
I 

Convection and turbulence as the 
basis of magnetic activity-

Nature of the turbulence in solar and stellar convection zone 

Rotational influence on turbulence 

Simulations vs. mean-field approach 

Mixing length theory, global convection, turbulence models 

https://doi.org/10.1017/S0252921100079331 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079331


T h e Conf ron ta t ion of M e a n - F i e l d Theor i e s 
w i t h N u m e r i c a l S imula t ions 

Fritz Krause 

Astrophysikalisches Observatorium Potsdam, O-1560 Po tsdam, 
Fed. Rep . of Germany 

A b s t r a c t : The investigation of magnetic phenomena on the Sun is confronted with 
the problem of turbulently moving electrically conducting media in rotating objects. 
One way of attacking this complicated problem, which was at first successful, was the 
development of mean-field magnetohydrodynamics, where the cooperative action of the 
small-scale turbulence was taken into account by certain average effects. The development 
of more and more powerful computers now offers possibilities of calculating the small-
scale phenomena in a direct way. This paper is an attempt to compare these approaches, 
at least as far as there are comparable results. 

1. Introduction 

Dynamos operat ing in real cosmical objects are closely connected with turbulent 
motions, which are of highly complicated s t ructure bo th temporally and spatially. 
Thus it can clearly be seen tha t a detailed description of the dynamo process de­
mands an unmanageable set of da ta . The way out of this di lemma was discovered 
long ago at the beginning of the theory of turbulence: equations for the mean-
fields are derived and the fluctuating fields enter via averaging processes into the 
equations. Reynolds stresses and eddy viscosity are examples. Analogously mean-
field magnetohydrodynamics has been developed. The mean cross-product of the 
fluctuating velocity field with the fluctuating magnetic field, the turbulent elec­
tromotive force u ' x B ' , appears as the analogue of the Reynolds stresses. The 
turbulent magnet ic diffusivity and the a-effect, which proved to be the key for the 
solution of the dynamo problem, are the best known effects from the concerted 
action of the small scale fields. W i t h physically reasonable assumptions dynamo 
models for the solar magnetic field and its cycle have been constructed, which 
describe surprisingly well the basic features of this phenomenon. 

Parallel to this line of investigation there have been a t t empt s under taken to 
at tack the dynamo problem of the Sun, i.e. the problem of magneto-convection 
in rota t ing objects, by direct numerical simulation. However, the high degree of 
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complexity of the problem makes it necessary to include parametrization of the 
collective phenomena here also, but at a lower level than in mean-field theories. 
It should be noted that a sufficiently good modelling of the basic features of the 
solar magnetic field has not yet been achieved. 

The continually growing power of computers makes parametrizations more and 
more superfluous. However, an appraisal of the results, represented by a large set of 
data, needs eventually the calculation of certain averages, i.e. parameters like eddy 
viscosity, a-effect, etc. must be calculated by averaging operations over the data 
sets. There is now the possibility of comparing this new information concerning 
the mean-field parameters derived by mean-field methods (mainly analytical) with 
the values derived from numerical simulations. Thus we have the possibility of 
confirming such basic relations as that between a and the helicity. However, a 
general comparison will meet with difficulties, since basic assumptions for mean-
field theories do not necessarily coincide with those of the numerical simulations. 

2. Magneto-convection in spherical shells 

That the magnetic phenomena on the Sun are closely related to the turbulent 
motions in the convection zone is, for example, clearly to be seen from the enhanced 
decay of sunspots: if the decay time of the magnetic field is calculated according 
to tdecay = pad2, where d is the diameter of the sunspot, \i — \i0 the vacuum 
permeability, and a is the electrical conductivity, we find a time scale of some 
thousand years, whereas in reality we see a decay time of some weeks. 

This destructive action of turbulence is immediately accepted; however it has to 
be suspected that turbulence may also have some constructive features: Cowling's 
theorem states that axisymmetric (or, more general, simple-structured) motions 
cannot provide dynamo excitation. For example, the differential rotation cannot 
generate and maintain the solar magnetic field. Consequently, if the solar magnetic 
field is dynamo generated, the turbulent convective motions must play a key role. 

