J. Appl. Prob. 52, 538-557 (2015)
Printed in England
© Applied Probability Trust 2015

THE COALESCENT IN PERIPATRIC
METAPOPULATIONS

AMAURY LAMBERT,* Université Pierre et Marie Curie and Collége de France
CHUNHUA MA,** Université Pierre et Marie Curie, Collége de France and Nankai University

Abstract

We consider a dynamic metapopulation involving one large population of size N
surrounded by colonies of size ¢y N, usually called peripheral isolates in ecology, where
N — ocoand ey — 0Oinsuchaway thatey N — oo. The main population, as well as the
colonies, independently send propagules to found new colonies (emigration), and each
colony independently, eventually merges with the main population (fusion). Our aim is
to study the genealogical history of a finite number of lineages sampled at stationarity
in such a metapopulation. We make assumptions on model parameters ensuring that the
total outer population has size of the order of N and that each colony has a lifetime of the
same order. We prove that under these assumptions, the scaling limit of the genealogical
process of a finite sample is a censored coalescent where each lineage can be in one
of two states: an inner lineage (belonging to the main population) or an outer lineage
(belonging to some peripheral isolate). Lineages change state at constant rate and (only)
inner lineages coalesce at constant rate per pair. This two-state censored coalescent is
also shown to converge weakly, as the landscape dynamics accelerate, to a time-changed
Kingman coalescent.
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1. Introduction

Many plant and animal populations in nature are highly fragmented, and this fragmentation
plays a prominentrole in the context of adaptation and speciation. Indeed, the emergence of new
species is usually thought to be driven by geographical processes [5]. First, allopatric speciation
occurs when various subpopulations belonging to the same initial species are separated by a
geographical barrier that prevents hybridization between them (gene flow) and allows them
to diverge (genetical differentiation) by local adaptation. Second, parapatric speciation is
a version of allopatric speciation where local adaptation is mediated by the existence of an
environmental gradient (resource availability, environmental conditions). Third, when a species
is present in one large, panmictic population surrounded by small colonies, usually called
peripheral isolates, it is believed that the combination of founder events and of local adaptation
to borderline environmental conditions leads to the formation of new species within the isolates.
This phenomenon is called peripatric speciation. We aim to study the genealogy of populations
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FIGURE 1: Dynamic metapopulation.

embedded in such a spatial context. The present study would give a first step for our future
work in the field of speciation modeling.

Population dynamic models specifying explicitly the spatial context are called metapopu-
lation models (see Hanski and Gilpin [8]). Typical models include: island model, isolation
by distance, stepping stone models, and extinction—recolonization models. From the point
of view of speciation, all these models suffer from the same defect: they assume a given,
constant number of subpopulations in the metapopulation, with fixed migration rates between
them. As one of the authors of the present paper suggested (see Lambert [13]), an alternative
method would consist of considering a species as ‘spread out on a randomly evolving number
of locations, allowing for repeated fragmentations of colonies, colonizations of new locations,
as well as secondary contacts between subpopulations’. This author and others have designed
such dynamic landscape models (see [2], [3], and [11]), but usually in a detailed ecological
context whose study is only possible through numerical simulations (with the exception of [1]).

Here, we propose a mathematical study of a dynamic landscape of the peripatric type.
More specifically, we consider a dynamic population subdivision which involves one large
main population surrounded by a random number of small peripheral isolates, that we will call
colonies for simplicity. The size of the main population is constant equal to N, the size of each
colony is constant equal to ey N and the reproduction mechanism in each population is given
by the Moran model. The number of colonies at time ¢ is denoted by &x(#). The landscape
dynamics is as follows (see Figure 1):

e cach individual sends independently ey N offspring to found a new colony at constant
rate Oy if dwelling in the mainland, or at constant rate Sy if dwelling in a colony;

e cach colony independently merges again with the main population at rate yNél‘i‘fl , Where
o > 1 and yy is the fusion rate; at such a so-called fusion time, ey N individuals
among the new (1 + ey )N individuals of the main population are chosen uniformly and
simultaneously killed in order to keep its size constant.

Note that (§x(t); t > 0) is a density-dependent birth—death process with immigration. The
parameter « is meant to model the competition for space, since the fusion rate per colony grows
with the number of colonies. This density-dependence disappears if « is chosen to equal 1.
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The main purpose of this paper is to investigate the genealogy of a finite sample of lineages
in the above peripatric metapopulation model. We will show that the history of such a sample,
viewed backward in time, can be approximated, as N — oo under certain assumptions, by
a two-state censored coalescent, where the state of a lineage can be inner (lying in the main
population) or outer (lying in a colony). Lineages change state at a constant rate per lineage,
but only inner lineages can coalesce, at a constant rate per pair of lineages, as in Kingman’s
coalescent [12].

A two-state censored coalescent can be viewed as a new type of structured coalescent. The
structured coalescent describes the ancestral genealogical process of a sample of lineages in
a subdivided population connected by migration. The coalescent on two subpopulations was
considered by Takahata [17]; for a finite number of subpopulations by Notohara [15], and
placed in a rigorous framework by Herbots [9]. To date, there have been a number of works
dealing with the structured coalescent arising in various special types of metapopulations; see
Nordborg and Krone [14] and Eldon [6] and the references therein. Our results show that new
types of structured coalescents can arise in some specific dynamic metapopulations.

