
27 The Compiler Backend: Bytecode
and Native code

Once OCaml has passed the type checking stage, it can stop emitting syntax and type

errors and begin the process of compiling the well-formed modules into executable

code.

In this chapter, we'll cover the following topics:

• The untyped intermediate lambda code where pattern matching is optimized

• The bytecode ocamlc compiler and ocamlrun interpreter

• The native code ocamlopt code generator, and debugging and pro�ling native code

27.1 The Untyped Lambda Form

The �rst code generation phase eliminates all the static type information into a simpler

intermediate lambda form. The lambda form discards higher-level constructs such as

modules and objects and replaces them with simpler values such as records and func-

tion pointers. Pattern matches are also analyzed and compiled into highly optimized

automata.

The lambda form is the key stage that discards the OCaml type information and

maps the source code to the runtime memory model described in Chapter 24 (Memory

Representation of Values). This stage also performs some optimizations, most notably

converting pattern-match statements into more optimized but low-level statements.

27.1.1 Pattern Matching Optimization

The compiler dumps the lambda form in an s-expression syntax if you add the -dlambda

directive to the command line. Let's use this to learnmore about how theOCaml pattern-

matching engine works by building three di�erent pattern matches and comparing their

lambda forms.

Let's start by creating a straightforward exhaustive pattern match using four normal

variants:

type t = | Alice | Bob | Charlie | David

let test v =
match v with
| Alice -> 100

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

27.1 Pattern Matching Optimization 469

| Bob -> 101
| Charlie -> 102
| David -> 103

The lambda output for this code looks like this:

$ ocamlc -dlambda -c pattern_monomorphic_large.ml 2>&1
(setglobal Pattern_monomorphic_large!
(let
(test/86 =
(function v/88 : int
(switch* v/88
case int 0: 100
case int 1: 101
case int 2: 102
case int 3: 103)))

(makeblock 0 test/86)))

It's not important to understand every detail of this internal form, and it is explicitly

undocumented since it can change across compiler revisions. Despite these caveats,

some interesting points emerge from reading it:

• There are no mentions of modules or types any more. Global values are created via

setglobal, and OCaml values are constructed by makeblock. The blocks are the

runtime values you should remember from Chapter 24 (Memory Representation

of Values).

• The patternmatch has turned into a switch case that jumps to the right case depending

on the header tag of v. Recall that variants without parameters are stored in

memory as integers in the order in which they appear. The pattern-matching

engine knows this and has transformed the pattern into an e�cient jump table.

• Values are addressed by a unique name that distinguishes shadowed values by ap-

pending a number (e.g., v/1014). The type safety checks in the earlier phase

ensure that these low-level accesses never violate runtime memory safety, so this

layer doesn't do any dynamic checks. Unwise use of unsafe features such as the

Obj.magic module can still easily induce crashes at this level.

The compiler computes a jump table in order to handle all four cases. If we drop the

number of variants to just two, then there's no need for the complexity of computing

this table:

type t = | Alice | Bob

let test v =
match v with
| Alice -> 100
| Bob -> 101

The lambda output for this code is now quite di�erent:

$ ocamlc -dlambda -c pattern_monomorphic_small.ml 2>&1
(setglobal Pattern_monomorphic_small!
(let (test/84 = (function v/86 : int (if v/86 101 100)))
(makeblock 0 test/84)))

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

470 The Compiler Backend: Bytecode and Native code

The compiler emits simpler conditional jumps rather than setting up a jump table,

since it statically determines that the range of possible variants is small enough. Finally,

let's consider code that's essentially the same as our �rst pattern match example, but

with polymorphic variants instead of normal variants:

let test v =
match v with
| `Alice -> 100
| `Bob -> 101
| `Charlie -> 102
| `David -> 103

The lambda form for this also re�ects the runtime representation of polymorphic

variants:

$ ocamlc -dlambda -c pattern_polymorphic.ml 2>&1
(setglobal Pattern_polymorphic!
(let
(test/81 =
(function v/83 : int
(if (>= v/83 482771474) (if (>= v/83 884917024) 100 102)
(if (>= v/83 3306965) 101 103))))

(makeblock 0 test/81)))

We mentioned in Chapter 7 (Variants) that pattern matching over polymorphic

variants is slightly less e�cient, and it should be clearer why this is the case now.

Polymorphic variants have a runtime value that's calculated by hashing the variant

name, and so the compiler can't use a jump table as it does for normal variants. Instead,

it creates a decision tree that compares the hash values against the input variable in as

few comparisons as possible.

Pattern matching is an important part of OCaml programming. You'll often en-

counter deeply nested pattern matches over complex data structures in real code. A

good paper that describes the fundamental algorithms implemented in OCaml is �Op-

timizing pattern matching�1 by Fabrice Le Fessant and Luc Maranget.

