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Abstract

This paper considers (left) near-rings which satisfy the left self distributive (LSD) identity: abc =
abac . This is exactly the class of near-rings for which each left multiplication mapping, xa: x —•
ax, is a near-ring endomorphism. Simple and subdirectly irreducible ones are classified and
semidirect sum decompositions into reduced and nilpotent pieces are given. LSD near-rings with
restrictive conditions on nilpotent elements or annihilating sets are considered. Type 1 prime
(semiprime) ideals in an LSD near-ring are completely prime (semiprime). Further results on
prime and maximal ideals are given. Numerous examples are given to illuminate the theory and
to illustrate its limitations. Some analogous theory for right self distributive near-rings is given
(those satisfying the identity: abc = acbc).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 76.

1. Introduction

This paper continues our investigation of near-rings satisfying certain poly-
nomial identities, with the main emphasis herein on the left self distributive
identity:

1.1 abc = abac.
Also playing a role in this paper are the identities:

1.2 abc = bac (left permutable);

1.3 abc = acb (right permutable);

1.4 abed = acbd (medial);

1.5 abc = acbc (right self distributive).
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274 Gary Birkenmeier and Henry Heatherly [2]

(For convenience we abbreviate left self distributive by LSD and right self
distributive by RSD.) Semigroups which are LSD were investigated by Kepka
[14] and LSD rings were investigated by the present authors and Kepka [7].
Previously we examined in depth the properties of rings or near-rings, sat-
isfying one of 1.2, 1.3 or 1.4 [4, 5, 6]. Near-rings which are both LSD and
RSD, herein called self distributive, were considered by Ferrero Cotti [12]
and Scapellato [25]. (Ferraro Cotti calls these near-rings "distributive" and
Scapellato calls them "auto-distributive.")

The main results of this paper are

(i) a classification of simple and of subdirectly irreducible LSD near-
rings;

(ii) an investigation into the properties of LSD near-rings with various
restrictions on nilpotent elements or annihilating sets;

(iii) type 1 prime (semiprime) ideals in an LSD or RSD near-ring are
completely prime (semiprime); further results on prime and maximal
ideals are given;

(iv) a semidirect sum decomposition for an LSD or RSD near-ring into a
reduced (no nonzero nilpotent elements) piece and a nilpotent piece;

(v) examples showing the abundance of LSD near-rings, their relation to
the other identities given above, and limitations on the theory.

The class of LSD near-rings is a variety (and hence is closed under the
formation of subdirect products). This class is exactly the class of near-
rings for which each left multiplication mapping, ra: x —*• ax, is a near-ring
endomorphism. (The class of near-rings for which every endomorphism on
the additive group is a near-ring endomorphism, considered in [11], is a
proper subclass of the class of LSD near-rings.)

The reader may be as surprised as were the authors to find what a large
percentage of the near-rings (without identity) given in the literature satisfy
the LSD property. This is discussed in Section 2. There is an interesting
contrast between the paucity of LSD rings and the abundance of LSD near-
rings, especially in the subdirectly irreducible situation.

The notation and terminology used herein is that used in [19], except
where otherwise noted. Let R be an arbitrary (left) near-ring and let A
and B be nonempty subsets of R. Then A • B — {ab: a e A, b e B},
[A, B] = {ab - ba: a e A, b e B}, and {A) is the ideal generated by
A. We use (R, R) for ([R, R]). The additive group of R is denoted
by R+ . By a distributive element in R we mean an element d e R such
that (x + y)d = xd + yd, for each x, y € R. We use 3{R), S{R),
and JV{R) for the sets of distributive elements, idempotent elements, and
nilpotent elements, respectively. If no ambiguity will result, we use 3 , J2",

https://doi.org/10.1017/S144678870003055X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003055X


[3] Left self distributive near-rings 275

and JV for convenience. The additive subgroup generated by A is denoted
by gp(^). We use lR(A) = {x(=R:xA = 0} and r^(^) = {x e R: Ax = 0} .
If no ambiguity will result, we use \(A) and r{A). If AnJ^ is zero or empty,
we say A is reduced, and if A c J2" we say A is Boolean. The set A is
said to be permutable if the elements of A satisfy both 1.2 and 1.3. The
commutator subgroup of R+ is denoted by R1. The term semidirect sum
will be taken in the additive group sense; so A + B is a semidirect sum if A
and B are subgroups of R+ , one of them is normal in R+ , and A n B = 0 .

An ideal P in /? is said to be completely prime (completely semiprime) if
a, b e R and ab e P implies a e P or b e P (a2 e P implies a e P).
Following Ramakotaiah and Rao [23], we say an ideal P is a type 1 prime
(type 1 semiprime) ideal if aRb c P implies a e P or b € P (aRa C P
implies a€ P).

2. Examples and basic results

Examples of LSD near-rings abound. Their abundance and wide scope
were surprising to us. In this section we give some motivating examples
and indicate their abundance in some of the standard sources of near-rings.
Since the class of LSD near-rings is a variety (and hence is closed under the
formation of subdirect products), further examples immediately arise from
the ones explicitly given here. (Examples of LSD rings can be found in [7].)

EXAMPLE 2.1. (Malone's trivial near-rings [16].) These are the near-rings
R such that either (i) OR = R or (ii) OR ^ R and every element is either a
left identity or a left annihilator of R. These near-rings are always LSD and
left permutable. If 0 R ^ R and R2 ^ 0, then R cannot be RSD or right
permutable. It is possible for a Malone trivial near-ring R, with R2 ^ 0, to
be d.g. and even distributive [18, 29].

While Malone's trivial near-rings are in some sense just that—trivial—we
discussed them here because they play a key role in classifying LSD near-
rings.

A perusal of the standard lists of examples of near-rings given via Cayley
tables, Clay representations, or Cayley tables for generating sets [2, 9, 21, 22,
30] reveals a considerable number of these near-rings are LSD. This is due
only in part to the presence of Malone trivial ones. We next give a brief
summary of our findings from said lists.

SUMMARY 2.2. (i) On the Klein four group there are twenty-three non-
isomorphic near-rings [9]. Fifteen of these are LSD, of which five are Malone
trivial.
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(ii) On C6 there are sixty non-isomorphic near-rings [9]. Forty-seven of
these are LSD, of which twenty-one are Malone trivial.

(iii) On S3 there are thirty-nine non-isomorphic near-rings [9]. Twenty-
nine are LSD, of which thirteen are Malone trivial.

(iv) On the dihedral group of order eight there are twenty non-isomorphic
d.g. near-rings [29]. Eighteen of these are LSD, of which three are Malone
trivial.