We now provide the heuristic methods used to obtain our result. We assume that N — oo
and ey — 0 in such a way that ey N — o0, so that the size of colonies is large but negligible
compared to the main population (assumption A). It is known that in a Moran model, inner
lineages coalesce at constant rate per pair when time is rescaled by N (Kingman’s coalescent
[12]). We make assumptions on the parameters ensuring that all events changing the configu-
ration of ancestral lineages occur on this time- scale. This can only be done to the exception
of coalescences in colonies, which happen instantaneously in the new time-scale, leading to
outer lineages which always all lie in different colonies. Also, in order to have a total outer
population size of the order of N, we need to have a number of colonies of the order of 5;,1.
This can be achieved by the following choice of parameters (assumption B). The per capita
emigration rate Oy in the mainland is taken equal to

0

Oy = ——.
N 81\/1\72

The per capita emigration rate Sy in one colony is taken equal to

p
and the fusion rate yy is taken equal to
Sot—l
_ N
YN =Y N

where B < y if @ = 1. Under these assumptions, the number of colonies is asymptotically
deterministic, equal to 8;1/@ where « is the unique solution of fz + 6 = yz*.

Looking backward in time, the rate at which a single inner lineage changes state is the rate
at which a single lineage is taken in a fusion event, which happens at rate

o
a—1 ~ _EN K
(ynEy DéN 1+8NJ/N<8N> ,

which is equivalent to y (k“/N) as N — 00. As a consequence, in the new time-scale, inner
lineages become outer lineages at rate y«x*.

EN
14+en
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Note that the lifetime of a colony is exponential with parameter

a—1 l—a, a—1
ynEy A ynNeEy KT

Then the rate at which each colony coalesces with the mainland is

w1 N oyl Be46 1
N eyenN+N  Nxk+1)  « «k+1

ynE

and the rate at which each colony coalesces with another given colony is

yNga_lL =0 l .
N enenN + N N

Thus, the following probability vanishes: the probability that two given colonies will coalesce
into a colony before one of them coalesces with the mainland. Also note that the probability that
two lineages are taken in the same fusion with the mainland vanishes, so that no two lineages
can lie within the same colony. As a consequence, in the new time-scale, outer lineages are not
allowed to coalesce and they become inner lineages at rate (8x +6)/« (k +1). By making these
heuristics rigorous we obtain the results stated in Theorem 3.1. Namely, the genealogical history
of a finite sample of lineages, seen as a process backward in time, converges weakly (except at
time 0, where instantaneous coalescences within colonies makes the limiting process not right-
continuous) to the following two-state censored coalescent. Inner lineages coalesce at constant
rate 1 per pair, and lineages change type at constant rate per lineage: inner lineages become
outer lineages at rate y«* and outer lineages become inner lineages at rate (8x +6)/kx (k + 1).

The paper is organized as follows. In Section 2 we provide a detailed description of our
dynamic metapopulation model in forward and backward time. The main result, Theorem 3.1,
is stated in Section 3. In addition, we also prove that under fast landscape dynamics, the
censored coalescent converges weakly to a time-changed version of the Kingman coalescent
[12]. Finally, Section 3.3 is dedicated to the formal proofs of the above results.

2. Metapopulation model

2.1. Forward dynamics

Let N e Nwith N := {0, 1, 2, ...} and let ¢y be any positive number such that ey N € N.
Let Oy, yn and « be positive constants. Consider a dynamic metapopulation model involving
one large population of size N, called main population, and a random number of small
populations, called colonies, of size ey N. The main population and the colonies periodically
send propagules (or emigrants) that found new colonies and ultimately each colony merges
again with the main population. A further assumption is as follows. See Figure 1 for an
illustration.

Assumption 2.1. (a) The number of colonies, denoted by {£n(t): t > 0}, evolves as a density-
dependent birth—death process with immigration and the transition rates are given by

j— Jj+1 atrate NOy +enyNBNJj, @
j— j—1 atrateyyj“. '

When a = 1, we require that 8 < y. In this case the process {En(t)} is reduced to a subcritical
birth—death branching process with immigration. It follows from Kelly [10] that {Ex(t)} with
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any initial value has the stationary distribution wty given by

00 -1
7y (0) = (1 + ZwN,]) and 7n(k) = wy jn(0) fork > 1, (2.2)
j=1
where .
NOy 1= NOy + ey NByi
wyj=—— ] -
YNJ YNi

i=1
We assume that &y (0) is distributed as . Then {En ()} is a stationary Markov chain. Let
(PIN)zzo be its semigroup. For any finite set {t} < tp < --- < t,} C R define the probability
measure on N by

My gy G1s 320 ovdn) =N GOPE L G o) -+ P, Gt ) 2.3)

Then {77,1:’),2’””,”: <t <--- <t, €R}isa consistent family. By Kolmogorov’s theorem,
there is a stochastic process {En(t): t € R} with finite-dimensional distributions given by
(2.3). Clearly, {én(t): t € R} is a stationary Markov chain with one-dimensional marginal
distribution 7 and transition semigroup (PIN )t>0-

(b) At the jump times of En(¢t) from j to j + 1, one individual, chosen uniformly at random
from the population (including the mainland and all colonies), gives birth to ey N emigrant
offspring individuals which found a new colony. We refer to such an event as ‘emigration’ (of
new colonies) or ‘fission’. Note that our assumptions amount to saying that each individual
independently founds a new colony at rate Oy if dwelling in the mainland or at rate By if
dwelling in a colony.

(c) At the jump times of &En(t) from j to j — 1, one colony is chosen at random from the
J current colonies and all the ey N individuals within this colony immediately migrate back
into the main population. We refer to such an event as a ‘fusion’ (of colonies with the main
population). Instead of keeping all those (1 + ey )N individuals in the main population alive,
only N of them survive this fusion event, which are chosen uniformly at random among the
(1 4+ enN) N previously existing individuals.

(d) Between the jump times of &n(t), the large population and the colonies independently
evolve as Moran models, that is, at rate 1 each individual independently gives birth to a single
offspring, and simultaneously a uniformly chosen individual is killed.