The paper describes the backtracking algorithm used in classical pattern matching

compilation, and also several OCaml-speci�c optimizations, such as the use of ex-

haustiveness information and control �ow optimizations via static exceptions. It's not

essential that you understand all of this just to use pattern matching, of course, but it'll

give you insight as to why pattern matching is such an e�cient language construct in

OCaml.

27.1.2 Benchmarking Pattern Matching

Let's benchmark these three pattern-matching techniques to quantify their runtime costs

more accurately. The Core_bench module runs the tests thousands of times and also

calculates statistical variance of the results. You'll need to opam install core_bench

to get the library:

1 http://dl.acm.org/citation.cfm?id=507641

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

http://dl.acm.org/citation.cfm?id=507641
https://doi.org/10.1017/9781009129220.031

27.1 Benchmarking Pattern Matching 471

open Core
open Core_bench

module Monomorphic = struct
type t =
| Alice
| Bob
| Charlie
| David

let bench () =
let convert v =
match v with
| Alice -> 100
| Bob -> 101
| Charlie -> 102
| David -> 103

in
List.iter
~f:(fun v -> ignore (convert v))
[Alice; Bob; Charlie; David]

end

module Monomorphic_small = struct
type t =
| Alice
| Bob

let bench () =
let convert v =
match v with
| Alice -> 100
| Bob -> 101

in
List.iter
~f:(fun v -> ignore (convert v))
[Alice; Bob; Alice; Bob]

end

module Polymorphic = struct
type t =
[`Alice
| `Bob
| `Charlie
| `David
]

let bench () =
let convert v =
match v with
| `Alice -> 100
| `Bob -> 101
| `Charlie -> 102
| `David -> 103

in
List.iter

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

472 The Compiler Backend: Bytecode and Native code

~f:(fun v -> ignore (convert v))
[`Alice; `Bob; `Alice; `Bob]

end

let benchmarks =
["Monomorphic large pattern", Monomorphic.bench
; "Monomorphic small pattern", Monomorphic_small.bench
; "Polymorphic large pattern", Polymorphic.bench
]

let () =
List.map benchmarks ~f:(fun (name, test) ->

Bench.Test.create ~name test)
|> Bench.make_command
|> Command.run

Building and executing this example will run for around 30 seconds by default, and

you'll see the results summarized in a neat table:

$ dune exec -- ./bench_patterns.exe -ascii -quota 0.25
Estimated testing time 750ms (3 benchmarks x 250ms). Change using

'-quota'.

Name Time/Run Percentage
--------------------------- ---------- ------------
Monomorphic large pattern 6.54ns 67.89%
Monomorphic small pattern 9.63ns 100.00%
Polymorphic large pattern 9.63ns 99.97%

These results con�rm the performance hypothesis that we obtained earlier by in-

specting the lambda code. The shortest running time comes from the small conditional

pattern match, and polymorphic variant pattern matching is the slowest. There isn't a

hugely signi�cant di�erence in these examples, but you can use the same techniques

to peer into the innards of your own source code and narrow down any performance

hotspots.

The lambda form is primarily a stepping stone to the bytecode executable format

that we'll cover next. It's often easier to look at the textual output from this stage than

to wade through the native assembly code from compiled executables.

27.2 Generating Portable Bytecode

After the lambda form has been generated, we are very close to having executable

code. The OCaml toolchain branches into two separate compilers at this point. We'll

describe the bytecode compiler �rst, which consists of two pieces:

ocamlc Compiles �les into a bytecode that is a close mapping to the lambda form

ocamlrun A portable interpreter that executes the bytecode

The big advantage of using bytecode is simplicity, portability, and compilation

speed. The mapping from the lambda form to bytecode is straightforward, and this

results in predictable (but slow) execution speed.

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

27.2 Compiling and Linking Bytecode 473

The bytecode interpreter implements a stack-based virtual machine. The OCaml

stack and an associated accumulator store values that consist of:

long Values that correspond to an OCaml int type

block Values that contain the block header and a memory address with the data �elds

that contain further OCaml values indexed by an integer

code o�set Values that are relative to the starting code address

The interpreter virtual machine only has seven registers in total: - program counter,

- stack, exception and argument pointers, - accumulator, - environment and global data.

You can display the bytecode instructions in textual form via -dinstr. Try this on

one of our earlier pattern-matching examples:

$ ocamlc -dinstr pattern_monomorphic_small.ml 2>&1
branch L2

L1: acc 0
branchifnot L3
const 101
return 1

L3: const 100
return 1

L2: closure L1, 0
push
acc 0
makeblock 1, 0
pop 1
setglobal Pattern_monomorphic_small!

