M. Yasumoto

Nagoya Math. J.
Vol. 70 (1978), 167-172

A NOTE ON SOME ORDERED RING

MASAHIRO YASUMOTO

An ordered ring with the least positive element 1 is a " Z-ring" if for each natural number n,

$$
\forall x \exists y \exists m(x=n y+m) \quad 0 \leqq m<n .
$$

An element $x \neq 0$ of a Z-ring is "infinitely divisible" if for infinitely many natural numbers n,

$$
\exists y(x=n y) .
$$

For example, Z (the set of integers) is a \boldsymbol{Z}-ring with no infinitely divisible element. Another example of \boldsymbol{Z}-rings is $R=\{f(X) \in \boldsymbol{Q}[X] \mid f(0)$ $\in \boldsymbol{Z}\}$ where \boldsymbol{Q} is the set of rationals and X is placed greater than all rationals. Then R has infinitely divisible elements, X, X^{2}, etc. In this paper we prove

THEOREM. There exists a Z-ring $A(\neq \boldsymbol{Z})$ which has no infinitely divisible element.

Remark 1. The ring A which we construct has the following additional properties.

1) $\forall x \forall a>0 \exists y \exists b(x=a y+b \& 0 \leqq b<a)$.
2) A is a unique factorization domain, i.e. every element can be uniquely factorized to a finite product of prime elements.

The existence of such Z-ring was suggested by R. Kurata. (see Remark 2)

We introduce some notations. (refer to [1]). Let N be the set of natural numbers. We say that $F \subset P(N)$ (the power set of N) is "a nonprincipal ultrafilter" if

1) $a \in F \& b \in F$ imply $a \cap b \in F$.
2) $a \in F \& a \subset b$ imply $b \in F$.
3) $a \notin F$ implies $N-a \in F$.

[^0]4) If a is finite then $a \notin F$.

We introduce an equivalence relation by F into $\boldsymbol{Z}^{N}=\boldsymbol{Z} \times \boldsymbol{Z} \times \cdots$ as follows.

$$
\left(n_{0}, n_{1}, n_{2}, \cdots\right)_{F}\left(m_{0}, m_{1}, m_{2}, \cdots\right)
$$

if and only if

$$
\left\{i \in \boldsymbol{N} \mid n_{i}=m_{i}\right\} \in F .
$$

Since F is an ultrafilter, \tilde{F} is the equivalence relation. We say that $\boldsymbol{Z}^{\boldsymbol{N}} / \tilde{F}$ is the ultrapower of \boldsymbol{Z} and denote it by \boldsymbol{Z}^{*}. Let $\left(n_{i}\right)^{*}$ be the equivalence class of $\left(n_{i}\right)$. We can well define

$$
\begin{aligned}
& \left(n_{i}\right)^{*}+\left(m_{i}\right)^{*}=\left(n_{i}+m_{i}\right)^{*} \\
& \left(n_{i}\right)^{*} \cdot\left(m_{i}\right)^{*}=\left(n_{i} \cdot m_{i}\right)^{*} \\
& \left(n_{i}\right)^{*} \leqq\left(m_{i}\right)^{*} \quad \text { if }\left\{i \in N \mid n_{i} \leqq m_{i}\right\} \in F .
\end{aligned}
$$

We may assume $\boldsymbol{Z} \subset \boldsymbol{Z}^{*}$ by identifying n with ($\left.n, n, n, \cdots\right)^{*}$.
By Los's theorem [1] \boldsymbol{Z}^{*} is the elementary extension of \boldsymbol{Z}, in other words, for any first-order formula $\phi\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ of the language of the ordered ring and for any integers $n_{1}, n_{2}, \cdots, n_{k}, \phi\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ holds in Z^{*}, if and only if it holds in \boldsymbol{Z}. For example, "the axioms of the ordered ring" and " $\forall x \forall a>0 \exists y \exists b(x=a y+b), 0 \leqq b<a$ " are firstorder formulae. So Z^{*} is a Z-ring. But "there is no infinitely divisible element" can not be a first-order formula. In fact, \boldsymbol{Z}^{*} has infinitely divisible elements, $\left(2,2^{2}, 2^{3}, \ldots\right)^{*}$, ($\left.1!, 2!, 3!, 4!, \cdots\right)^{*}$, etc.

In the following we construct a subring A of Z^{*} which satisfies the theorem.

Proof of the theorem. Let p_{n} be the n-th prime number,

$$
A_{n, m}=\left\{k p_{n}^{m!}+\sum_{i=1}^{m-1} p_{n}^{i t}+\left[\log p_{n}\right] \mid k=0, \pm 1, \pm 2, \cdots\right\}
$$

where "[]" denotes the integer part.
Obviously, $m_{1} \leqq m_{2}$ implies $A_{n, m_{1}} \supset A_{n, m_{2}}$. Since $p_{1}^{n!}, p_{2}^{n!}, \cdots, p_{n}^{n!}$ are mutually prime, $B_{n}=\bigcap_{i=1}^{n} A_{i, n}$ is not empty. Pick $0 \leqq c_{n} \in B_{n}$ and define $c=\left(c_{1}, c_{2}, \cdots, c_{n}, \cdots\right)$.

