M. Yasumoto Nagoya Math. J. Vol. 70 (1978), 167-172

A NOTE ON SOME ORDERED RING

MASAHIRO YASUMOTO

An ordered ring with the least positive element 1 is a "Z-ring" if for each natural number n,

$$\forall x \exists y \exists m (x = ny + m) \qquad 0 \leq m < n$$
.

An element $x \neq 0$ of a Z-ring is "infinitely divisible" if for infinitely many natural numbers n,

$$\exists y \ (x = ny)$$
.

For example, Z (the set of integers) is a Z-ring with no infinitely divisible element. Another example of Z-rings is $R = \{f(X) \in Q[X] | f(0) \in Z\}$ where Q is the set of rationals and X is placed greater than all rationals. Then R has infinitely divisible elements, X, X^2 , etc. In this paper we prove

THEOREM. There exists a Z-ring A $(\neq Z)$ which has no infinitely divisible element.

Remark 1. The ring A which we construct has the following additional properties.

1) $\forall x \forall a \geq 0 \exists y \exists b (x = ay + b \& 0 \leq b \leq a).$

2) A is a unique factorization domain, i.e. every element can be uniquely factorized to a finite product of prime elements.

The existence of such Z-ring was suggested by R. Kurata. (see Remark 2)

We introduce some notations. (refer to [1]). Let N be the set of natural numbers. We say that $F \subset P(N)$ (the power set of N) is "a nonprincipal ultrafilter" if

1) $a \in F \& b \in F$ imply $a \cap b \in F$.

2) $a \in F \& a \subset b \text{ imply } b \in F$.

3) $a \notin F$ implies $N - a \in F$.

Received May 26, 1977.

4) If a is finite then $a \notin F$.

We introduce an equivalence relation by F into $Z^N = Z \times Z \times \cdots$ as follows.

$$(n_0, n_1, n_2, \cdots)_{\bar{F}}(m_0, m_1, m_2, \cdots)$$

if and only if

$$\{i \in N \mid n_i = m_i\} \in F .$$

Since F is an ultrafilter, \tilde{F} is the equivalence relation. We say that Z^N/\tilde{F} is the ultrapower of Z and denote it by Z^* . Let $(n_i)^*$ be the equivalence class of (n_i) . We can well define

$$(n_i)^* + (m_i)^* = (n_i + m_i)^*$$

$$(n_i)^* \cdot (m_i)^* = (n_i \cdot m_i)^*$$

$$(n_i)^* \leq (m_i)^* \quad \text{if } \{i \in N | n_i \leq m_i\} \in F .$$

We may assume $Z \subset Z^*$ by identifying n with $(n, n, n, \cdots)^*$.

By Los's theorem [1] Z^* is the elementary extension of Z, in other words, for any first-order formula $\phi(v_1, v_2, \dots, v_k)$ of the language of the ordered ring and for any integers $n_1, n_2, \dots, n_k, \phi(n_1, n_2, \dots, n_k)$ holds in Z^* , if and only if it holds in Z. For example, "the axioms of the ordered ring" and " $\forall x \forall a > 0 \; \exists y \exists b \; (x = ay + b), \; 0 \leq b < a$ " are firstorder formulae. So Z^* is a Z-ring. But "there is no infinitely divisible element" can not be a first-order formula. In fact, Z^* has infinitely divisible elements, $(2, 2^2, 2^3, \dots)^*, \; (1!, 2!, 3!, 4!, \dots)^*, \; \text{etc.}$

In the following we construct a subring A of Z^* which satisfies the theorem.

Proof of the theorem. Let p_n be the *n*-th prime number,

$$A_{n,m} = \left\{ k p_n^{m!} + \sum_{i=1}^{m-1} p_n^{i!} + [\log p_n] | k = 0, \pm 1, \pm 2, \cdots \right\}$$

where "[]" denotes the integer part.