The preceding bytecode has been simpli�ed from the lambda form into a set of

simple instructions that are executed serially by the interpreter.

There are around 140 instructions in total, but most are just minor variants of

commonly encountered operations (e.g., function application at a speci�c arity). You

can �nd full details online2 .

Where Did the Bytecode Instruction Set Come From?

The bytecode interpreter is much slower than compiled native code, but is still remark-

ably performant for an interpreter without a JIT compiler. Its e�ciency can be traced

back to Xavier Leroy's ground-breaking work in 1990, �The ZINC experiment: An

Economical Implementation of the ML Language�.a

This paper laid the theoretical basis for the implementation of an instruction set

for a strictly evaluated functional language such as OCaml. The bytecode interpreter

in modern OCaml is still based on the ZINC model. The native code compiler uses a

di�erent model since it uses CPU registers for function calls instead of always passing

arguments on the stack, as the bytecode interpreter does.

Understanding the reasoning behind the di�erent implementations of the bytecode

interpreter and the native compiler is a very useful exercise for any budding language

hacker.
a http://hal.inria.fr/docs/00/07/00/49/PS/RT-0117.ps

2 http://cadmium.x9c.fr/distrib/caml-instructions.pdf

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

http://hal.inria.fr/docs/00/07/00/49/PS/RT-0117.ps
http://cadmium.x9c.fr/distrib/caml-instructions.pdf
https://doi.org/10.1017/9781009129220.031

474 The Compiler Backend: Bytecode and Native code

27.2.1 Compiling and Linking Bytecode

The ocamlc command compiles individual ml �les into bytecode �les that have a cmo

extension. The compiled bytecode �les are matched with the associated cmi interface,

which contains the type signature exported to other compilation units.

A typical OCaml library consists of multiple source �les, and hence multiple cmo

�les that all need to be passed as command-line arguments to use the library from

other code. The compiler can combine these multiple �les into a more convenient

single archive �le by using the -a �ag. Bytecode archives are denoted by the cma

extension.

The individual objects in the library are linked as regular cmo �les in the order

speci�ed when the library �le was built. If an object �le within the library isn't

referenced elsewhere in the program, then it isn't included in the �nal binary unless

the -linkall �ag forces its inclusion. This behavior is analogous to how C handles

object �les and archives (.o and .a, respectively).

The bytecode �les are then linked together with the OCaml standard library to

produce an executable program. The order in which .cmo arguments are presented

on the command line de�nes the order in which compilation units are initialized at

runtime. Remember that OCaml has no single main function like C, so this link order

is more important than in C programs.

27.2.2 Executing Bytecode

The bytecode runtime comprises three parts: the bytecode interpreter, GC, and a set of C

functions that implement the primitive operations. The bytecode contains instructions

to call these C functions when required.

The OCaml linker produces bytecode that targets the standard OCaml runtime by

default, and so needs to know about any C functions that are referenced from other

libraries that aren't loaded by default.

Information about these extra libraries can be speci�ed while linking a bytecode

archive:

$ ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -lmylib

The dllib �ag embeds the arguments in the archive �le. Any subsequent packages

linking this archive will also include the extra C linking directive. This in turn lets

the interpreter dynamically load the external library symbols when it executes the

bytecode.

You can also generate a complete standalone executable that bundles the ocamlrun

interpreter with the bytecode in a single binary. This is known as a custom runtime

mode and is built as follows:

$ ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -lmylib

The custom mode is the most similar mode to native code compilation, as both

generate standalone executables. There are quite a few other options available for

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

27.2 Embedding OCaml Bytecode in C 475

compiling bytecode (notably with shared libraries or building custom runtimes). Full

details can be found in the OCaml3 .

Dune can build a self-contained bytecode executable if you specify the

byte_complete mode in the executable rule. For example, this dune �le will gener-

ate a prog.bc.exe target:

(executable
(name prog)
(modules prog)
(modes byte byte_complete))

27.2.3 Embedding OCaml Bytecode in C

A consequence of using the bytecode compiler is that the �nal link phase must be

performed by ocamlc. However, you might sometimes want to embed your OCaml

code inside an existing C application. OCaml also supports this mode of operation via

the -output-obj directive.

This mode causes ocamlc to output an object �le containing the bytecode for the

OCaml part of the program, as well as a caml_startup function. All of the OCaml

modules are linked into this object �le as bytecode, just as they would be for an

executable.

This object �le can then be linkedwithC code using the standardC compiler, needing

only the bytecode runtime library (which is installed as libcamlrun.a). Creating an

executable just requires you to link the runtime library with the bytecode object �le.