2.2. Backward dynamics

Now we start with a sample of n lineages at time O and proceed backward in time. Let
Xn(@) = (XON (1), lev (1), ..., X}(1)) be the ancestral process of this sample defined for r > 0
by

X ON (t) = the number of lineages in the main population at time —t,
X j\, (t) = the number of colonies containing i lineages at time —¢ (1 <i < n).
We set Xy(0) = x, where x = (xp, x1,...,x,) € Nt with xo + Z?:l Jjxj =n. The

process { Xy (¢): t > 0} has state-space

n
E .= {(x(),xl,...,xn) eN"Thl<xo+ ) jx; 5n}.
j=1
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Define the subspace IT of E by
M := {(x0, x1,0,...,0) e N“t': 1 < xg + x; <n}.
Consider the projection I': (xg, x1, 0, ..., 0) — (x0, x1) from IT to N2:
[(I) = {(x0, x1) € N*: 1 < xo +x1 < n}.

By the action of the homeomorphism I', I'(IT) can be regarded as a subspace of E, and we thus
still denote it by IT for simplicity. For x € E, let

n
X = (xo, xj).
j=1

We will use this notation for the following reason: in the new time-scale lineages lying
in the same colony will immediately coalesce, the configuration x immediately turns into

(x0, Z?:l xj,0,...,0) where all outer lineages are now alone in their respective colonies.
Note thatx +—> X is aninjection from E to I1. Wealsowritee; = (0,...,0,1,0,...,0) € Netl
whose (j + 1)th componentis 1 for j =0, ..., n.

Let ny(t) = En(—t) fort > 0. It follows from [10, Lemma 1.5, p. 9] that {nx (¢): t > 0} is
still a stationary Markov process with the same transition rates as (2.1). Thus, conditioned on
nn (1), the fission events (fusions seen backward in time) happen at rate yn 1%, (t) and the fusion
events (fissions seen backward in time) happen at rate N(Byeynny + 6n). At any fission event
seen backward, every lineage independently exits from the main population with probability
en/(1 + en). At any fusion event seen backward, one colony is chosen at random from the
existing colonies and the (say) i lineages in this colony enter one population (the mainland
or another colony), and simultaneously coalesce together (if i > 2), and coalesce with their
ancestor in this population (if it is also in the sample; but asymptotically, with high probability
i = 1, the ancestor is not in the sample and the lineages enter the mainland). Between fission
and fusion times, coalescences within the main population or within colonies may happen. We
again refer to Figure 1 for an illustration.

Based on the above description, it is not hard to see that {(Xy (¢), nn(¢)): t > 0} is a time-
homogeneous Markov chain taking values in £ x R,. The corresponding generator is given by

Ang(x, k) = Yng(x, k) + dng(x, k) + Tng(x, k) (24)
for any bounded function g on E x N. Here,
n

_ j 2
Yng(x, k) = ij<J>SNN——1(g(x —ejt+ej_1,k)—g(x,k)),

. 2
Jj=2

which corresponds to coalescence of lineages in each colony. Since each colony evolves
independently as a Moran model with size ey N until fusing with the mainland, the coalescent
rate for any two given lineages in the same colony is of the order 1/(¢yN). Note that the

https://doi.org/10.1239/jap/1437658614 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1437658614

544 A. LAMBERT AND C. MA

generator Yy g(x, u) = 0if x € I1. In this case no two lineages lie in the same colony. Then

Png(x, k)
2
= @)ﬁ(g(" —e1,k) = g(x. k)
X0 r 1 xo—r
+ N(Bvken +68) Y (xr")(l iN8N> (1 - 8N> (2(x —reo+ e, k+ 1)
r=1

—g(x,k))
X0
k% 1—— — k—1)— k)1
+ YN e N+N< ( N)(g(x e; + e ) — 8(x, k) Lik=0)

N X X0
+ )/Nkam Z(?j) (1 - N)(g(x —ej+eo k—1)—gx, k) Lo
j=2

N - Xj X0
e 2 A\ 7T NS —ej k—1)—g(x, k)1
Tw ksNN+Nj2=; k)<N)(g(x € ) — 8(x, k) L=0)

kenN - i/ k)(x;/k)j
I NaL Z M(g(x—ei—i-ej,k—1)—g(X,k))1{k>0}

keyN + N e enN
ke ken N 2”: xi\(x\(1-J
M dkenN+ N~ \&x J\ & J\exn
i#j,i,j>1

x(g(x —ej—e;+ejr1,k—1)—gx, k) Lg=0),

where the first term corresponds to coalescence of lineages within the mainland, the second term
corresponds to migration of lineages from the mainland to colonies, the third term corresponds
to migration of lineages from each colony containing one lineage, and the fourth term from
each colony containing more than one lineage, which is identically equal to 0 if x € IT. We
denote by 1y, the indicator function. The fifth term corresponds to coalescence of lineages
between the mainland and colonies. The last two terms correspond to coalescence or migration
of lineages among colonies. Finally,

— X0
Iyg(x, k) = N(ﬂNst+9N)( ) (gx,k+1)—g(x,k))

1 +en

n

Py
1= =L Jk—1) — g(x, k) Lik=0y,
+yN ( Z p )(g(x ) — 8(x, k) L0
j=1
which corresponds to the event that the number of colonies increases or decreases but the
ancestral process does not change.

3. Convergence to the two-state censored coalescent

3.1. Main results

Let D([0, c0), S) be the space of all cadlag functions x: [0, co) — S endowed with the
Skorokhod topology for any separable and complete metric space S; see Ethier and Kurtz [7,
p- 116] for details. For N € N, we consider the sequence of processes {(Xy (-), nnx(:))}. Define

Yy(@) = Xny(Nt) and 7n(t) =ennn(Nt).
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Let 8 > 0,0 > 0, and y > 0 be constants satisfying § < y if « = 1. We further assume the
following conditions.