Let $A^{\prime}=\left\{f\left(c^{*}\right) \in \boldsymbol{Z}^{*} \mid f(X) \in \boldsymbol{Z}[X]\right\}$ and

$$
A=\left\{z \in \boldsymbol{Z}^{*} \mid \exists n \in \boldsymbol{Z}\left(n \neq 0 \& n z \in A^{\prime}\right)\right\} .
$$

We prove that A satisfies the theorem.

By the definition of A and by the fact that Z^{*} is a Z-ring, it is easily checked that A is a Z-ring. By the definition of c, c^{*} is infinitely large in \boldsymbol{Z}^{*} i.e. for each $n \in \boldsymbol{Z}\left(n<c^{*}\right)$ in \boldsymbol{Z}^{*}. So $A \neq \boldsymbol{Z}$.

For each $x \in A^{\prime}$, we define $f_{x}(X) \in \boldsymbol{Z}[X]$ to be $f_{x}\left(c^{*}\right)=x$. We write $x \mid y$ if $\exists z(y=z x)$. We prove that there is no infinitely divisible element in A.

Lemma 1. For each $x \in A,\left\{n \in \boldsymbol{Z}\left|p_{n}\right| x\right.$ in $\left.Z^{*}\right\}$ is finite.
Proof. We may assume $x \in A^{\prime}$.
By the definition of c,

$$
\begin{aligned}
c^{*} & \equiv\left[\log p_{n}\right] & & \left(\bmod p_{n}\right) \\
\left(c^{*}\right)^{k} & \equiv\left[\log p_{n}\right]^{k} & & \left(\bmod p_{n}\right) \\
x & \equiv f_{x}\left(\left[\log p_{n}\right]\right) & & \left(\bmod p_{n}\right) .
\end{aligned}
$$

Since $f_{x}(X) \in Z[X]$,

$$
\lim _{n \rightarrow \infty} \frac{f_{x}\left(\left[\log p_{n}\right]\right)}{p_{n}}=0 .
$$

Therefore, for all but finitely many n,

$$
\left|f_{x}\left(\left[\log p_{n}\right]\right)\right|<p_{n}
$$

Since $\left\{n \in Z \mid f_{x}\left(\left[\log p_{n}\right]\right)=0\right\}$ is finite, for all but finitely many n,

$$
x \not \equiv 0 \quad\left(\bmod p_{n}\right) .
$$

The result follows.
Lemma 2. For each $x \in A$ and each $n \in N$,

$$
\left\{m \in \boldsymbol{Z}\left|p_{n}^{m!}\right| x \text { in } \boldsymbol{Z}^{*}\right\} \quad \text { is finite } .
$$

Proof. Similar to the proof of Lemma 1. We may assume $x \in A^{\prime}$. By the definition of c,

$$
\begin{aligned}
c^{*} & \equiv \sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right] & \left(\bmod p_{n}^{m!}\right) \\
\left(c^{*}\right)^{k} & \equiv\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right)^{k} & \left(\bmod p_{n}^{m!}\right) \\
x & \equiv f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right) & \left(\bmod p_{n}^{m!}\right) .
\end{aligned}
$$

Since $f_{x}(X) \in Z[X]$,

$$
\left|\lim _{m \rightarrow \infty} \frac{f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right)}{p_{n}^{m!}}\right| \leqq \lim _{m \rightarrow \infty} \frac{K p_{n}^{M \cdot(m-1)!}}{p_{n}^{m!}}=0
$$

where K and M are some constant numbers depending only on $f_{x}(X)$.
Therefore for all but finitely many m,

$$
\left|f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right)\right|<p_{n}^{m!}
$$

Since $\left\{m \in Z \mid f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right)=0\right\}$ is finite, for all but finitely many m,

$$
x=f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right) \quad\left(\bmod p_{n}^{m!}\right)
$$

and

$$
0<\left|f_{x}\left(\sum_{i=1}^{m-1} p_{n}^{i!}+\left[\log p_{n}\right]\right)\right|<p_{n}^{m!}
$$

This proves Lemma 2.
By lemma 1 and lemma 2, every $x \in A$ is not infinitely divisible in Z^{*}, and therefore so is in A. So our theorem is proved.

Remark. Our original motivation is to construct a model which resembles the set of natural numbers, but is not the same. The positive part of A above constructed resembles the set of natural numbers in the following sence. (It is easily checked.)