Here's an example to show how it all �ts together.

Create two OCaml source �les that contain a single print line:

let () = print_endline "hello embedded world 1"

let () = print_endline "hello embedded world 2"

Next, create a C �le to be your main entry point:

#include <stdio.h>
#include <caml/alloc.h>
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/callback.h>

int
main (int argc, char **argv)
{
printf("Before calling OCaml\n");
fflush(stdout);
caml_startup (argv);
printf("After calling OCaml\n");
return 0;

}

Now compile the OCaml �les into a standalone object �le:

3 https://ocaml.org/manual/comp.html#s%3Acomp-options

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://ocaml.org/manual/comp.html#s%3Acomp-options
https://doi.org/10.1017/9781009129220.031

476 The Compiler Backend: Bytecode and Native code

$ rm -f embed_out.c
$ ocamlc -output-obj -o embed_out.o embed_me1.ml embed_me2.ml

After this point, you no longer need the OCaml compiler, as embed_out.o has all

of the OCaml code compiled and linked into a single object �le. Compile an output

binary using gcc to test this out:

$ gcc -fPIC -Wall -I`ocamlc -where` -L`ocamlc -where` -ltermcap -lm
-ldl \

-o finalbc.native main.c embed_out.o -lcamlrun
$./finalbc.native
Before calling OCaml
hello embedded world 1
hello embedded world 2
After calling OCaml

You can inspect the commands that ocamlc is invoking by adding -verbose to the

command line to help �gure out the GCC command line if you get stuck. You can

even obtain the C source code to the -output-obj result by specifying a .c output �le

extension instead of the .o we used earlier:

$ ocamlc -output-obj -o embed_out.c embed_me1.ml embed_me2.ml

Embedding OCaml code like this lets you write OCaml that interfaces with any

environment that works with a C compiler. You can even cross back from the C code

into OCaml by using the Callbackmodule to register named entry points in the OCaml

code. This is explained in detail in the interfacingwith C4 section of the OCamlmanual.

27.3 Compiling Fast Native Code

The native code compiler is ultimately the tool that most production OCaml code

goes through. It compiles the lambda form into fast native code executables, with

cross-module inlining and additional optimization passes that the bytecode interpreter

doesn't perform. Care is taken to ensure compatibility with the bytecode runtime, so

the same code should run identically when compiled with either toolchain.

The ocamlopt command is the frontend to the native code compiler and has a very

similar interface to ocamlc. It also accepts ml and mli �les, but compiles them to:

• A .o �le containing native object code

• A .cmx �le containing extra information for linking and cross-module optimization

• A .cmi compiled interface �le that is the same as the bytecode compiler

When the compiler links modules together into an executable, it uses the contents

of the cmx �les to perform cross-module inlining across compilation units. This can be

a signi�cant speedup for standard library functions that are frequently used outside of

their module.

Collections of .cmx and .o �les can also be linked into a .cmxa archive by passing

4 https://ocaml.org/manual/intfc.html

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://ocaml.org/manual/intfc.html
https://doi.org/10.1017/9781009129220.031

27.3 The Impact of Polymorphic Comparison 477

the -a �ag to the compiler. However, unlike the bytecode version, you must keep the

individual cmx �les in the compiler search path so that they are available for cross-

module inlining. If you don't do this, the compilation will still succeed, but you will

have missed out on an important optimization and have slower binaries.

27.3.1 Inspecting Assembly Output

The native code compiler generates assembly language that is then passed to the system

assembler for compiling into object �les. You can get ocamlopt to output the assembly

by passing the -S �ag to the compiler command line.

The assembly code is highly architecture-speci�c, so the following discussion as-

sumes an Intel or AMD 64-bit platform. We've generated the example code using

-inline 20 and -nodynlink since it's best to generate assembly code with the full

optimizations that the compiler supports. Even though these optimizations make the

code a bit harder to read, it will give you a more accurate picture of what executes on

the CPU. Don't forget that you can use the lambda code from earlier to get a slightly

higher-level picture of the code if you get lost in the more verbose assembly.

The Impact of Polymorphic Comparison

We warned you in Chapter 15 (Maps and Hash Tables) that using polymorphic com-

parison is both convenient and perilous. Let's look at precisely what the di�erence is

at the assembly language level now.

First let's create a comparison function where we've explicitly annotated the types,

so the compiler knows that only integers are being compared:

let cmp (a:int) (b:int) =
if a > b then a else b

Now compile this into assembly and read the resulting compare_mono.S �le.