Condition 3.1. It holds that ¢ = ey satisfying ey — 0and eyN — oo as N — 00;
Condition 3.2. It holds that By = B/(exN?), On = 0/(eyN?), and yy = ye% ' /N.
Recall that y € E and the corresponding y € I1. The main result of the paper follows.

Theorem 3.1. Under Conditions 3.1 and 3.2, the finite-dimensional distributions of the an-
cestral process {Yn(t),t > 0} starting at y converge to those of a I1-valued continuous time
Markov chain {Y (t),t > 0} starting at y, except at time 0. The corresponding infinitesimal

generator Q = (qr y')r.r'en is given by

yKot—l

—((ﬁlc+0)ro+K+1i’1+ro("o—1)) ifr=r,
YK ro ifro#0andr =r+(—1,1),

_ 0

Grp = PO ifri #£0andr’ =r+ (1, -1, GD

k(k +1)
ro(ro — 1) fr'=r+(=1,0),
0 otherwise,

wherer = (ro, r1) € Il and «k is the unique solution of the equation $z7+6 = yz®. Furthermore,
if the initial value y € T1, weak convergence on D([0, 00), IT) to {Y (¢)} holds.

Remark 3.1. For y € E, let Y (-) be the above process (3.1) with the initial value Y (0) = y.

Define
Yt if ¢
yr =@ Hr=0 (32)
y ifr =0.

Then Y*(-) is an E-valued continuous time Markov chain. The proof of Theorem 3.1 ac-
tually shows that the finite-dimensional distributions of {¥y(¢),¢ > 0} converge to those of
{Y*(¢), t > 0}. For the limiting process Y *(-), we have Y*(0) = y while Y*(0+) = y, which
implies that lineages lying in the same colony immediately coalesce.

The previous statement describes the asymptotic genealogical history of a finite sample
of lineages, seen as a process backward in time. Except at time 0, where instantaneous
coalescences within colonies makes the limiting process not right-continuous, this process
converges weakly to a two-state censored coalescent, where type O corresponds to inner lineages
(lying in the main population) and type 1 to outer lineages (lying in pairwise distinct colonies).
Inner lineages coalesce at constant rate 1 per (ordered) pair, and lineages change type at constant
rate per lineage: inner lineages become outer lineages at rate y«* and outer lineages become
inner lineages at rate (Bx + 60)/k(k + 1).

Nordborg and Krone [14] studied the behavior of a geographically structured population
with strong migration; see also Notohara [16]. If migration is strong to some extent, the total
population behaves like a panmictic population with an effective population size depending on
the population structure and the strength of migration. In other words, if migration occurs on a
time-scale that is much faster than the coalescent time-scale then the limiting ancestral process
viewed on the coalescent time-scale is the Kingman coalescent with a so-called ‘effective’
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coalescence rate. Inspired by this idea, we consider a sequence of censored coalescent processes
{Yk(¢)} defined by

—(agro + bir1 +ro(ro — 1)) ifr' =r,

aro ifrg #0and r' =r + (-1, 1),
qr.r = 1 biry ifry 20and r' =r + (1, —1),

ro(ro — 1) ifr' =r+(—1,0),

0 otherwise,

where the parameters a; and by satisfy the following condition.
Condition 3.3. As k — oo, ax — 00, by — o0 and by /ax — p for some constant p > 0.

The above condition corresponds to the acceleration of the landscape dynamics (strong
migration between mainland and colonies). Furthermore, we suppose that the initial value
Y. (0) =y e IT with yo + y; = n. Let Y, (¢) = Y,?(t) + Ykl(t) andlet I, = {0, 1,2,...,n}.
The following theorem states that such a strong migration limit gives rise to a single state
coalescent process, where coalescence rates are obtained by averaging over the probability of
presence in the main population.

Theorem 3.2. Under Condition 3.3, the process {Yy(t),t > 0} starting at n converges weakly
to the time-changed n-Kingman coalescent process {K(t),t > 0} on D([0, 00), I,,). When
n =1, the coalescence rate is given by

1 , .
=S )

Remark 3.2. Condition 3.3 has the intuitive biological meaning that migrations occur at a
much faster rate than coalescences.

Remark 3.3. Note that by/ar — p as k — oo. It is easy to see that if p = 0, which
corresponds to predominant emigrations, {Yx(¢),t > 0} converges weakly to the constant
process {K (1) = n, t > 0};if p = co which corresponds to predominant fusions, {Yx (¢), t > 0}
converges weakly to the standard Kingman coalescent {K (¢), t > 0} (i.e. ¢; = [(I — 1)).

3.2. Further discussions

Density dependence. We can allow for more general metapopulation dynamics by changing
the dynamics to include both types of density dependence (in birth rate or in death rate). To do
so, we would have to parametrize the fission rate by a nonnegative function by (x) on R and the
fusion rate by a nonnegative function xdy (x) on R, in such a way that we have convergence
of the number of colonies, denoted by &y (%), after scaling, to deterministic dynamics with a
single stable equilibrium. More precisely,

e at constant rate py, the mainland sends ey N offspring to found a new colony;
e atrate by (&y), each colony independently sends ¢y N offspring to found a new colony;

e cach colony independently merges again with the mainland at rate dy (§x).
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Then the number of colonies, still denoted by &y (¢), is a birth—death density dependent
process with immigration and the transition rate is given by

i J+1 atrate jby(j) + pN,
j— 1 atrate jdy(j).

We assume the following condition.