(v) On the infinite dihedral group there are six non-isomorphic d.g. near-
rings [17]. All of these are LSD and three of them are Malone trivial.

Other LSD near-rings which are not Malone trivial were found on dihedral
groups of order 4«, generalized quaternion groups, the alternating group of
degree four (Alt 4), and various cyclic groups. Some of the calculations were
carried out with the aid of an IBM 3090. Examples of particular interest will
be mentioned in the sequel as it becomes appropriate.

EXAMPLE 2.3. Let (R, +, •) be a Boolean ring, M a left /?-module, and
f:M^>R, h: M —> M i?-homomorphisms satisfying fh = f and h2 = h .
Define a * b = f{a)h{b) for each a, b e M. Then (R,+,*) is a (left)
near-ring which is LSD and left permutable.

A concrete realization of this occurs when M = Mn(R), the full set of n
by n matrices over R, n > 1, and / ( a ) = de ta , h = \M. Then a € M
is nilpotent in (A/, *) if and only if deta = 0 and each nonzero nilpotent
element has index two. Next suppose R has unity; then the left identity
elements in (M, *) are exactly the matrices with determinant one. Also,
(M, *) is neither right permutable nor right self distributive. Using R = Z2

we have an example where the set of nilpotent elements of (M, + , *) is not
closed under addition.

Other interesting realizations of the general construction arise by using
M = Mn(R), the same / , and h one of the following:

(i) h(atj) = (djj), where a, = 0 if i ^ j and a'jj = a^ (the diagonal-
izer mapping);

(ii) h(au) = (bu), where btj = 0 if i > ; and btj = atj if i < ; (the
upper triangularizer mapping);

(iii) h(au) = (ctj), where cik = aik, i = 1, . . . , n, and c(j = 0 if j # k,
where k is fixed.

(More generally, h could be any projection mapping of the space Mn(R)
onto a subspace of Mn(R).)

The above construction is a special case of a general one given in [3, 4].
EXAMPLE 2.4. (Affine near-rings [10, 13].) Let (S, +, •) be a ring and M

a right 5 - m o d u l e . L e t R = S x M a n d d e f i n e ( a , s ) O ( 0 , t) = ( a f i , s 0 + t ) .
Then ( /? ,+ ,©) is a (left) near-ring, the abstract affine near-ring induced by
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S and M. If 5 is an RSD ring and MS2 = 0 , then R is a RSD near-
ring. If MS = 0 and S is medial, left permutable, or LSD, then (R, ©)
is medial, left permutable, or LSD respectively. Since every LSD ring is left
permutable [7], if S is LSD and MS = 0 , then (R, ©) is a left permutable
and LSD.

EXAMPLE 2.5. Let (G, +) be a group (not necessarily abelian) and let h
be any idempotent endomorphism on (G, + ) . Define a®b — h(b), for each
a, beG. Then (G, +, <g>) is an LSD and RSD near-ring.

EXAMPLE 2.6. (Clay construction [9].) Let {G, +) be a group (not neces-
sarily abelian) and let / : G —> End(G, + ) . Define a * b = f{a)(b), for each
a, b € G. Then (G, *) is associative and (G, + , *) is a near-ring if and
only if f(a) o f(b) = f{a * b) [9, Theorem 1.2]. The near-ring (G, +, *) is
LSD if f(a) o f{b) = f(a) o f{b) o f{a), for each a, beG.

EXAMPLE 2.7. Let F be a free near-ring [22] and J the ideal of F
generated (as an ideal) by {abc-abac: a, b, c e F} . Then F/J is an LSD
near-ring.

Often in this paper we will make use of the fact that for an arbitrary near-
ring R, JV(R) c 1^(0). (To see this, take JC" = 0 and then observe that
Ox = JC" • JC = x • JC" = xO = 0.)

LEMMA 2.8. Let R be an LSD near-ring such that a, b, c e R and X
is a nonempty subset of R.

(i) abc = aba"c = ab"c for n>\. Hence a3 = a" 6 / for n > 3 and
if abc = 0, then bac = 0.

(ii) RJ c J and RJV C jr, and hence g p ^ ) and gp(^") are left
R-subgroups.

(iii) JTR1 = RJTR = OR, and hence JVlf = 0R.
(iv) R has the strong IFP property. Hence t{x) is an ideal and r(X) c

T(XR) , R/r(a) = aR as near-rings, and l(X) = l((X)).
(v) If X2a = 0, then aXR = 0 R. Thus, if R is zero symmetric, then

r(X2) C l(XR) C 1(^2) .
(vi) (abc - bac)2 = 0. Hence g^XRliJ^) is a left R-subgroup.

(vii) R — cbR + r(cb) is a semidirect sum.

PROOF. Parts (i)-(v) are straightforward applications of the definition of
an LSD near-ring. For part (vi), consider (abc - bac)2 = (abc - bac)abc -
(abc - bac)bac = (abc - bac)[ab(abc - bac)c - ba(abc - bac)c] — (abc -
bac)[0c - 0c] = 0. For part (vii), let x e R; then x = cbx - cbx + x;
but cb(-cbx + x) = 0 . Therefore, -cbx + x e r(cb). Assume cba e
cbR n r(cb); then cba = cbcba = cb(cba) = 0 . Therefore, R = cbR + t(cb)
is a semidirect sum.
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LEMMA 2.9. Let R be an LSD near-ring such that a, b e R and x,
yer(O).

(i) a-a2er(0) .
(ii) a{x - x2)y = 0 = (x - x2)ay = a(x - x3)y.

(iii) (abx - axbxf = 0.
(iv) b = k + e + z w h e r e k eJ^, e = e 2 e r ( 0 ) , a n d z e O - R .

PROOF, (i) Consider 0(a - a2) = 0a- OaOa = 0a-0a = 0.

(ii) Consider (JC - x2)x2 = (x - x2)x\x - x2)x = 0. Then (x - x2)3 =
[(x-x2)x-(x-x2)x2](x-x2) = (x-x2)x(x-x2) = (x-x2)x3(x-x2) = 0.
Hence x - x2 e JV. By Lemma 2.8(i), a(x - x2)y = 0 = (x - x2)ay. By a
similar argument, a(x - x3)y — 0.

(iii) (abx - axbx)2 = (abx - axbx)abx - (abx - axbx)axbx = (abx -
axbx)[ab(abx - axbx)x - axb(abx - axbx)x] = (abx - axbx)[(abx -
abx2)x - OJC] = (abx - axbx)[ab(x - x2)x] = 0 (by part ii).