$ ocamlopt -S compare_mono.ml

This �le extension may be lowercase on some platforms such as Linux. If you've

never seen assembly language before, then the contents may be rather scary. While

you'll need to learn x86 assembly to fully understand it, we'll try to give you some

basic instructions to spot patterns in this section. The excerpt of the implementation

of the cmp function can be found below:

_camlCompare_mono__cmp_1008:
.cfi_startproc

.L101:
cmpq %rbx, %rax
jle .L100
ret
.align 2

.L100:
movq %rbx, %rax
ret
.cfi_endproc

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

478 The Compiler Backend: Bytecode and Native code

The _camlCompare_mono__cmp_1008 is an assembly label that has been computed

from themodule name (Compare_mono) and the function name (cmp_1008). The numeric

su�x for the function name comes straight from the lambda form (which you can

inspect using -dlambda, but in this case isn't necessary).

The arguments to cmp are passed in the %rbx and %rax registers, and compared using

the jle �jump if less than or equal� instruction. This requires both the arguments to be

immediate integers to work. Now let's see what happens if our OCaml code omits the

type annotations and is a polymorphic comparison instead:

let cmp a b =
if a > b then a else b

Compiling this code with -S results in a signi�cantly more complex assembly output

for the same function:

_camlCompare_poly__cmp_1008:
.cfi_startproc
subq $24, %rsp
.cfi_adjust_cfa_offset 24

.L101:
movq %rax, 8(%rsp)
movq %rbx, 0(%rsp)
movq %rax, %rdi
movq %rbx, %rsi
leaq _caml_greaterthan(%rip), %rax
call _caml_c_call

.L102:
leaq _caml_young_ptr(%rip), %r11
movq (%r11), %r15
cmpq $1, %rax
je .L100
movq 8(%rsp), %rax
addq $24, %rsp
.cfi_adjust_cfa_offset -24
ret
.cfi_adjust_cfa_offset 24
.align 2

.L100:
movq 0(%rsp), %rax
addq $24, %rsp
.cfi_adjust_cfa_offset -24
ret
.cfi_adjust_cfa_offset 24
.cfi_endproc

The .cfi directives are assembler hints that contain Call Frame Information that

lets the debugger provide more sensible backtraces, and they have no e�ect on runtime

performance. Notice that the rest of the implementation is no longer a simple register

comparison. Instead, the arguments are pushed on the stack (the %rsp register), and

a C function call is invoked by placing a pointer to caml_greaterthan in %rax and

jumping to caml_c_call.

OCaml on x86_64 architectures caches the location of the minor heap in the %r15

register since it's so frequently referenced in OCaml functions. The minor heap pointer

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

27.3 Benchmarking Polymorphic Comparison 479

can also be changed by the C code that's being called (e.g., when it allocates OCaml

values), and so %r15 is restored after returning from the caml_greaterthan call. Finally,

the return value of the comparison is popped from the stack and returned.

Benchmarking Polymorphic Comparison

You don't have to fully understand the intricacies of assembly language to see that this

polymorphic comparison is much heavier than the simple monomorphic integer com-

parison from earlier. Let's con�rm this hypothesis again by writing a quick Core_bench

test with both functions:

open Core
open Core_bench

let polymorphic_compare () =
let cmp a b = Stdlib.(if a > b then a else b) in
for i = 0 to 1000 do
ignore(cmp 0 i)

done

let monomorphic_compare () =
let cmp (a:int) (b:int) = Stdlib.(if a > b then a else b) in
for i = 0 to 1000 do
ignore(cmp 0 i)

done

let tests =
["Polymorphic comparison", polymorphic_compare;
"Monomorphic comparison", monomorphic_compare]

let () =
List.map tests ~f:(fun (name,test) -> Bench.Test.create ~name test)
|> Bench.make_command
|> Command.run

Running this shows quite a signi�cant runtime di�erence between the two:

$ dune exec -- ./bench_poly_and_mono.exe -ascii -quota 1
Estimated testing time 2s (2 benchmarks x 1s). Change using '-quota'.

Name Time/Run Percentage
------------------------ ------------ ------------
Polymorphic comparison 4_050.20ns 100.00%
Monomorphic comparison 471.75ns 11.65%

We see that the polymorphic comparison is close to 10 times slower! These results

shouldn't be taken too seriously, as this is a very narrow test that, like all such mi-

crobenchmarks, isn't representative of more complex codebases. However, if you're

building numerical code that runs many iterations in a tight inner loop, it's worth

manually peering at the produced assembly code to see if you can hand-optimize it.

Accessing Stdlib Modules from Within Core

In the benchmark above comparing polymorphic and monomorphic comparison, you

may have noticed that we prepended the comparison functions with Stdlib. This is

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

480 The Compiler Backend: Bytecode and Native code

because the Core module explicitly rede�nes the > and < and = operators to be special-

ized for operating over int types, as explained in Chapter 15.1.4 (The Polymorphic

Comparator). You can always recover any of the OCaml standard library functions by

accessing them through the Stdlib module, as we did in our benchmark.