First hints at the constructive action of turbulence were found in the fifties: in a 
paper from 1951 L. Biermann showed that an anisotropic turbulence in a rotating 
body must generate a differential rotation. Thus a large scale motion is generated 
from small-scale turbulence. A few years later E.N. Parker (1955) claimed that 
the turbulence of an electrically conducting media in a rotating body excites a 
dynamo: a large scale magnetic field is generated by this "cyclonic turbulence". 

The investigation of the magnetic phenomena on the Sun is thus confronted 
with the problem of turbulently moving electrically conducting media in a rotating 
object. The basic equations are given by the conservation laws of mass, momentum, 
and energy 

^ J ^ - f ( u - V ) ln^ + div u = 0, (1) 

^ + (u • V)u = - £ V lnp + g - 2Q x u + - j x B + - Div r, (2) 
at Q Q Q 

https://doi.org/10.1017/S0252921100079331 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079331


The Confrontation of Mean-Field Theories with Numerical Simulations 5 

- ^ + (u • v ) e = - - div u + -A e + Qvisc + Qjoul, (3) 
Ot Q Q 

together with the induction equation 

SB 1 
— = curl(u x B) + — AB. (4) 
at /iff 

In addition, an equation of state and boundary conditions have to be taken into 
account. Here denotes g the mass density, u the velocity, p the pressure, g the 
gravity, Q the angular velocity of the overall rotation, B the magnetic field, j the 
current density, e the specific internal energy, K the heat conduction and r the 
viscosity tensor defined by 

Tij = ug(uij + ujyi - ISij div u), (5) 

with the kinematic viscosity v. Finally define Q„i3C
 a n d QjouU the heat production 

by viscosity and electrical resistivity. These quantities are quadratic expressions 
in the velocity gradient and the current density, respectively. 

In particular, the boundary conditions specify that heat energy flows into the 
spherical shell under consideration at the bottom and leaves it at the surface, 
for example by the emission of radiation. The equations (l)-(4) have the simple 
solution 

u = B=j = 0,11=0, (6) 

with e determined by 

di = ~e
Ae> <7> 

together with the appropriate boundary conditions. In this case the transport of 
energy is simply carried on by molecular conduction. 

However, this solution generally proves to be unstable. First the velocity field 
u = 0 becomes unstable, and energy transport occurs by convective motions -
hot material rises towards the surface, cold material sinks down to the bottom. In 
addition, since the medium in the solar convection zone is electrically conducting, 
the magnetic field B = 0 also becomes unstable and dynamo excitation of the 
solar magnetic field sets in. 

The scheme represented in Fig. 1 illustrates the physical situation. Transport 
processes of this kind can show two basic bifurcations: firstly the thermal instability 
at the critical Rayleigh number and secondly the dynamo instability at the critical 
value of the dynamo number. The system evolves from a stove via a heat engine 
into a power station. 

It is now clearly to be seen that the considered problem requires the solution 
of the full set (l)-(4) of nonlinear differential equations, i.e. a problem of unman­
ageably high complexity. 

In order to attack this problem methods already developed in the theory of 
turbulence have been applied, namely the derivation of equations controlling the 
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Fig. 1. The transport of energy in a star like the Sun is characterized by two basic bifur­
cations: the thermal instability marks the onset of convection and the dynamo instability 
that of the excitation of a magnetic field. 

mean quantities. The nonlinear interactions of the fields involved in this energy 
transport provide new cooperative processes which enter the mean-field equations. 
The best known examples are characterized by the eddy viscosity and the a-efTect. 