1) The positive part of A satisfies mathematical induction for any formula $\phi(x)$ of the language $L=\langle+,=,\langle \rangle$.
2) The positive part of A satisfies mathematical induction of the product form. Namely, for any formula $\phi(x)$ of the language $L=$ $\langle+,=, \cdot,\langle \rangle$, if $\phi(1), \phi(p)$ for any prime p, and

$$
\forall x<a(x \mid a \rightarrow \phi(x)) \rightarrow \phi(a), \quad \text { then } \forall x \phi(x)
$$

On the other hand, the theorem of Lagrange does not hold. For example, c^{*} can not be a sum of squares.
Further results about A above constructed.
In the following, we prove that A cannot be an Euclidean ring (Lemma 3), but admits Euclidean algorithm (Lemma 4).

Let a and b be elements of A. We define $a \ll b$ iff $b-a>n$ for any $n \in Z$.

Lemma 3. A cannot be an Euclidean ring.
Proof. If not, there exist a well-ordered set W and a map ρ from A onto W such that
(*) $\forall x \forall a \exists y \exists b x=a y+b$ and $\rho(b)<\rho(a)$.
Let $B=\{\rho(x) \mid x \in A-Z\}$. Then there is an element $a_{0} \in A-Z$ such that $\rho\left(a_{0}\right)$ is the least element of B. We may assume that $a_{0}>0$. We take an x_{0} such that $0 \ll x_{0} \ll a_{0}$.

By (*), there exist y and b such that

$$
x_{0}=a_{0} y+b \quad \text { and } \quad \rho(b)<\rho\left(a_{0}\right) .
$$

Then by the definition of $a_{0}, b \in \boldsymbol{Z}$.
Since 1 is the least positive element, $y \geqq 1$. So $x_{0}-b \geqq a_{0}$. This is contrary to $x_{0} \ll a_{0}$.

Let a be an element of A, then there exist $f(X) \in \boldsymbol{Z}[X]$ and $n \in \boldsymbol{Z}$ such that $a=f\left(c^{*}\right) / n$. We can well define $\operatorname{deg}(a)=\operatorname{deg}(f(X))$.

We notice that $a<b$ implies $\operatorname{deg}(a) \leqq \operatorname{deg}(b)$.
Lemma 4. A admits Euclidean algorithm.
Proof. Let a and b be elements of A and assume $a>b>0$.
We prove by induction on $\operatorname{deg}(a)$.
(1) If $\operatorname{deg}(a)=0$, then $a, b \in Z$. This case is obvious.
(2a) Let $\operatorname{deg}(a)=n$ and $\operatorname{deg}(b)<n$.
There exist y and d such that

$$
a=b y+d \quad \text { and } \quad 0 \leqq d<b .
$$

Then $\operatorname{deg}(d) \leqq \operatorname{deg}(b)<n$. By the induction hypothesis, Euclidean algorithm for b and d exists.
(2b) Let $\operatorname{deg}(a)=\operatorname{deg}(b)=n$.
We can write

$$
\begin{aligned}
& a=\frac{1}{m}\left(a_{0} c^{* n}+\cdots+a_{n}\right) \\
& b=\frac{1}{m}\left(b_{0} c^{* n}+\cdots+b_{n}\right)
\end{aligned}
$$

where $m, a_{0}, \cdots, a_{n}, b_{0}, \cdots, b_{n}$ are elements of \boldsymbol{Z} and $0<b_{0} \leqq a_{0}$.

Since $a_{0}, b_{0} \in Z$, there is a system of equations

$$
\begin{aligned}
a_{0}=q_{1} b_{0}+r_{1} & \\
b_{0} & =q_{2} r_{1}+r_{2} \\
& \vdots \\
r_{k} & =q_{k+2} r_{k+1}
\end{aligned} \quad\binom{q_{1}, q_{2}, \cdots, q_{k+2}, r_{1}, r_{2}, \cdots, r_{k+1} \in \boldsymbol{Z}}{b_{0}>r_{1}>r_{2}>\ldots>r_{k+1}>0}
$$

Then

$$
\begin{aligned}
& a=q_{1} b+R_{1} \\
& b=q_{2} R_{1}+R_{2} \\
& \vdots \\
& R_{k}=q_{k+2} R_{k+1}+R_{k+2}
\end{aligned} \quad\left(\begin{array}{l}
\text { If } 1 \leqq i \leqq k+1 \\
R_{i}=\frac{1}{m}\left(r_{i} c^{* n}+\cdots\right) . \\
\operatorname{deg}\left(R_{k+2}\right)<n .
\end{array}\right)
$$

So case ($2 b$) is reduced to ($2 a$).

References

[1] Bell, J. L. and Slomson, A. B.: Models and Ultraproducts. Amsterdam, NorthHolland Publishing Company, 1969.
[2] Chang, C. C. and Keisler, J.: Model Theory, North-Holland.

Nagoya University

[^0]: Received May 26, 1977.