27.3.2 Debugging Native Code Binaries

The native code compiler builds executables that can be debugged using conventional

system debuggers such as GNU gdb. You need to compile your libraries with the -g

option to add the debug information to the output, just as you need to with C compilers.

Extra debugging information is inserted into the output assembly when the library

is compiled in debug mode. These include the CFI stubs you will have noticed in the

pro�ling output earlier (.cfi_start_proc and .cfi_end_proc to delimit an OCaml

function call, for example).

Understanding Name Mangling

So how do you refer to OCaml functions in an interactive debugger like gdb? The �rst

thing you need to know is how OCaml function names compile down to symbol names

in the compiled object �les, a procedure generally called name mangling.

Each OCaml source �le is compiled into a native object �le that must export a

unique set of symbols to comply with the C binary interface. This means that any

OCaml values that may be used by another compilation unit need to be mapped onto

a symbol name. This mapping has to account for OCaml language features such as

nested modules, anonymous functions, and variable names that shadow one another.

The conversion follows some straightforward rules for named variables and func-

tions:

• The symbol is pre�xed by caml and the local module name, with dots replaced by

underscores.

• This is followed by a double __ su�x and the variable name.

• The variable name is also su�xed by a _ and a number. This is the result of the

lambda compilation, which replaces each variable name with a unique value

within the module. You can determine this number by examining the -dlambda

output from ocamlopt.

Anonymous functions are hard to predict without inspecting intermediate compiler

output. If you need to debug them, it's usually easier to modify the source code to

let-bind the anonymous function to a variable name.

Interactive Breakpoints with the GNU Debugger

Let's see name mangling in action with some interactive debugging using GNU gdb.

Let's write a mutually recursive function that selects alternating values from a list.

This isn't tail-recursive, so our stack size will grow as we single-step through the

execution:

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

27.3 Interactive Breakpoints with the GNU Debugger 481

open Core

let rec take =
function
|[] -> []
|hd::tl -> hd :: (skip tl)

and skip =
function
|[] -> []
|_::tl -> take tl

let () =
take [1;2;3;4;5;6;7;8;9]
|> List.map ~f:string_of_int
|> String.concat ~sep:","
|> print_endline

Compile and run this with debugging symbols. You should see the following output:

(executable
(name alternate_list)
(libraries core))

$ dune build alternate_list.exe
$./_build/default/alternate_list.exe -ascii -quota 1
1,3,5,7,9

Now we can run this interactively within gdb:

$ gdb ./alternate_list.native
GNU gdb (GDB) 7.4.1-debian
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show

copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/avsm/alternate_list.native...done.
(gdb)

The gdb prompt lets you enter debug directives. Let's set the program to break just

before the �rst call to take:

(gdb) break camlAlternate_list__take_69242
Breakpoint 1 at 0x5658d0: file alternate_list.ml, line 5.

We used the C symbol name by following the name mangling rules de�ned earlier.

A convenient way to �gure out the full name is by tab completion. Just type in a portion

of the name and press the <tab> key to see a list of possible completions.

Once you've set the breakpoint, start the program executing:

(gdb) run
Starting program: /home/avsm/alternate_list.native

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

482 The Compiler Backend: Bytecode and Native code

[Thread debugging using libthread_db enabled]
Using host libthread_db library

"/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, camlAlternate_list__take_69242 () at alternate_list.ml:5
4 function

The binary has run until the �rst take invocation and stopped, waiting for further

instructions. GDB has lots of features, so let's continue the program and check the

backtrace after a couple of recursions:

(gdb) cont
Continuing.

Breakpoint 1, camlAlternate_list__take_69242 () at alternate_list.ml:5
4 function
(gdb) cont
Continuing.

Breakpoint 1, camlAlternate_list__take_69242 () at alternate_list.ml:5
4 function
(gdb) bt
#0 camlAlternate_list__take_69242 () at alternate_list.ml:4
#1 0x00000000005658e7 in camlAlternate_list__take_69242 () at

alternate_list.ml:6
#2 0x00000000005658e7 in camlAlternate_list__take_69242 () at

alternate_list.ml:6
#3 0x00000000005659f7 in camlAlternate_list__entry () at

alternate_list.ml:14
#4 0x0000000000560029 in caml_program ()
#5 0x000000000080984a in caml_start_program ()
#6 0x00000000008099a0 in ?? ()
#7 0x0000000000000000 in ?? ()
(gdb) clear camlAlternate_list__take_69242
Deleted breakpoint 1
(gdb) cont
Continuing.
1,3,5,7,9
[Inferior 1 (process 3546) exited normally]

