of R, and R“ denotes the direct limit
IER".) In addition, in the finite-dimensional case, AgpRY is just the Grassmann
algebra with ¢ odd generators.

Perhaps, the same sort of construction would serve as a base for the study of
Pfaffians on infinite dimensional locally convex spaces.

At present one of the most appealing unsolved problems in “supermathematics” is
to give a unified treatment of all existing approaches to the notion of a supermanifold
by viewing supermanifolds over non-trivial ground algebras A as superbundles over
Spec A.

Denote by G the category of finite-dimensional Grassmann algebras and unital
algebra homomorphisms preserving the grading. Let LCS®” denote the category
of all contravariant functors from G to the category LCS of locally convex spaces
and continuous linear operators; the category LCS®” is called the category of virtual
locally convez superspaces. Every graded locally convex space E = E°@® E' canonically
becomes an object of LCSY” | because it determines a functor of the form A(g) —
[A(g) ® E]°; we shall identify this functor with E. The simplest nontrivial example of
a virtual graded locally convex space is R!! = R! @ R!. The category LCS?” is a
subcategory of the category DiffLCS®” of all contravariant functors from G to the
category DIffLCS of locally convex spaces and infinitely smooth mappings between
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them.

CONJECTURE. The set of all morphismsin the category DIiffLCS®” froma purely odd
graded locally convex space E to R!? carries a natural structure of a graded locally
convex algebra canonically isomorphic to the free graded commutative Arens-Michael
algebra, /\AME;S, on the strong dual space E;,

For more applications of universal arrows in superanalysis, see [132].

12. C* ALGEBRAS AND NONCOMMUTATIVE MATHEMATICS

Every normed space E admits a universal arrow to the forgetful functor from the
category of (commutative) C*-algebras and their morphisms to the category of normed
spaces and contracting linear operators; we shall denote it by C*(E) (C%,,.(E), in the
commutative case), and refer to it as the free (commutative) C*-algebra over a normed
space. The arrows in both cases are isomorphic embeddings. This is simply due to
the two facts: firstly, every normed space E embeds into the C*-algebra of continuous
functions on the closed unit ball of the dual space E’' with the weak™* topology, and
secondly, the class of (commutative) C* algebras is closed under the [ -type sum.

This construction is a particular case of Blackadar’s construction of a C*-algebra
defined by generators and relations [19]. For example, the free C*-algebra over a set T’
of free generators [40] is just the free C*-algebra in our sense over the Banach space
I;(T"). In non-commutative topology [21] the C*-algebras C*(11(T')) (treated as objects
of the opposite category) are viewed as noncommutative versions of Tychonoff cubes
I™, because they are couniversal objects (universal — in the opposite category).

It is known that every free C*-algebra is residually finite-dimensional (RFD), that
is, admits a family of C*-algebra homomorphisms to finite-dimensional C*-algebras
separating points [40]. The same is true for our more general objects.

THEOREM 12.1. For every normed space E the C*-algebra C*(E) is residually
finite-dimensional.

This result seems interesting because there are few known classes of RFD C*-
algebras [35].

Both embeddings have been considered earlier [20, 148], where the so-called ma-
trix norms on E defined by those embeddings are denoted by M AX and MIN . This
construction is especially important for the so-called quantised functional analysis [34],
of which the idea is that all the main functional-analytic properties and results concern-
ing Banach spaces can be expressed in terms of the universal arrow C?, _ (E), so their
non-commutative versions stated for C*(E) constitute the object of quantised (that is,
noncommutative) functional analysis.

In this connection, it may be useful to consider two equivalence relations on Banach
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spaces, two such spaces, £ and F, being equivalent if and only if C*(E) = C*(F)
(respectively, Cr, (E) = C} .(F)).

If one wishes to study “quantised” theory of LCS’s then one should turn to the
similar universal arrows from a given LCS E to the forgetful functor from the category
of the so-called pro-C*-algebras in the sense of N.C. Phillips [134] (just inverse limits
of C*-algebras) and their morphisms to the forgetful functor to the category of LCS’s;
there are both commutative and non-commutative versions of those universal arrows.

Free C* algebras and other closely related universal arrows seem to be useful in
exploring the co-called compact forms of quantum groups (see [84, 133]).

Finally, we expect that a whole new class of examples of the so-called quantum
algebras in the sense of Jaffe and collaborators [58] can be obtained by considering
universal arrows from a set of data including graded normed spaces to the relevant

forgetful functor.
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