Condition 3.4. (a) For each N, xby (x) is nondecreasing and concave, and xdy (x) is nonde-
creasing and convex.

(b) There exist functions b(-), d(-) € C 1 (R4), and some constant p > 0 such that

onNey — p, NbN(i) — b(x).,  Ndy <i> - d(x)
EN EN

as N — oo forall x € Ry.
(c) It holds that lim sup, _, . (b(x) — d(x)) < O.

Then, in a similar manner to the proof of Lemma 3.1, we obtain
P
ENSN(NI) — K

in D([0, o0), R}), where « is the unique positive solution of xb(x) + p = xd(x) and N
denotes convergence in probability. Thus, by virtually the same proof as in Section 3.2, we still
have that the ancestral process converges weakly to a two-state censored coalescent defined by
(3.1), where inner lineages become outer lineages at rate d («) and outer lineages become inner
lineages at rate («b(x) + p)/k(k + 1).

3.2.1. Extinction of colonies. Conditioned on £y (), the number of colonies at time ¢, the
lifetime of a colony is exponential with parameter yy Sl‘i‘,_l. Let us suppose that at the end of
lifetime of the colony, it will merge with the mainland with probability p or be extinct with
probability 1 — p. Then itis not hard to see that & is still asymptotically deterministic, equal to
8;]11(, and we obtain the same result as Theorem 3.1 except for the inner to outer rate, where y
becomes yp.

3.2.2. Random size for each colony. We might allow for colonies with random size (either
constant but random, or ergodic), provided we can guarantee the total population size is of the
order of N, and provided we are able to estimate the probability that, looking back in time, at
a given fusion event, a given inner lineage originates from the merging colony.

3.2.3. Reproduction mechanism. We could have assumed that all individuals (in the mainland)
give birth to Ney offspring regardless of whether there is a founding event or not. More
precisely, in addition to founding new colonies, each individual independently at rate 1 gives
birth to ey N offsprings, and simultaneously ey N uniformly chosen individuals are killed. In
this case, one would still obtain a two-state censored coalescent as defined in Theorem 3.1.
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3.3. Proofs

To prove Theorem 3.1, we start by proving the following lemmas.
Lemma 3.1. Under Conditions 3.4(a) and 3.4(b), as N — o0,
in() = «
in D([0, 00), Ry), where k is the unique solution of Bz + 6 = yz“.

Proof. Recall that the number &y (Nt) of colonies of size ey N is a birth—death density
dependent process with immigration with transition rates given by

j— Jj+1 atrate N26y +8NN25Nj,
j— j—1 atrate Nyyj“.

It has the stationary distribution 7 given by (2.2). Note that

N0y +eyN2Bni 100 B
8%1'0‘ 87\]*11'01—1 ’

Nyni¢ 4

which is a decreasing function of i. It is easy to find some constant 0 < p < 1 and ¢ > 0 such
that for any i > My, where My := [c/en] and [x] denotes the integer part of real number x,

N30y + ey N?Byi
N]/Nia

<p<l.

Then, when j > My,

j—1 . oo —1
NON + enNBy My ! NON + enNBNi
7y (k) = W, My . 1_[ — |1t E WN, j
j=1

o 1O
YNJ Myl yNi
- '
_ Noy +enNByMy ’1_[ N6y + exNByi
< — ——a
YNJ v YNi
< pj_MN'
Thus, we have
00 00 o pMN
dooanGy< Y pl M= ,
. . 1—-p
J=2My J=2My

which implies that 7y ([2My, 00)) = O(pMN). Suppose that &y (0), the initial value of &y (-),
is distributed as . Then the sequence {ex&n(0)} is tight. On the other hand, {ey&n (N?)}
takes values in {iey : i € N} and its generator is given by

Lyf(@) =N’ (eN + %)(ﬂz +en) — f(2) + NyN( : ) (fz—en) — f(2)

EN

for any continuous bounded function f on R.. Let C Cz (R) be the set of twice differentiable
functions with compact support on R . It is not hard to see thatas N — oo for f € C 62 R4),

ILNf = LfIl >0 and Lf(z)=(Bz+06—yz")f'(2). (3.3)
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where || f || = sup,cg, |f(x)|. The Markov process & with generator L is actually deterministic
and satisfies the ordinary differential equation:

E'(t) = BE) + 6 — yE*(1).

Note that there exists a unique positive solution x such that Sx +6 — yx® = 0. Furthermore, it
follows that (Bx +6 — yx*)'|x= < 0, and for any § > 0, inf{|;_,|=s)nr, |Bz+60 — yz*| > 0.
Thus, the above ordinary differential equation has the unique equilibrium point «. It follows
from (3.3), [7, Theorem 6.1, p. 28], and [7, Theorem 9.10, p. 244] that ex&x (0) Xk as
N — oo, where %> denotes weak convergence. Again by (3.3), [7, Corollary 8.7, p. 231]
shows that {Ex(2): t > O}x{g’(t) =«,t > 0} on D([0, 00), R;). The lemma is proved.

As in Section 2 it is easy to see that (Y (-), 5 (+)) is a continuous-time Markov chain taking

values in £ x R,. Based on (2.4) and Conditions 3.1 and 3.2, a simple calculation shows that
the corresponding generator is given by

for any bounded function g on E x R,. Here,

EN

o3y, (N) L ! +e;
Yng(y,u) = jXZ;YJ(z)—( +8NN—_1>(8(}’—0/ +ej_1,u)— gy, u).