The cont command resumes execution after a breakpoint has paused it, bt displays

a stack backtrace, and clear deletes the breakpoint so the application can execute until

completion. GDB has a host of other features we won't cover here, but you can view

more guidelines via Mark Shinwell's talk on �Real-world debugging in OCaml.�5

One very useful feature of OCaml native code is that C and OCaml share the same

stack. This means that GDB backtraces can give you a combined view of what's going

on in your program and runtime library. This includes any calls to C libraries or even

callbacks into OCaml from the C layer if you're in an environment which embeds the

OCaml runtime as a library.

5 http://www.youtube.com/watch?v=NF2WpWnB-nk%3C

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

http://www.youtube.com/watch?v=NF2WpWnB-nk%3C
https://doi.org/10.1017/9781009129220.031

27.3 Perf 483

27.3.3 Pro�ling Native Code

The recording and analysis of where your application spends its execution time is

known as performance pro�ling. OCaml native code binaries can be pro�led just like

any other C binary, by using the name mangling described earlier to map between

OCaml variable names and the pro�ler output.

Most pro�ling tools bene�t fromhaving some instrumentation included in the binary.

OCaml supports two such tools:

• GNU gprof, to measure execution time and call graphs

• The Perf6 pro�ling framework in modern versions of Linux

Note that many other tools that operate on native binaries, such as Valgrind, will

work just �ne with OCaml as long as the program is linked with the -g �ag to embed

debugging symbols.

Gprof

gprof produces an execution pro�le of an OCaml program by recording a call graph

of which functions call one another, and recording the time these calls take during the

program execution.

Getting precise information out of gprof requires passing the -p �ag to the native

code compiler when compiling and linking the binary. This generates extra code that

records pro�le information to a �le called gmon.out when the program is executed.

This pro�le information can then be examined using gprof.

Perf

Perf is a more modern alternative to gprof that doesn't require you to instrument the

binary. Instead, it uses hardware counters and debug information within the binary to

record information accurately.

Run Perf on a compiled binary to record information �rst. We'll use our write

barrier benchmark from earlier, which measures memory allocation versus in-place

modi�cation:

$ perf record -g ./barrier_bench.native
Estimated testing time 20s (change using -quota SECS).

Name Time (ns) Time 95ci Percentage
---- --------- --------- ----------
mutable 7_306_219 7_250_234-7_372_469 96.83
immutable 7_545_126 7_537_837-7_551_193 100.00

[perf record: Woken up 11 times to write data]
[perf record: Captured and wrote 2.722 MB perf.data (~118926

samples)]
perf record -g ./barrier.native
Estimated testing time 20s (change using -quota SECS).

Name Time (ns) Time 95ci Percentage

6 https://perf.wiki.kernel.org/

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://perf.wiki.kernel.org/
https://doi.org/10.1017/9781009129220.031

484 The Compiler Backend: Bytecode and Native code

---- --------- --------- ----------
mutable 7_306_219 7_250_234-7_372_469 96.83
immutable 7_545_126 7_537_837-7_551_193 100.00

[perf record: Woken up 11 times to write data]
[perf record: Captured and wrote 2.722 MB perf.data (~118926

samples)]

When this completes, you can interactively explore the results:

$ perf report -g
+ 48.86% barrier.native barrier.native [.]

camlBarrier__test_immutable_69282
+ 30.22% barrier.native barrier.native [.]

camlBarrier__test_mutable_69279
+ 20.22% barrier.native barrier.native [.] caml_modify

This trace broadly re�ects the results of the benchmark itself. The mutable bench-

mark consists of the combination of the call to test_mutable and the caml_modify

write barrier function in the runtime. This adds up to slightly over half the execution

time of the application.

Perf has a growing collection of other commands that let you archive these runs and

compare them against each other. You can read more on the home page7 .

Using the Frame Pointer to Get More Accurate Traces

Although Perf doesn't require adding in explicit probes to the binary, it does need to

understand how to unwind function calls so that the kernel can accurately record the

function backtrace for every event. Since Linux 3.9 the kernel has had support for

using DWARF debug information to parse the program stack, which is emitted when

the -g �ag is passed to the OCaml compiler. For even more accurate stack parsing, we

need the compiler to fall back to using the same conventions as C for function calls.

On 64-bit Intel systems, this means that a special register known as the frame pointer

is used to record function call history. Using the frame pointer in this fashion means

a slowdown (typically around 3-5%) since it's no longer available for general-purpose

use.