The goal here is to determine the space-time behaviour by determining stable 
solutions of the mean field equations. The other way - possible in the future because 
of the growing power of computers - is the direct determination of the (irregular, 
unstable) solutions of the original equations. Basically both methods must lead to 
the same results and so there must be the possibility of checking one against the 
other. 
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3. The mean-field concept 

The physical quantities will be represented by the sum of a mean part, denoted 
by a bar, and a fluctuating part, denoted by a dash: 

u = u + u \ B = B + B' , p = p + p',.... (8) 

The averaging procedure need not to be specified, however some general rules 
have to be fulfilled, the so-called Reynolds rules: 

F1 = 0, T? = ~F, (9) 

FG = F• G + F'G', F-G = F-G, F-G'= 0, (10) 

where JP and G denote arbitrary random fields. 
These rules are fulfilled for statistical averages. For real measured quantities 

time or space averages have to be used. In the latter cases the validity of (9) and 
(10) will at best be guaranteed approximately; in particular the condition F' = 0 
is questionable. This is also the case if unstable solutions of the system (l)-(4) 
have been determined by numerical integration. 

Because of the first rule in (10) the nonlinear terms in the equations (l)-(4) 
give rise to additional terms in the mean-field equations. We will illuminate this 
procedure with the Navier-Stokes equation for incompressible turbulence and the 
induction equation, assuming a weak magnetic field, i.e. that 

B2 ^e~ 
— < - u , 
2n 2 

the Lorentz force is neglected in (2). 
According to (10) we have 

(11) 

( u - V ) u = . ( u - V ) u + (u ' -V)u ' , (12) 

u x B = u x B + u ' x B ' , (13) 

and so find from the original equations 

-£ + (u • V)u = - v £ + F + uAu, (14) 

9B 1 
- r - = curl(u x B) + — ^ 1 B , (15) 
at fjicr 

the following mean-field equations 

— + (u • V)u = - V s - + F - (u' • V)u' + vAu, (16) 
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a g 1 
— = curlfu x B) + curl(u' x B') + — AB. (17) 

Two additional terms are present in the equations (16) and (17): 

-KTvK = ̂ , (18) 

with the correlation tensor 

Qij(x,t) = u'i(x,t)u'j(x,t) (19) 

and the turbulent electromotive force 

£ = u' x B'. (20) 

The appearance of these two new quantities mathematically means that the 
system is not closed, that is additional relations have to be derived which relate 
these second order statistical moments back to the mean fields. This problem leads 
deep into the theory of turbulence with all its solved and unsolved problems. 

However, by making a few very natural assumptions, it is possible to derive in a 
rather simple but rigorous way to quite general explicit expressions for these quan­
tities. For the case under consideration the turbulent motion is given. Subtracting 
(17) from (15) we find 

dB' „ _ „ „ 1 
- 5 - - curl(u x B') AB' = curl(u x B') + curl(u' x B ' - u' x B') (21) 
OT \xa 

Without explicit integration we can see that B ' is a linear functional of B, 
and the same is true of £ (c.f. Krause and Radler, 1980). In addition, we assume 
local dependence, i.e. the characteristic space and time scales of the fluctuations, 
say correlation length Acor and correlation time rc o r , are small compared with the 
corresponding scales A, r of the mean fields: 

Acor < A, Tcor < T. (22) 

Hence £ can be represented by the expression 

g~S. 
£i = aij-Bj + bijkl-+, (23) 

where the pseudo-tensors a,-7-, 6 ^ depend on the properties of the turbulent mo­
tion, i.e. on the physical quantities influencing the turbulence. 

The simplest, therefore basic, model is that of an absolutely structureless tur­
bulence, i.e. a turbulence that is homogeneous, isotropic and steady. In this case 
only the two tensors characterizing the Euclidean space, namely the Kronecker 
tensor Sij and the Levi-Civita tensor e,-j-j, are available; hence 

aij = a8ij\ bijk — ptijk, (24) 
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and so from (23) 

€ = a B - 0 curlB. (25) 

The properties of the turbulence are now contained in the pseudo-scalar a 
and the scalar j3: the best known effects, the a-effect and the turbulent magnetic 
diffusion, characterized by the corresponding diffusivity /?, are thus derived in a 
simple way. It should be noted that this derivation is a rigorous one, but based on 
the assumption (11) of weak magnetic field, and (22) of locality. A pseudo-scalar a 
is not simply available in real systems. It needs at least rotation and stratification. 
The latter may be due to gravity and then we can construct a pseudo-scalar 

a = a 0 (g • Q). (26) 