Note that 1 /(eyN — 1) — 0as N — oo by Condition 3.1. We also have

PNg(y, u) = 2(20) (g(y — €0, u) — g(y. 1))

+ (Bu+0)yo(g(y —eo +er,u+ey) —g(y, u))

yua—l
+ w1 vi(g(y —er +eo,u —en) — gy, u) =0
yua—l n
t T Zyj(g(y —ej+eo,u—en)— gy, u)lyso
=2

1 Moc—l
R , —]—1 R , .
+ (SN ,ng(y, u) + <8N + N) w1 W0 2,Ng(Y M))

Here the fourth term is identically equal to 0 if y € II. In the last term, Ry y and Ry y are

bounded linear operators satisfying || R; y|| < C for some constant C. The last term vanishes
as N — oo if c; < u < ¢; for positive numbers c1 and ¢;. Last, we have

Tyg(y,u) = (Bu +0)ey' (1 — yoen) (g(y, u + en) — g(y, u))

n
+yuey' (L—enu™' Y y)(e(y, u—en) — g(y, w) Lo -
j=1
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Let us write cg (y) (respectively cg (y,u), cfy (y, u)) the total rate of the events generated by
Y (respectively ¢y, I'y) when Ay g is applied to (y, u). Then

n .
N J) 1 1
=23 (D)= (14 ——).
A j—zy]<2)8N< +8NN—1)

)/uafl n Mozfl
1u>0) Z)’j + 8N<l + 1{u>0}>,
i u—+1

ey, =2<y2°> + (B 0)y0 + -

and

n
cff (y.u) = (Bu+0)ey (1 — yoen) + yuey' (1 —eyu™" > " y) Luso) -
j=1

Let us introduce the following notation,
ol =inf{t > 0: Yy(t) € 1}

and

olN = inf{t > 0: a ¢y-event occurs at }.

Lemma 3.2. It holds that o}’ =0 as N — oc.

Proof. By Lemma 3.1, we have for any 7 and 0 < § < «,

IP[ sup |ﬁN(t)—K|>8}—>O as N — oo, (3.5)
0<t<T

where PP is the probability measure. Fix § above. Let ¢c; = k — § and ¢; = k + §. Conditioned
on (Yn (1), 1y () = (y, u) with (y, u) € (E \ IT) X [cy, c2] at the current time ¢,

, cy (v, u)
P{the next event is a ¢y -event} = i 5 N < Cepn
Cy (y) + Co (y,u) +cp (y,u)
for some positive constant C,
Cf/y 6] 2n3

P{the next event is a {y-event} = <
ey + ey (yow) +ef (y,u) — 2n° + Ber +yef

for sufficiently large N,

cf (y,u) __(Bato) +yc
cyM+ef o+ ey, y) T 2+ B+ 0) +yes

P{the next event is a I'y-event} =

for sufficiently large N. Inspired by Taylor and Véber [18, Lemma 3.1], we fix some s > 0 and
consider
P{oy > s} =P(D) + o(1),

where

D:{ogv>s, sup |in (1) — i 55}.

0<t<s
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Then
P(D) = P{{at most nyy-events occur in [0, s]} N D}

= P{{at most nyr- and at least a ¢y-events occur in [0, s]} N D}
+ P{{at most nyry- and no ¢y-events occur in [0, s]} N D}
=L+ D.

Note that, we have YV (r) € E \ IT for ¢t € [0, s]if oév > s. Let

_ 2n’ (Bea +0) +ycs
©2n3 4 Bey +ycy 24+ (Ber+0)+ycs

p

Then

n
I < Z P{{exactly kv -events before a ¢y-event occurs in [0, s]} N D}
k=0

o
Z P{{exactly kyn- and [T y-events before a ¢-event in [0, s]} N D}
k=0 =0

k+1
( N )p"“(CsN), (3.6)

s |
|

WK

k=0 k

—
Il
=}

Since 0 < p < 1, Yo X% (¢')P**! < 00. Then I} > 0as N — oo. Let U be the
arrival time of the jth event occurring to (Y, 7). For I,

n o0

L = Z Z P{{exactly kiyn-events, [T y-events and no ¢y-events occur in [0, s]} N D}
k=0 =0

n o0
k+1
< < L )p"”P{{U,ﬁVH <5, U0 > sin D).
k=0 1=0

Conditioned on (Yn (2), 1y (¢)) = (y,u) with y € (E \ I), the rate for the event occurring
to (Yy, iiy) at time # is ¢l (y) + ¢} (y, u) + ¢ (y, ) and ¢} (y) = 2/ey. Then U}, is
stochastically bounded by the sum of k 4+ / 4+ 1 independent and identically distributed (i.i.d.)
exponential variables with parameter 2 /¢ whose distribution becomes concentrated close to 0
as N — oo. Thus,

IP’{{U,ﬁYH<s,U,ﬁI+1 >s}ND}—->0 as N — oo,

and by the dominated convergence theorem, I, — 0.

Lemma 3.3. There exist positive constants M and Ky such that for any s > 0,

limsup Pfo]¥ < s} < M1 —e X1%),
N—o0

Proof. By the proof of (3.6), P{at least one ¢y -event occurs before aév }—>0as N — oo.
Then by (3.5), we have
P{o{ < s} =P(G) + o(1),
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where

G = {only Y- or I'y- events before UON, sup |y (t) —«| <8 and olN < s}.
0<t<s

Recall that Y (0) = y. If only ¥ - or I y- events occur before aév R aév < GIN ,and Yy () =y
for t € [0, o]]. Furthermore, Yy(t) € II and cf)’ = 0 fort > o/. Conditioned on

(YN @), nn () = (y, u) with (y, u) € IT x [c1, 2],

ey (Ber +ycf)

5 <Ny, u) <ey' @+ Ber +ycs)