OCaml thus makes the frame pointer an optional feature that can be used to improve

the resolution of Perf traces. opam provides a compiler switch that compiles OCaml

with the frame pointer activated:

$ opam switch create 4.13+fp ocaml-variants.4.13.1+options
ocaml-option-fp

Using the frame pointer changes the OCaml calling convention, but opam takes care

of recompiling all your libraries with the new interface.

7 http://perf.wiki.kernel.org

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

http://perf.wiki.kernel.org
https://doi.org/10.1017/9781009129220.031

27.3 Embedding Native Code in C 485

27.3.4 Embedding Native Code in C

The native code compiler normally links a complete executable, but can also output a

standalone native object �le just as the bytecode compiler can. This object �le has no

further dependencies on OCaml except for the runtime library.

The native code runtime is a di�erent library from the bytecode one, and is installed

as libasmrun.a in the OCaml standard library directory.

Try this custom linking by using the same source �les from the bytecode embedding

example earlier in this chapter:

$ ocamlopt -output-obj -o embed_native.o embed_me1.ml embed_me2.ml
$ gcc -Wall -I `ocamlc -where` -o final.native embed_native.o main.c \
-L `ocamlc -where` -lasmrun -ltermcap -lm -ldl

$./final.native
Before calling OCaml
hello embedded world 1
hello embedded world 2
After calling OCaml

The embed_native.o is a standalone object �le that has no further references to

OCaml code beyond the runtime library, just as with the bytecode runtime. Do re-

member that the link order of the libraries is signi�cant in modern GNU toolchains

(especially as used in Ubuntu 11.10 and later) that resolve symbols from left to right

in a single pass.

Activating the Debug Runtime

Despite your best e�orts, it is easy to introduce a bug into some components, such as C

bindings, that causes heap invariants to be violated. OCaml includes a libasmrund.a

variant of the runtime library which is compiled with extra debugging checks that

perform extra memory integrity checks during every garbage collection cycle. Running

these extra checks will abort the program nearer the point of corruption and help isolate

the bug in the C code.

To use the debug library, just link your program with the -runtime-variant d �ag:

$ ocamlopt -runtime-variant d -verbose -o hello.native hello.ml
+ as -o 'hello.o' '/tmp/build_cd0b96_dune/camlasmd3c336.s'
+ as -o '/tmp/build_cd0b96_dune/camlstartup9d55d0.o'

'/tmp/build_cd0b96_dune/camlstartup2b2cd3.s'
+ gcc -O2 -fno-strict-aliasing -fwrapv -pthread -Wall

-Wdeclaration-after-statement -fno-common
-fexcess-precision=standard -fno-tree-vrp -ffunction-sections
-Wl,-E -o 'hello.native'
'-L/home/yminsky/.opam/rwo-4.13.1/lib/ocaml'
'/tmp/build_cd0b96_dune/camlstartup9d55d0.o'
'/home/yminsky/.opam/rwo-4.13.1/lib/ocaml/std_exit.o' 'hello.o'
'/home/yminsky/.opam/rwo-4.13.1/lib/ocaml/stdlib.a'
'/home/yminsky/.opam/rwo-4.13.1/lib/ocaml/libasmrund.a' -lm -ldl

$./hello.native
OCaml runtime: debug mode
Initial minor heap size: 256k words
Initial major heap size: 992k bytes

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

486 The Compiler Backend: Bytecode and Native code

Initial space overhead: 120%
Initial max overhead: 500%
Initial heap increment: 15%
Initial allocation policy: 2
Initial smoothing window: 1
Hello OCaml World!

27.4 Summarizing the File Extensions

We've seen how the compiler uses intermediate �les to store various stages of the

compilation toolchain. Here's a cheat sheet of all them in one place.

• .ml are source �les for compilation unit module implementations.
• .mli are source �les for compilation unit module interfaces. If missing, generated

from the .ml �le.

• .cmi are compiled module interface from a corresponding .mli source �le.

• .cmo are compiled bytecode object �le of the module implementation.
• .cma are a library of bytecode object �les packed into a single �le.
• .o are C source �les that have been compiled into native object �les by the system

cc.

• .cmt are the typed abstract syntax tree for module implementations.
• .cmti are the typed abstract syntax tree for module interfaces.
• .annot are old-style annotation �le for displaying typed, superseded by cmt �les.

The native code compiler also generates some additional �les.

• .o are compiled native object �les of the module implementation.
• .cmx contains extra information for linking and cross-module optimization of the

object �le.

• .cmxa and .a are libraries of cmx and o units, stored in the cmxa and a �les respectively.
These �les are always needed together.

• .S or .s are the assembly language output if -S is speci�ed.

https://doi.org/10.1017/9781009129220.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.031