(iv) There exist x G r(0) and z e 0 • R such that b = x + z. By (ii),
(x - x3)3 = 0. Hence x = k + x3, where keyf and x3 = e e / .

LEMMA 2.10. Let B be a subset of an LSD near-ring R such that BJV" C
B.IfBnJ^ = 0, then B • (JV) = 0 = B n (/T). In particular, (JV) contains
no nonzero reduced right R-subgroup and no nonzero reduced right ideal; if
S n (JV) = 0 or JW = 0, then JV =

PROOF. Since BJV c # , w e have BJ^ c BnJ^" = 0. Using left self
distributivity gives B • (Jf) = 0. Also, (B n (jV))2 C B • (Jf) = 0; so
B n (JV) c Bnjs = o. If X is a reduced right ideal of R, then since
JV c r(0) we have XJV c i n # = 0 . Similarly, if X is a reduced right R-
subgroup. So (Jf) contains no nonzero reduced right ideals and no nonzero
reduced right /^-subgroups. Finally, if J 5 f = 0, then J • (JV) = 0. Since
for each x e (JV), x3 is idempotent, we have (-/T) = JV.

A zero symmetric LSD near-ring can contain a reduced left ideal in the
ideal generated by its nilpotents. (See [9, no. 22 on 53 ].)

PROPOSITION 2.11. Let R be an LSD near-ring and suppose e e / , e ^
0. Then r(e) = r(eR) and (eRe, •) is an idempotent, LSD semigroup with
e as the two-sided identity. If e e S(R), then eRe is a Boolean ring, and
l(e) = l(Re) is both a left ideal and a right R-subgroup. If e is central, then
eR is a Boolean ring and R' U (R, R) c r(^) = \(e).
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PROOF. If x e r(e), then eRx = eRex = 0; so r(e) = r(eR). Since e is a
two-sided identity in (eRe, •), this LSD semigroup is idempotent. If e e 2!,
then eRe is a Boolean, LSD near-ring and hence is reduced, which forces
both its additive commutator subgroup and (eRe, eRe) to be zero. Thus
eRe is a ring. If ye - 0, then yRe = yRye - 0 and hence \{e) = \{Re).
Finally, if e is central, then eR = eRe and hence R/r(e) = eR, which
yields R' C T{e) and (/?, R) c r(e).

PROPOSITION 2.12. Let R be an LSD near-ring and K = {y - y2: y e
r(0)}. Then (K) is completely semiprime and (JV) = (K).

PROOF. Let x e R such that x2 e (AT). Let JC = b+z where 6 e r(0) and
zeOR. Then x2 = (6 + z)fc + z . By Lemmas 2.9(i) and 2.8(iv), {K) c r(0)
and r(0) is an ideal. Hence z = 0 and x e r(0). Thus x - x2 € K and
hence x e (A"). Therefore, {K) is completely semiprime. Consequently,

C (AT). By Lemma 2.9(ii), (K) = '
2Note that in general, y - y2 £ (JV). For example, let R be the LSD

reduced near-ring denned in [9, no. 31 on 53 ], then b - b2 = x $ JV = 0.

COROLLARY 2.13. Let R be a zero symmetric LSD near-ring. Then RI{JV)

is Boolean.

In the remaining results of this section we consider RSD near-rings. Ex-
ample 2.4 (with M = S, S3 = 0, and 53 = 0, and nos. 11 and 13 on Klein
four [9] are RSD near-rings which are not LSD.

LEMMA 2.14. Let R be an RSD zero symmetric near-ring such that a, b,
c e R and X be a nonempty subset of R.

(i) abc = aba"c = ab"c for n>\. Hence a3 = a" eJ* for n > 3 and
if abc = 0, then acb = 0.

(ii) SR = J and J^R u RsV C Jf.
(iii) RjyR = R2JV = 0; hence JW = 0.
(iv) R has the strong IFP property. Hence r(X) is an ideal of R and

T{X) C r(XR), R/r(a) £ aR as near-rings, and l(X) = l((X)).
(v) / / aX2 = 0, then RXa = 0; hence l(X2) c r(RX) c r(X2).

(vi) {x - x2)3 = 0 = {x - x3)3 .
(vii) b = k + e where fce/ and c e / .

PROOF. The proof is similar to that used in the LSD case.
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PROPOSITION 2.15. Let R be a near-ring.

(i) If R is LSD and has a right identity, then R is a Boolean ring.
(ii) If R is RSD and has a left identity, then R is a Boolean near-ring.

If the identity is two-sided, then R is a Boolean ring.

PROOF, (i) An LSD semigroup with right identity is idempotent. So R is
a Boolean near-ring with right identity. Ligh [15] has shown such near-rings
are rings.

(ii) For each r e R, if e is a left identity, then r = er = erer = r . If
e is two-sided use Ligh's result mentioned in (i).

An RSD near-ring with left identity need not be a ring. Either the near-
ring composed of all left identities or the zero symmetric one with all nonzero
elements being left identities on any nonabelian additive group serve as ex-
amples.

The following result generalizes [25, Theorem 2].

PROPOSITION 2.16. Let R be an RSD near-ring. Then Jf is a right ideal.
Furthermore

(i) / / R is zero symmetric, then J¥ is an ideal and R/yf is a Boolean
near-ring, and

(ii) if R is LSD, then Jf is an ideal.

PROOF. Let a, b e Jf and x, yeR. Then (a - b)3 = (a- bfa - {a -
bfb = (a - b)a\a - b)a -{a- b)b3{a - b)b = 0. Hence yT is a group.
Now observe that (x + a - x)2a — (x + a — Jc)a3(x + a - x)a = 0. Hence
(x + a- x)3 = 0. Thus yV is a normal subgroup. Let s — (x + a)y - xy and
y - c+k, where c e r(0) and k e OR. Then s2 = s(x+a)c+k-(sxc+k) =
sc2(x+a)c-sc2xc = (c2x+c2a)c-sc2xc = sc2xc-sc2xc = 0. Therefore, A"
is a right ideal. Part (i) follows from Lemma 2.14(ii). For part (ii) Observe
that {xaf = xa3 = 0.

In general, */T will not be an ideal in an RSD near-ring. Recall Example
2.4 and assume MS2 = 0. Then R is RSD and (a, m)3 = 0 if and only
if ma + m - 0. But maa + ma - ma = 0. Hence m = 0. Thus
JV{R) = {(a, 0): a e S} . If MS ? 0, then sV{R) is not a left ideal.