Ky <cjf(y.u) < Ka,

for sufficiently large N, where K| = [)/(c‘l"_l A cg_l)] A (Ber) and Ky = n? +n(Ber +6) +
yn(c® v ed™h). Then
ey (v, u) B 2K
) vy + el (v u) T 2Kzew + Ber + yef”

eN(y, u) - 0+ Ber +ycs
cg(y,u) +cN(y,u) ~ Kien +60 4 Ber +ycs

For (Yn (), nn (-)) withinitial value (y, u) € I1x[c1, ¢3], recall that UJN denotes the arrival time
of the jth event occurring to (Yy, ) and Uév = 0. Itis nothard to see that U ]N is stochastically

larger than the sum of j i.i.d. exponential variables with parameter 8;,1 0+ Bca +ycs) + Ka.
We have

o
P(G) = Z P{{exactly kT y-events occur in [aév, alN]} NG}

k=0

> 0+ Ber +ycs k 2Kren N N
=y _ _Plol + U <)

= Kien +0 + Ber +yey ) 2Kaen + Ber + e

k
<§:< 0+ Ber +ycs )k 2Ksen P{O_N_'_ZV_N <s}
T =\ Kiey +0+ Ber+ye§ ) 2Kaew + e+ ycf 0 = I=

for some positive constant M and sufficiently large N, where {VJ.N } are i.i.d. exponential
variables with parameter 8;/1 O+ ,362+ng )+ K>, and Ty is a geometric variable with parameter
Kiey/(Kiey + (Bey + 6) + yc5) independent of {VJ.N}. Since a({VE)O, a simple calculation
shows that oév + Z?/IZNO VjN converges weakly to an exponential variable with parameter K.
The lemma is proved.

Lemma 3.4. Under Conditions 3.1 and 3.2, the ancestral process {Yn(t), t > 0} starting at y
with y € Tl converges weakly on D([0, 00), IT) to {Y (t),t > 0} given by (3.1) starting at y.

Proof. 1f the initial value Y (0) = y € IT then (Yn(¢),t > 0) € D([0, c0), IT) and, thus,
¥ and the fourth term in ¢ vanishes. In this case for any bounded function g on IT x R,
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the generator of (Yn(t), ny(¢)) is given by Byg = ¢~)Ng + I'vg, where I'y is given in (3.4)
and

ong(y, u)—2< )(g(y ey, u) —g(y,u))

+ (Bu+0)yo(g(y —eo +er,u+ey) —g(y, u))

a—1

u
LY

w1 vi(g(y —er +eo,u —en) — gy, u) >0

a—1

1\ u
R s —
+ (8N 1,Ng(y, u) + <8N + N) 1

10y Ro,ng(y, u))
Furthermore, it follows from Lemma 3.1 that

Yy (0), fin(0)) = (y,k) as N — oo.

We can choose some § > 0 such that « — & > 0 and we let I = [k — §,« + &]. Also by
Lemma 3.1,

Iim P{(Yn@),nn@) eI xI,0<t<T}=1.

n—oo

Note that IT is a finite set, so the discrete topology on IT makes it a complete and compact metric
space. Then the above limit implies the compact containment condition of Ethier and Kurtz [7,
Equation (7.9), Chapter 3] for (Y (¢), nn(2)). It is not hard to see that for any continuous and
bounded function g on IT x R,

lim  sup |Byg(y,u)— Bg(y,u)| =0,

n—00 (y,u)ellxI

where

Bg(y,u) = 2( >(g(y —ep,u) —g(y,u)) + (Bu+0)yo(g(y —eo + e, u) — g(y, u))

a—1

0
+ L ig 0 — 1+ e0.1) = g0y, w) + (Bu +0 — yu) g (. ).

u+1

It follows from [7, Corollary 8.7] that {(Yx (¢), nn (¢)) : t > 0} converges weakly on D ([0, c0),
xRy to{(Y(t),k):t>0}as N - oo.

Proof of Theorem 3.1. Let Py(-) be the distribution of (Yy(-), 7y (-)) with initial value
(¥, nn(0)), where 5y (-) is distributed as 7 given in Section 2. Let f1, ..., fi be real-valued
functions on E. Choose 0 <s <] <--- <t;. Let Qy = {00 <5 <o } Then

k
Ey{l_[ f,-(YNa,-))lQN}
i=1
k
{1QN {]‘[ﬁ(YN(m) ‘ sf””

k
=E, {]‘QN E 5,7 s)) {l_[ JilWn (i — S))}}

i=1
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k k
=E, {E@,ﬁmm {]—[ Ji(¥n (@i = 5)) } } —E, { 15, EGiivsn {l_[ Ji(¥N(ti =) } }
i=1

i=1

k k
Ejy {1_[ fil¥n(t — S))} - Ey{IQN EG.iv ) {l_[ fil¥n(t — S))} }
i=1

i=1

where Q\ is the complement of the set O and IE is the expectation value. The last equality
follows from the fact that 7y (-) is stationary. Then by Lemmas 3.2, 3.3, and 3.4,

k k
Ey{l_[ ﬁ(YN(t,-»} - E;{]‘[ fiY (@ - s))H
i=1 i=1

< 2max || ;]| lim sup P(Q )
! N—o00
k k
Ey{l_[ £y (@ —s))} —Ey{]"[ﬁav(r,- —s))”
i=1 i=1

< 2M max || f;[|(1 — e~ K1%)
l

lim sup
N—o0

+ lim sup

N—o0

—0 ass— 0.