Obviously, $m_1 \leq m_2$ implies $A_{n,m_1} \supset A_{n,m_2}$. Since $p_1^{n!}, p_2^{n!}, \dots, p_n^{n!}$ are mutually prime, $B_n = \bigcap_{i=1}^n A_{i,n}$ is not empty. Pick $0 \leq c_n \in B_n$ and define $c = (c_1, c_2, \dots, c_n, \dots)$.

Let $A' = \{f(c^*) \in \mathbb{Z}^* | f(X) \in \mathbb{Z}[X]\}$ and

$$A = \{ z \in Z^* | \exists n \in Z \ (n \neq 0 \& nz \in A') \}.$$

We prove that A satisfies the theorem.

168

By the definition of A and by the fact that Z^* is a Z-ring, it is easily checked that A is a Z-ring. By the definition of c, c^* is infinitely large in Z^* i.e. for each $n \in \mathbb{Z}$ $(n < c^*)$ in Z^* . So $A \neq \mathbb{Z}$.

For each $x \in A'$, we define $f_x(X) \in \mathbb{Z}[X]$ to be $f_x(c^*) = x$. We write x | y if $\exists z \ (y = zx)$. We prove that there is no infinitely divisible element in A.

LEMMA 1. For each $x \in A$, $\{n \in \mathbb{Z} | p_n | x \text{ in } \mathbb{Z}^*\}$ is finite.

Proof. We may assume $x \in A'$.

By the definition of c,

$$c^* \equiv [\log p_n] \pmod{p_n}$$
$$(c^*)^k \equiv [\log p_n]^k \pmod{p_n}$$
$$x \equiv f_x([\log p_n]) \pmod{p_n}.$$

Since $f_x(X) \in \mathbb{Z}[X]$,

$$\lim_{n\to\infty}\frac{f_x([\log p_n])}{p_n}=0.$$

Therefore, for all but finitely many n,

 $|f_x([\log p_n])| < p_n.$

Since $\{n \in Z \mid f_x([\log p_n]) = 0\}$ is finite, for all but finitely many n,

 $x \not\equiv 0 \pmod{p_n}$.

The result follows.

LEMMA 2. For each
$$x \in A$$
 and each $n \in N$,

 $\{m \in \mathbb{Z} \mid p_n^{m!} \mid x \text{ in } \mathbb{Z}^*\}$ is finite.

Proof. Similar to the proof of Lemma 1. We may assume $x \in A'$. By the definition of c,

$$c^* \equiv \sum_{i=1}^{m-1} p_n^{i!} + [\log p_n] \pmod{p_n^{m!}}$$
$$(c^*)^k \equiv \left(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n]\right)^k \pmod{p_n^{m!}}$$
$$x \equiv f_x \left(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n]\right) \pmod{p_n^{m!}}.$$

Since $f_x(X) \in Z[X]$,

$$\left|\lim_{m \to \infty} \frac{f_x \left(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n]\right)}{p_n^{m!}}\right| \le \lim_{m \to \infty} \frac{K p_n^{M \cdot (m-1)!}}{p_n^{m!}} = 0$$

where K and M are some constant numbers depending only on $f_x(X)$. Therefore for all but finitely many m,

$$\left| f_x \left(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n] \right) \right| \le p_n^{m!}$$

Since $\{m \in Z \mid f_x(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n]) = 0\}$ is finite, for all but finitely many m,

$$x = f_x \left(\sum_{i=1}^{m-1} p_n^{i!} + [\log p_n] \right) \pmod{p_n^{m!}}$$

and

$$0 < \left| f_x \! \left(\sum\limits_{i=1}^{m-1} p_n^{i!} + [\log p_n] \right)
ight| < p_n^{m!} \; .$$

This proves Lemma 2.

By lemma 1 and lemma 2, every $x \in A$ is not infinitely divisible in Z^* , and therefore so is in A. So our theorem is proved.

Remark. Our original motivation is to construct a model which resembles the set of natural numbers, but is not the same. The positive part of A above constructed resembles the set of natural numbers in the following sence. (It is easily checked.)

1) The positive part of A satisfies mathematical induction for any formula $\phi(x)$ of the language $L = \langle +, =, < \rangle$.