PROPOSITION 2.17. Let R be an LSD or an RSD zero symmetric near-ring
and P an ideal of R. Then P is completely prime (completely semiprime)
if and only if P is type 1 prime {type 1 semiprime).
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PROOF. Note that for any near-ring a completely prime (completely semi-
prime) ideal is a type 1 prime (type 1 semiprime) ideal. Assume R is LSD,
ab G P, x G R, and P is a type 1 prime ideal. Then axb = axab G P.
Hence aRb c P. So P is a completely prime ideal. The other cases are
similar.

We observe that, in general, for LSD near-rings an ideal may be prime but
not necessarily completely prime. For example, no. 30 on S3 in [9] is LSD,
RSD, and prime, but not an integral near-ring.

3. Simple LSD near-rings

The following lemma will be useful in this section, as well as subsequently.

LEMMA 3.1. Let R be an LSD near-ring with r(R) - 0. If a, b G R,
then

(i) ab = a2b and a2 € J ;
(ii) jr R = 0 R (hence JT1 = 0).

PROOF. This follows from Lemma 2.8(i), (iii).

THEOREM 3.2. Let R be a simple LSD near-ring. Then either (exclusively)

(i) every element of R is a left identity and R+ is a simple group, or
(ii) R is zero symmetric and every element of R is either a left identity

or a left annihilator of R.

PROOF. If r(0) = 0, then every element of R is a left identity. In this
case each normal subgroup of R+ is an ideal of R, so R+ is simple.

Consider r(0) = R. If r(R) — R, then R2 — 0 and hence R+ is a simple
group. If t(R) = 0, then for each nonzero x G R, either the idempotent x2

is a left identity, or r(x2) ^ 0 and 0 = x2R — xR, from Lemma 3.1(i).
Thus all simple LSD near-rings are Malone trivial ones. (But not all

Malone trivial near-rings are simple.)

COROLLARY 3.3. If R is a simple, LSD near-ring, R2 ^ 0, and 3f(R) ^ 0 ,
then R = Z2.

PROOF. Checking cases shows that L + L c A, L + A c L, A + L c L,
and A + ACA, where L is the set of left identity elements and A is the set
of left annihilating elements. It follows that l(R) is an ideal and JV = l(R).
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Simplicity and R2 ^ 0 yields that every nonzero element is a left identity.
Thus the sum of any two nonzero elements is zero, which forces \R\ = 2 and
R = Z2.

COROLLARY 3.4. Let R be a self distributive near-ring. If R is simple,
then either

(i) 0 R = R,
(ii) R2 = 0 and R+ is a simple group; or

(iii) R is zero symmetric and each nonzero element of R is a left identity.

PROOF. If 0 R ^ R and R2 ^ 0, then 0 • R = 0 and R contains a left
identity element b. If c e JV, then 0 = c2 = bcbc = bbc = c.

Each of the three types given in this corollary are indeed self distributive
and simple. For type (iii), R+ can be any group.

The following is an extension of [12, Theorem 7] and has that result as an
immediate corollary.

PROPOSITION 3.5. Let R be a zero symmetric, LSD near-ring with DCC
on right ideals. If either of the radicals J{{R) or J2(R) are zero, then R is
a finite direct sum of simple near-rings of the type given in Theorem 3.2(ii)
and R has a left identity. Consequently, R is left permutable and R is right
permutable if and only if R is a Boolean ring.

PROOF. The standard structure theory ([19, Chapter 7] or [22, Chapter 5])
yields the decomposition of R into a direct sum of a finite number of simple,
zero symmetric near-rings with left identity. Since each summand is LSD, we
have the conditions necessary to invoke Theorem 3.2. Each summand is left
permutable and hence R is also. Similarly, a summand is right permutable
if and only if it is isomorphic to Z2 .

We leave as open the question of whether JX{R) or J2(R) zero in Propo-
sition 3.5 can be replaced by " R has zero nil radical."

COROLLARY 3.6. Let R be an LSD near-ring with DCC on right ideals and
with either J{(R) or J2(R) zero. If R isd.g., then R is a finite Boolean ring.

PROOF. Proceed as in the proof of Proposition 3.5. Each summand will
contain a nonzero distributive element and hence be isomorphic to Z2 .

PROPOSITION 3.8. Let R be a zero symmetric, LSD near-ring with D. C.
C. on right ideals. If R is ( von Neumann) regular, then R is a finite direct
sum of near-rings which have every nonzero element a left identity.
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PROOF. First observe that R is a finite direct sum of simple, LSD, regular
near-rings. From Theorem 3.2(ii) these are the ones with every nonzero
element a left identity. (There can be no nonzero left annihilating elements
in a regular near-ring.)

PROPOSITION 3.9. If M is a maximal ideal in an LSD near-ring R, then
M is maximal as a right ideal of R.

PROOF. By Theorem 3.2 every element of R/M is either a left identity or
a left annihilator. If x + M is the former, then for each r € R, xr = r + m,
for some m € M; if JC + M is the latter, then xr e M for each r e R.
Suppose S is a right ideal of R and M c S. Then for each s eS, x e R
we have xs = s + m, where m e M, or xs € M. In either case, xs € S
and hence 5 is an ideal of R.

4. Reduced LSD near-rings and allied topics

In this section we consider LSD near-rings under various conditions that
restrict products from being zero (for example, reduced, l(R) = 0, r(R) — 0,
integral). This leads on the one hand to subdirect product classifications and
on the other to some interesting properties of prime ideals.

PROPOSITION 4.1. If R is a reduced LSD near-ring, then R is left per-
mutable and a2 is a nonzero idempotent for each a € R.

PROOF. Left permutability follows from Lemma 2.8(vi). That a2 is a
nonzero idempotent follows from Lemma 3.1.

Reduced LSD near-rings need not be Boolean nor self distributive, even if
R is subdirectly irreducible. There are several examples of this among the
near-rings on S} [9]. A dramatic example is afforded by [9, no. 12], which
is reduced, LSD, left permutable, and subdirectly irreducible, but not self
distributive, Boolean, integral nor right permutable. The situation greatly
improves in the zero symmetric case. A reduced, zero symmetric near-ring is
isomorphic to a subdirect product of integral near-rings [22, 9.38], a situation
which need not hold if the zero symmetric hypothesis is dropped, as the
example just mentioned illustrates.

PROPOSITION 4.2. Let R be an LSD near-ring.