Since Y (¢) is stochastically continuous,

k k
E&{H Si(Y (& —S))} LN Ey{l—[ f,'(Y(ti))} ass — 0.
i=1 i=l1

Then, we have
k

k
s [T o] =s,|

On the other hand, for the process Y*(-) defined by (3.2), the transition probability p;(y, ) is
given by

Ji(Y (@) } 3.7
1

p(§,) ift>0,
8y()  ifr =0,

where p;(y, -) is the transition probability of Y (). Let tp = 0. We also have

k k
IJEnwE{H)ﬁ(YN(ti))} = E{]‘[ﬁ(Y*(n))}.

i=0
Proof of Theorem 3.2. Step 1. Recall the notation in Section 2.2. Under the homeomor-
phism, the subspace IT can be regarded as I"(IT) for simplicity. It is not hard to see that for any
function f on II,

pi(y,) = { (3.8)

t
FX(@®) = f(y) = /O (B f)(Yi(s)) ds

is a martingale, where

B f(y)r = 2(y20>(f(y +(=1,0) = f) +ayo(f(y + (=1, D) — f(y)

+ by (f(y + (1, =D) = f(¥).
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Recall that Y; (1) = (Y1), Y1) and Y;(t) = Y2(t) + Y} (1). For any function g on I,, let
f(y) =g(o+ y1) for y € 1. Then

! ~
g(Yk(t))—g(n)—/0 (Brg)(Y(s), Y}l (s)) ds

is also a martingale, where Bkg(y) = 2(%)) (g(y — 1) — g(»)). Note that I, is a finite set, so the
discrete topology on I,, makes it a complete and compact metric space. Then Y (-) satisfies the
compact containment condition. Foreach T > 0, sup;, fOT |§kg(Y,9(s), Yi(s))|ds < 2n’T|g|,
where ||g|| = SUp ey, |g(y)|. By Ethier and Kurtz [7, Theorems 9.1 and 9.4, p. 142], Y (-) is
relatively compact in D ([0, 00), I,).

Step 2. Suppose that {é}‘ (~)}7:l is the sequence of i.i.d. Markov chains taking values in
{0, 1} and whose transition rate matrix is given by

-1 1
by by
ag ag

Let Pl.’; () = P{E{‘(t) =7 é{‘(O) = i}. A simple calculation shows that

by ay
Pl =1—-PY @) = + e~ I+ be/a))
0()( ) 01( ) ar + bi ar + b
b b
Ph)=1-PE@)= —2%  — %k _o~(tbi/a,

ar +br  ap + by

Let §,’f 1) = Z'/’: 11 {Ef (1)=0}" Since {Sik (t)}?’:] are independent of each other, it is not hard to
see that for any g on [,

sup |E{g(cX (1))} — Eylg (X (1))} < 2n||glle=1HEr/ai =4 > g,

x,y€ly

This implies that g‘,]f(t) satisfies the ¢-mixing condition (see [4, p. 111]). By (1.13) of [4,
p.- 109],
sup [y {8(4,(12)g (¢ (1)) = Eylg Gy (2)IEs (g2 1))}
A )
< 2v2n||g| e~ IHGr/aD(=1)/2
for any #» > 1 > 0. Then
t 2
Ey{( /0 (¢ @) — Ey[g(CH (@)D ds> }
t t
= Ey{ /0 /0 ds1 ds2(g(5r (ars1)) — Ey[g (&) (ars))) (g(¢h (axs2)) — Ey[g(;,f<aksz)>1>}
t t
= fo /0 ds1 ds2(Ey {g (¢ (axs2))8 6k (ars))} — Ey{g (¢ (ars))VEy (g (¢ (ars1)))

t t
< Cmlgl? / ds / em@rblanl2 s,
0 0
< C)lgl*t/ax, (3.9)

where C(n) is a constant depending only on n. Since Pé‘o (axt) — p/(1 + p) and Pgl (art) —
1/(14 p) ask — oo, itis easy to see for any r > 0, g“,f(akt) 2 ¢n ask — oo, where ¢, follows
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the binomial distribution, i.e. &, ~ bn(n, p/(1 + p)). Note that I, is finite. The dominated
convergence theorem shows that

t
Su})/o IEy{g(¢f (ars))} — E{g(¢n)}lds — 0 ask — oo.
yel,

Combined with (3.9), we have

t 2
sup H*;{( /0 (&K (ars)) — JE[g@n)])ds) } >0 ask - co. (3.10)

Y€l

Step 3. It holds that (Y,?(t), Y (¢)) is a Markov process as in step 1 and ¥ ,9(0) =yel,and
Yi(0) = n. Let FX = o {(Y2(s), Yi(s)): 0 < 5 < t}. Define T}‘ =inf{t > 0: Y (t) = n — j}
with 7 = 0 and z/’f = T;‘ — T}‘_l. Set h(y) = y(y — 1) for y € I,,. By (3.10), we have

P{cf, > 1} =EP{c},, > 1| fT’}}}
k
= E{Pryortyn-j) (Tj1 > D}
t
=E{EY£(T;C)<exp{—/O h(;,’;_j(aks))ds})}
— e BG4k — o0,

Similarly,

t
P{ck > 1,75 > 5} = E{l{rf>,}EYQ(T{<)<exp{—/o h(;,fl(aks))dsD}.

Then
”p{.[f > s, .L-; > 1) — e_]E{h({n)}s_E{h(fn—l)}t|

t
< |P{tf > s} — e EthGEs) 4 sup E, { ‘ /O (h(CX | (ars)) — E{h(u-1)}) ds
vel,

I

By (3.10) it follows that the second term in the right-hand side of the above inequality goes to
0 as k — oo. By induction, (rf‘, el t,’;_l) L (t1, ..., Tu—1), Where {7; ’/’;} are independent
of each other and t; follows the exponential distribution with parameter ¢, ;1. It follows
that {Yy(¢), t > 0} converges in the sense of finite-dimensional distributions to the n-Kingman

coalescent process {K (t), t > 0}. Since {Y¢(¢)} is relatively compact, the theorem is proved.
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