2) The positive part of A satisfies mathematical induction of the product form. Namely, for any formula $\phi(x)$ of the language $L = \langle +, =, \cdot, < \rangle$, if $\phi(1)$, $\phi(p)$ for any prime p, and

$$\forall x < a(x | a \rightarrow \phi(x)) \rightarrow \phi(a)$$
, then $\forall x \phi(x)$.

On the other hand, the theorem of Lagrange does not hold. For example, c^* can not be a sum of squares.

Further results about A above constructed.

In the following, we prove that A cannot be an Euclidean ring (Lemma 3), but admits Euclidean algorithm (Lemma 4).

Let a and b be elements of A. We define $a \ll b$ iff b - a > n for any $n \in \mathbb{Z}$.

ORDERED RING

LEMMA 3. A cannot be an Euclidean ring.

Proof. If not, there exist a well-ordered set W and a map ρ from A onto W such that

(*) $\forall x \forall a \exists y \exists b \ x = ay + b \text{ and } \rho(b) \leq \rho(a).$

Let $B = \{\rho(x) | x \in A - Z\}$. Then there is an element $a_0 \in A - Z$ such that $\rho(a_0)$ is the least element of B. We may assume that $a_0 > 0$. We take an x_0 such that $0 \ll x_0 \ll a_0$.

By (*), there exist y and b such that

$$x_0 = a_0 y + b$$
 and $\rho(b) < \rho(a_0)$.

Then by the definition of a_0 , $b \in \mathbb{Z}$.

Since 1 is the least positive element, $y \ge 1$. So $x_0 - b \ge a_0$. This is contrary to $x_0 \ll a_0$.

Let a be an element of A, then there exist $f(X) \in \mathbb{Z}[X]$ and $n \in \mathbb{Z}$ such that $a = f(c^*)/n$. We can well define deg $(a) = \deg(f(X))$.

We notice that a < b implies deg (a) $\leq \deg(b)$.

LEMMA 4. A admits Euclidean algorithm.

Proof. Let a and b be elements of A and assume a > b > 0.

We prove by induction on deg(a).

(1) If deg (a) = 0, then $a, b \in Z$. This case is obvious.

(2a) Let deg (a) = n and deg (b) < n.

There exist y and d such that

$$a = by + d$$
 and $0 \leq d < b$.

Then deg $(d) \leq deg(b) < n$. By the induction hypothesis, Euclidean algorithm for b and d exists.

(2b) Let $\deg(a) = \deg(b) = n$. We can write

$$a = \frac{1}{m}(a_0c^{*n} + \cdots + a_n)$$
$$b = \frac{1}{m}(b_0c^{*n} + \cdots + b_n)$$

where $m, a_0, \dots, a_n, b_0, \dots, b_n$ are elements of Z and $0 < b_0 \leq a_0$.

Since $a_0, b_0 \in Z$, there is a system of equations

$$\begin{aligned} a_0 &= q_1 b_0 + r_1 \\ b_0 &= q_2 r_1 + r_2 \\ &\vdots \\ r_k &= q_{k+2} r_{k+1} \end{aligned} \qquad \begin{pmatrix} q_1, q_2, \dots, q_{k+2}, r_1, r_2, \dots, r_{k+1} \in Z \\ b_0 > r_1 > r_2 > \dots > r_{k+1} > 0 \end{pmatrix}$$

Then

$$a = q_1 b + R_1$$

 $b = q_2 R_1 + R_2$
 \vdots
 $R_k = q_{k+2} R_{k+1} + R_{k+2}$
 $(If \ 1 \leq i \leq k+1,$
 $R_i = \frac{1}{m} (r_i c^{*n} + \cdots).$
 $\deg (R_{k+2}) < n.$

So case (2b) is reduced to (2a).

References

- [1] Bell, J. L. and Slomson, A. B.: Models and Ultraproducts. Amsterdam, North-Holland Publishing Company, 1969.
- [2] Chang, C. C. and Keisler, J.: Model Theory, North-Holland.

Nagoya University

172