(i) If R is a reduced, zero symmetric near-ring, then R is Boolean.
(ii) R is regular if and only if R is Boolean.
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PROOF. Part (i) follows from Lemma 2.9(ii) and (iii). For part (ii), assume
R is regular and let x € R. Then there exists a e R such that x = xax =
xaxx = x2 . The converse is obvious.

Boolean, left permutable near-rings were called "^-near-rings" by Ligh
who characterized them in terms of subdirectly irreducible components [ 15].
(Earlier Subrahmanyan [28] considered Boolean, left permutable near-rings
with abelian additive group, which he called "Boolean semirings.") It is im-
mediate that a /Nnear-ring is LSD. Thus in the class of zero symmetric near-
rings the subclass of /?-near-rings and the subclass of reduced LSD near-rings
coincide. Scapellato showed that the class of /?-near-rings coincides with the
class of self distributive, Boolean near-rings and he gave a characterization
of these near-rings in terms of subdirect products of subdirectly irreducible
ones [25].

For Boolean near-rings several classes specified by various identities coa-
lesce.

PROPOSITION 4.3. Let R be a Boolean near-ring. The following are equiv-
alent:

(i)
(")

(iii)
(iv)

R
R
R
R

is
is
is
is

LSD;
left permutable;
medial;
self distributive.

PROOF. Since Boolean rings are reduced, (i) implies (ii). If R is medial,
then for each a, b, c e R, abc = abcc = acbc; so (iii) implies (iv). The
other implications are immediate.

LEMMA 4.4. If R is an LSD near-ring and c e tR(0), z e 0 • R, then
zc = 0.

PROOF, ZC = Ozc = OzOc = OzO = 0.

PROPOSITION 4.5. If R is an integral, LSD near-ring, then either OR — R,
or R is zero symmetric and every nonzero element is a left identity. In the
latter case either 3f(R) = 0 or R s Z 2 .

PROOF. By Lemma 4.4 either ^ (0) = 0 (and hence OR = R), or OR =
0. In the latter case, by Proposition 4.2, we have R is Boolean. Since for
each nonzero x in R, r(x) = 0 and x is idempotent, we have x is a left
identity. Furthermore, if 2{R) ^ 0, then every nonzero element being a left
identity forces R to have exactly two elements and consequently R = Z2 .
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THEOREM 4.6. If P is a type 1 prime ideal of an LSD near-ring R, then
every normal right R-subgroup of R which contains P is an ideal. If P is
also a maximal ideal, then P is maximal as a normal right R-subgroup of
R.

PROOF. From Proposition 2.17, P is completely prime and hence R/P
is integral. By Proposition 4.5, if R is zero symmetric then every nonzero
element of R/P is a left identity. Thus, for each x, r € R, * ^ 0, we
have xr = r + p, where p e P. Let 5 be a normal right .R-subgroup
such that PCS. For each s e S and any r, , r2 e R, if r, e S we
have (s + r,)r2 - rxr2 e S, because S is a right .R-subgroup; and if rx $
S, then (s + rx)r2 = r2 + p{ and rxr2 = r2+ p2, where px, p2 e S, so
(s + ry)r2 - rxr2 = r2 + px - (r2 + p2) = r2 - r2 + p3, where p3 e P. Since
P c 5 , we have (s + rj)r2 — r,r2 e 5 and hence 5" is a right ideal. An
argument similar to that in the proof of Proposition 3.9 gives that this right
ideal is an ideal. If R is also a maximal ideal, then P = S and P is maximal
as a normal .R-subgroup.

From Lemma 4.4 we see that if 0 • R ^ 0 and P is a type 1 prime ideal
such that 0 • P = 0, then r(0) = P.

PROPOSITION 4.7. Let R be a zero symmetric LSD near-ring and P be a
type 1 prime ideal of R such that there exists d e 2'(R) with d $ P. Then
R/P = Z2, P is maximal as a subgroup of R+, and {R1) u{R,R)cp.

PROOF. 2 (R/P) ^ 0. So Proposition 4.5 yields R/P s Z2 . The rest of
the conclusion is immediate.

Note that Proposition 4.7 holds if R is d.g.
Ramakotaiah and Rao [23, Corollary 3.6] observed that in an IFP, zero

symmetric near-ring, every type 1 prime ideal contains the set of nilpotent
elements. From Proposition 2.17 we see that for any LSD near-ring R the
nilpotent elements are contained in each type 1 semiprime ideal. Further-
more, if S is a type 1 semiprime ideal of R, then R/S is reduced and left
permutable; if R is also zero symmetric, then R/S is Boolean and RSD.

The intersection of all type 1 prime ideals of a near-ring R will be denoted
by PX(R) as in [23].

PROPOSITION 4.8. Let R be an LSD near-ring. If P,(i?) = 0 then R is
isomorphic to a subdirect product of integral near-rings. If R is also d.g., then
R is a Boolean ring.

PROOF. Standard subdirect product methods together with R/P is integral
for each type 1 prime ideal P and Proposition 4.5 give the desired result.
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PROPOSITION 4.9. Let R be a reduced LSD near-ring. Then R = 0 R +
r(0), as a semidirect sum of a two-sided R-subgroup and an ideal, such that
ideal r(0) is isomorphic to a subdirect product of near-rings each of which has
every nonzero element a left identity. If R is also d.g., then R is a Boolean
ring.

PROOF. The Peirce decomposition with the idempotent zero gives R =
0 • R + r(0). Every zero symmetric, reduced near-ring is isomorphic to a
subdirect product of integral near-rings [22, 9.36]. Proposition 4.5 then gives
the desired results.

PROPOSITION 4.10. Let R be a near-ring. Then R is LSD and l(R) = 0 if
andonlyif R is zero symmetric, Boolean, self distributive, and left permutable.

PROOF. Assume R is LSD and \(R) - 0. From the definition of l(R) = 0
we have 0R = 0. If x e J^, then xR2 = 0; so x = 0. By Propositions
4.2 and 4.3 we have that R is Boolean, self distributive, and left permutable.
The converse follows from Proposition 4.3.

It is possible for an LSD near-ring with zero left annihilator to be not right
permutable. The zero symmetric near-ring all of whose nonzero elements
are left identities is an example of such (on any group with more than one
element).

For any LSD near-ring R, "reduced" is a weaker condition than l(R) = 0.
Examples of this behavior abound. (For example, no. 10 on 53 in [9] is
reduced, LSD, left permutable, not RSD, not right permutable, not Boolean
and has empty left annihilator. This near-ring is also subdirectly irreducible,
but not simple.)

At first though one might expect to obtain analogous results for LSD near-
rings with zero right annihilator. A perusal of examples of such near-rings
shows the navete of this thought, for there are LSD, zero symmetric near-
rings with right annihilator zero, yet which are not medial, RSD, nor Boolean.
(See [9, no. 27 on 53 ] for one which is also subdirectly irreducible and has
a left identity.) Yet some things can be said for this class of near-rings, as
seen in Lemma 3.1 and in the next results.

PROPOSITION 4.11. If R is a regular, right permutable near-ring, then R
is a reduced commutative ring.

PROOF. Since R is regular and zero symmetric, r{R) = 0. However,
right permutability yields R [R, R] = 0 . So R is commutative and hence
R- R' = 0, forcing R.' = 0 and R to be a ring. Commutative regular rings
are reduced.

https://doi.org/10.1017/S144678870003055X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003055X


[15] Left self distributive near-rings 287

PROPOSITION 4.12. Let R be an LSD near-ring with x(R) — 0. If R is
right permutable, then R is a Boolean ring.

PROOF. Right permutability implies R(R, R) = 0 [4]. Thus (R, R) = 0
and R is commutative. A commutative near-ring with zero right annihilator
is a ring. Thus R is a self distributive ring and hence R — J^ © B, where
B is Boolean [20]. This yields RJ^2 = 0 and hence J^2 = 0; so RJV = 0,
which forces JV = 0.

Considerably more can be said about LSD near-rings with zero right anni-
hilator in the d.g. case. We take up this topic and expand the view to taking
a class of near-rings considerably wider than d.g. in a subsequent paper.

5. Subdirectly irreducible

In this section subdirectly irreducible LSD near-rings are classified. We
begin with some useful general results connecting annihilating sets and left
identity elements in LSD near-rings.

LEMMA 5.1. Let S be an LSD semigroup and x, y e S. Then xy is a
left identity if and only if x and y are left identities.

PROOF. Assume xy is a left identity and b e S. Then yb = xyyb =
xyb = b = xy(xb) = xb. The converse is obvious. D

PROPOSITION 5.2. Let R be an LSD near-ring and x, y e R.

(i) r{xy) = r(yx).
(ii) If r(xy) = 0, then x and y are left identities.

(iii) If x is not a left identity, then 0 ^ r(xy) n yR c r(x).

PROOF, (i) Let a e r(xy) and consider yxa — yxya = 0 . Hence r(xy) c
r(yx). Similarly, i(yx) c r(xy).

(ii) Let b € R. Then xy(b - xyb) = 0. Hence xyb — b. By Lemma
5.1, x and y are left identities.

(iii) By part (ii), 0 ^ r{xy). Let yb € r{xy) n yR. Then 0 = xy{yb) =
x{yb). Hence r(xy) DyRC r(x).

PROPOSITION 5.3. Let R be a LSD near-ring and e e R; then the following
are equivalent

(i) e is a left identity;
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(ii) r(e2) = 0;
(iii) r(e) = O;
(iv) eR = R.

PROOF. Clearly (i) implies (ii), (iii), and (iv). By Proposition 5.2, (ii)
implies (i). Assume r(e) = 0. Then e(e2 - e3) = 0, so e2 = e3. Hence
e(e - e1) — 0, so e = e2 . Thus r(e) = 0 = r(e2). Consequently, (iii) implies
(ii). Assume eR — R and e is not a left identity. Then e2R — R and there
exists 0 ^ b e r(e). Hence there exists x e R such that b = e2x. Consider
b = e2x = e(e2x) = eb = 0,& contradiction. Thus (iv) implies (i).

It is worth noting a connection between LSD near-rings and geometric
near-rings, thereby linking them with non-commutative geometry in the sense
of Andre [1].

COROLLARY 5.4. Let R be a finite, zero symmetric near-ring. Then R is
LSD and strongly geometric if and only if R has a left identity and every
element is either a left identity or a left annihilator of R.

PROOF. This result follows from Proposition 5.3 and Scapellato [26, The-
orem 2] and [27, Corollary 2.6].

There are several LSD strongly geometric near-rings on S3. Some of the
simple ones are nos. 4, 5, 20, 21, 22 [9], whereas no. 36 [9] is d.g. but not
simple.

In the sequel H(R), or where the meaning is clear just H, will denote the
heart of the near-ring R (the intersection of all nonzero ideals of R).

COROLLARY 5.5. If R is an LSD subdirectly irreducible near-ring, then
either R has a left identity or RH = 0.

PROOF. If R has no left identity, then 0 / H C r{x) for all x e R.
Therefore, RH = 0.

THEOREM 5.6. Let R^O be a LSD subdirectly irreducible near-ring. Then
either (exclusively)

(i) R H = 0 and l(R)^0,
(ii) OR = R and H contains no nonzero normal subgroups of R+ other

than itself, or
(iii) each element of R is either a left identity for R or a left annihilator

for H, and at least one element of each type exists; either H contains a left
identity of R and H = r(0) ,orH2 = 0 and HR = 0 R.
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PROOF. If R has no left identity, then R H = 0. Hence \{R) ^ 0, for
otherwise R is Boolean (Proposition 4.10).

Next assume R has a left identity. If every element of R is a left identity,
then any normal subgroup of R+ which is contained in H is an ideal of R;
hence the only such normal subgroups are 0 and H. This case aside, we
can consider r(0) ^ 0 and hence H C r(0). Since R has a left identity,
T(R) = 0 and by Lemma 3.1 we have x2 is an idempotent for each x e R.
If r(jc2) = 0, then x is a left identity. Otherwise, xH = x2H = 0. If H
contains a left identity of R, then H = r(0); otherwise, every element in H
is a left annihilator of H and hence H2 = 0 and H R = HR2 = 0R.

Using Birkhoff s Theorem [8] we have that every LSD near-ring is isomor-
phic to a subdirect product of subdirectly irreducible LSD near-rings of types
(i), (ii), or (iii) in Theorem 5.6. For special types of LSD near-rings we get
much sharper results.

LEMMA 5.7 [7]. Let R be an LSD subdirectly irreducible ring. Then R
satisfies either

(i) R = Z2,
(ii) i?3 = 0, or

(iii) R = Z2[S], the semigroup ring formed by Z2 over the two element
semigroup S which has both elements left identities. This ring is left per-
mutable, but is not right permutable.

PROPOSITION 5.8. Let R be an LSD subdirectly irreducible near-ring. If R
is right permutable, then R satisfies either (exclusively).

(i) R = Z2,
(ii) R3 = 0, or
(iii) R3 ?0, RH = 0, HC (R,R)n(R'), and l(R)?0.

PROOF. Right permutable near-rings are zero symmetric, eliminating type
(ii) in Theorem 5.6. If R is of type (iii) in Theorem 5.6, then R has a
left identity and hence is commutative. A commutative near-ring with a left
identity is a ring. The only right permutable, LSD subdirectly irreducible
rings are those satisfying R = Z2 or R3 = 0 . So now consider R3 / 0 ,
R1 ^ 0, and (R, R) ^ 0. This forces us to type (i) of Theorem 5.6 and to
HC{R,R)n{R').

Examples with all the properties of Proposition 5.8 (iii) do exist. Near-
ring no. 9 on S3 in [9] is one such; it has two nonzero idempotents and is
not left permutable. Near-ring no. 29 on S3 in [9] is another such, but it is
left permutable and has only one nonzero idempotent.
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6. Decompositions

In developing a decomposition theory for LSD near-rings, Lemma 2.9(iv)
suggest that a near-ring R can be split in terms of a subnear-ring generated
by nilpotent elements and a subnear-ring generated by idempotent elements.
We begin this section with several results which build up to an "essential
decomposition" of a zero symmetric LSD near ring in terms of a Boolean
near-ring and (yT). From there our investigations culminate in Theorem
6.8 in which a self distributive permutable near ring R is characterized as a
semidirect sum R — B +yV, where B is a Boolean ring and JV is an ideal.
This result generalizes results of M. Petrich [20] and C. Ferrero Cotti [12].

PROPOSITION 6.1. Let X be a right ideal of an LSD near-ring R and a,
seR such that a2 GX. Then -Oa + sa2 eX. If a3 e l , then sa2 e X.

PROOF. Observe (a2 + 0)s - 0s = a2s - 0s e X. Then 0s - a2s € X.
Consider [(0s - a2s) + s](-a2) - s(-a2) = -([(0s - a2s) + s]a2) + sa2 =
-([(0s - a2s) + s]a3[(0s - a2s) + s]a) + sa2 = -([{0s - a2s) + s][0s - a3s +
a3s]a) +sa2 = -([(05 - a2s)+s]0sa) + sa2 = -Oa + sa2 e X. By substituting
a for s we have -0a + a3 e X. Hence, if a3 e X, then -0a e X and
sa2 e X.

COROLLARY 6.2. If X is a reduced right ideal of an LSD near-ring R and
X c r(0), then X is an ideal of R.

PROOF. First note that X is a subnear-ring of R. So by Proposition 4.2,
X is Boolean. Proposition 6.1 then gives RX C X and hence X is an ideal
of R.

We say a nonempty subset X of R is left (right) essential in R if every
nonzero left (right) ideal of R has nonzero intersection with X.

THEOREM 6.3. Let R be an LSD zero symmetric near-ring and A be a left
ideal of R which is maximal among left ideals having zero intersection with
(JV) . Then A contains every reduced right ideal of R. Hence A + (J^) is
a semidirect sum which is left and right essential in R and A is a Boolean
near-ring.

PROOF. Let X be a reduced right ideal of R. Then X is an ideal of R
and X + A is a left ideal of R. If a € A, xeX are such that x + ae (JV),
then x • (x + a) e X n (J^), and X n (yT) = 0 by Lemma 2.10. Recalling
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from Proposition 4.2 that X is Boolean, we have 0 = x • (x + a) — x + xa,
or x = -xa and hence X c. A.

If L is a nonzero left ideal of R such that L n A = 0, then A c L + A
and hence {L + A) n (J^) ^ 0. So there exists a e A, b e {JV), and nonzero
yeL such that y+a = b, or y = b-a& (Jf)+A = A + {Jr). Thus A + (yV)
is left essential in R. For any nonzero right ideal W, if W n (yf) = 0, then
W is also a left ideal and hence Wn(A + {/T)) # 0.

COROLLARY 6.4. LeJ i? te an LSD zero symmetric near-ring. There exist
a unique maximal reduced ideal M of R which contains every reduced right
ideal of R. Hence M®{JV) is a direct sum which is right essential in R and
M is a Boolean near-ring.

PROOF. The proof is similar to the proof of Theorem 6.3.

LEMMA 6.5. Let R be an LSD near-ring. Then gp(^) is reduced and
[gp(Jz")]yT = 0 if and only if R = gpCJ2") +./T is a semidirect sum, where JV
is an ideal and gp(«^) is a two-sided R-subgroup.

PROOF. The result follows from Lemmas 2.8(ii), 2.9(iv), and 2.10.
Examples exhibiting the decomposition indicated in Lemma 6.5 can be

found in [9, nos. 57, 58, 60 on Z 6 , no. 22 on Klein four, and no. 33 on
S3 ]. These examples are all self distributive left permutable, but not right
permutable; number 58 on Z6 is zero symmetric.

PROPOSITION 6.6. Let B be an LSD near-ring. The following are equivalent

(i) gPC-^) is reduced, right permutable, and [ g p ^ ) ] ^ " — 0;
(ii) R = J*" + JV is a semidirect sum where yf is an ideal, J2" is a

Boolean ring and a two-sided R-subgroup which is contained in the center of
R, and R is zero symmetric.

PROOF. Assume (i) and let y e 0 R. Then Oy = OOy = OyO. Hence R
is zero-symmetric. By Proposition 4.12, gpp2") = J2" is a Boolean ring. We
will show that *? is in the center of R. Let JC e R and s e J^. There
exist e e J2" and k e JV such that x — e + k. Since w e / , then
xs = (xs)s = s(xs) = ses = se = sx. The remainder of part (ii) follows
from Lemma 6.5. The proof of the converse is immediate.

LEMMA 6.7. Let R be a near-ring.

(i) If R is permutable, then every idempotent is central.
(ii) If R is RSD and right permutable, then abc = -abc.
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(iii) If R is LSD and right permutable, then R is self-distributive.
(iv) If R is a distributive near-ring and LSD (RSD), then R is left per-

mutable (right permutable) and abc = -abc.

PROOF. Let a, b, c, d eR and e e J".

(i) Consider eb = eeb = ebe = bee = be.
(ii) Observe that -abc = ab(-c) = a{-c)b{-c) = -[a(-c)bc] =

-[abc(-c)] = abcc = acbc = abc.
(iii) Observe that abc = acb = acab = acacb = acabc = acbc.
(iv) Assume R is LSD; then -abc = {-a)bc - (-a)b(-a)c = abac -

abc. The proof that R is left permutable is the same as that given in [7,
Proposition 1.2]. We will adapt it to the RSD condition. Now assume R
is RSD; then 0 = a(c + d)b(c + d) - ab{c + d) = acbd + adbc. Thus
acbd = adbc. Now using the preceding identity and right self distributivity,
we have abc - acb = acbc - abcb = ac2bc - acbcb = acbc2 - ac2b =
abcc - ac2b = accb - ac2b — 0.

We observe that, in general, an LSD zero symmetric near-ring may not be
medial [9, no. 27 on 53 ], hence not left permutable. Surprisingly, there are
self distributive, zero symmetric, medial near-rings which are neither left nor
right permutable [30, nos. 80 and 132 on Alt. 4].

THEOREM 6.8. Let R be a near-ring. The following are equivalent:

(i) R is LSD, right permutable, and gp(~^) is reduced;
(ii) R is right permutable and R — B + JV is a semidirect sum, where

JV is an ideal, B is a Boolean ring and a two-sided R-subgroup which is
contained in the center of R, and RJV2 = 0;

(iii) R is self distributive and permutable.

PROOF. Note that a right permutable near-ring is zero symmetric [4, Prop-
osition 4.1].

Assume (i). As in the proof of Proposition 6.6, gpP2") = J2" is a Boolean
ring. Let c e / and k e JV; then ek = eke = ek3e — 0. Therefore, part
(ii) follows from Proposition 6.6 and Lemma 2.8.

Assume (ii) and let et e B and k( e JV. Then

(e, + kx){e2 + k2)(e3 + k3) = (e, + k{)(e2 + k2)e3 + (e, + fc,)(e2 + k2)k3

= e3(e, + kx){e2 + k2) + (el + k^k^ + k2)

Thus R is self distributive and permutable.
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Assume (iii) and let e, c e / . From Lemma 6.7, (e - c)2 = (e + c)e +
(e + c)c = e + ec + ce + c = e - c. Hence gp(~H = J . Thus part (i) follows.

M. Petrich [20] has shown that a ring R is self distributive if and only if
R = B @JV is a ring direct sum, where B is a Boolean ring and yV = 0.
Since a self distributive ring is permutable, Theorem 6.8 generalizes Petrich's
result. However, even when R is a commutative self distributive near-ring,
for example [9, no. 29 on 53 ], *f may not be a normal subgroup hence not
an ideal. In [12, Theorem 11] C. Ferrero Cotti has attempted to generalize
Petrich's theorem as follows: a distributive near-ring R is self distributive
if and only if R = B + JV is a semidirect sum of a Boolean ring B and a
near-ring JV such that JV3 = 0. Theorem 6.8 generalizes her result since
a distributive near-ring is permutable and since a direct sum of a Boolean
ring and a nondistributive near-ring JV, where J^3 — 0, is included under
Theorem 6.8. Furthermore her statement is incomplete since the ring given
in Lemma 5.7(iii) provides an example of an LSD but not self distributive
ring R where R — B + sV is a semidirect sum of a Boolean ring and a
nilpotent ring JV such that sV = 0. Our next result includes a condition
which completes Ferrero Cotti's result.

COROLLARY 6.9. Let R be a distributive near-ring. The following are equiv-
alent:

(i) R is self distributive,
(ii) R = B + yV is a semidirect sum, where B is a Boolean ring, sV is

an ideal, and JV3 = 0 = BsV =

PROOF. That condition (i) implies condition (ii) follows from Lemma 6.7
(iv) and Theorem 6.8.

The converse follows from an argument similar to that used for (ii) implies
(iii) in Theorem 6.8.

In general, self distributive right permutable near-rings do not have the
decomposition of Theorem 6.8 (see [9, nos. 9 and 37 on S3 ]). However, the
right /{-subgroups of the form xR do have the decomposition of Theorem
6.8.

COROLLARY 6.10. Let R be an LSD right permutable near-ring and x €
R. Then xR is a commutative near-ring and xR = x3R + J^(xR) is a
semidirect sum (in xR), where x3R is a Boolean ring with identity x3 and
JV{XR) is an ideal of xR.

PROOF. By [4, Proposition 4.2], xR is a commutative near-ring. From
Theorem 6.8, xR - B + JV{xR) is the desired semidirect sum and
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B - ^(xR). Hence x3R c B. Assume b e B; then there exists r e R()
such that b = xr. Thus b = b2 = xrxr = x3rxr e x3R. Consequently,
B = x3R.

THEOREM 6.11. Let R be an LSD near-ring such that JW — 0, ce^f —
ec^f for all c, e e / , and R satisfies at least one of the following conditions

(i) R has a reduced left ideal which is maximal among reduced left R-
subgroups;

(ii) eR is normal in R+ for all e € ^f.
Then R — gp(Jr) +Jf is a semidirect sum, where gp(Jr) is a left ideal,
J*R c g p ^ ) , and JV is an ideal. Furthermore, if condition (ii) holds or
R is zero symmetric, then gp(-H = J .

P R O O F . F r o m L e m m a 2.10, JV is a n ideal . Let c e / and x, y e R.
Then there exist a, b e J2" such that xey — xex3x3y = x4eay = ex3by.
Hence eR is a left i?-subgroup. Assume condition (i) and let B be a left
ideal which is maximal among reduced left .R-subgroups. Suppose eR<£B.
By the maximality of B, there exists 0 ^ k e yT such that k = b+es, where
b e B and eseeR. Then 0 = eb+es. Therefore, k = b-ebe BC\JV = 0,
a contradiction. Consequently eR C B for all e e / . By Lemma 2.9(iv),
B = gP(~^) • If condition (ii) holds, let B be a reduced left ideal which is
maximal among reduced left ideals. An argument similar to the above will
yield the result.

Examples illustrating the decomposition given in Theorem 6.11 can be
found in [9, no. 22 on Klein four, nos. 57, 58, 60 on Z6 ]. Since these
examples are not right permutable, Theorem 6.8 is not applicable. The next
result gives a new characterization for self distributive rings.

COROLLARY 6.12. Let R bearing. Then R is self distributive if and only
if R is LSD and JW = 0.

PROOF. The corollary follows from Lemma 6.7, Theorem 6.8, and Theo-
rem 6.11.

Note Added in Proof

From Theorem 1 of [D. J. Hansen and J. Luh, J. Austral. Math. Soc. 47
(1989), 103-107] and Proposition 4.3, it follows that every Boolean near-ring
is self distributive. Hence Proposition 4.1 generalizes Theorem 1 of Hansen
and Luh.
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