Eventually this does mean that the a-effect is quite a natural effect in a rotat­
ing systems. However, it has to be taken into account that the system is now 
anisotropic and the complete expression for atJ reads 

aij = °o(g • fi)f>ij + aigiQj + a2gjQi (27) 

with scalars a 0 , a j , a 2 determined by the turbulence. The original form (25) has 
to be replaced by a much more complex expression with a certain number of 
parameters (Radler, 1980). This is also true if the restriction (11) is removed when 
nonlinear effects allow for further tensorial constructions. 

The method illuminated here for the turbulent emf £ has also been developed 
for the Reynolds stresses - gQij which appear in the Navier-Stokes equation for 
the mean velocity field. In particular, a relation 

Qtj = Aijknk, (28) 

has similarly been considered in the context of differential rotation (Riidiger, 1989). 
With the required symmetry of Aijk one finds as the simplest form in a stratified 
medium (.A-effect) 

Aijk = Meipk9j + *jpkgi)gP (29) 

4. Success of mean-field models 

Especially in connection with the question of the origin of the magnetic fields 
of cosmic object the mean-field concept has proved itself to be very effective. 
This need not be discussed here in detail. As a striking example Fig. 2 shows the 
observed butterfly diagram of the sunspot phenomena and one derived from an 
aw-dynamo model based on mean-field magnetohydrodynamics (Steenbeck and 
Krause, 1969). 

The, at least qualitative, agreement showing the latitudinal migration of the 
magnetic activity towards the equator is obvious. During the last 20 years many 
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Fig. 2. Representation of the butterfly diagram of the Sun and of a kinematic aw-dynamo 
model. A modelling of basic features of the solar cycle is possible, however, a-effect and 
differential rotation are chosen independently here. 

models of this kind have been elaborated with the intention of optimizing the fit 
to observation. Here a selection of papers may be quoted: Roberts (1972), Roberts 
and Stix (1972), Yoshimura (1975a, b), Rldler (1980, 1986); and in addition there 
are monographs discussing the issue: Moffatt (1978), Krause and Riidler (1980), 
Zeldovich et al. (1983). Recently, observations have provided more data and in this 
way more conditions on the free parameters can be imposed (Brandenburg et al, 
1990). For example, one important new challenge to dynamo theory is given by 
the statements concerning the dependence of the differential rotation with depth, 
which are derived by means of helioseismology. 

The accuracy of the relation (25) becomes questionable if nonlinear effects are 
taken into account, i.e. if the condition (11) is dropped and the magnetic field 
significantly influences the motion. A simple modelling is possible by reducing a 
with the growing magnetic field strength (a-quenching). These investigations show 
that the stability of a solution in the nonlinear regime is decisive in deciding which 
magnetic field will be excited and maintained by the dynamo. The growth rates 
determined from the linear problem are of less significance (Krause and Meinel, 
1988; Brandenburg et a/., 1989). 

A scenario is thus possible that predicts stable regular magnetic fields with certain 
symmetries (axisymmetry, equatorial symmetry) just beyond the marginal dynamo 
number, but for values of C that substantially exceed the marginal number, non-
symmetric or even irregular solutions have to be expected. 
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Fig. 3 . Schematic dependence of dynamo excited cosmic magnetic fields on the dynamo 
number C. The solution bifurcating at the marginal dynamo number proves to be stable 
and so will be excited. Solutions bifurcating at higher values C are generally unstable 
and therefore never realized. The first solution reflects to some extend the symmetries 
of the cosmical object operating as a dynamo. For higher dynamo numbers symmetry 
breaking and irregularity have to be expected. 

5. Numerical simulations of the solar cycle 

T h e first a t t emp t s to derive solutions of the hydrodynamic equat ions ( l ) - ( 3 ) by 
direct numerical integration were carried out by P. Gilman in the early seventies 
(Gilman, 1972). The model consisted of a ro ta t ing spherical shell hea ted from below 
and the Boussinesq approximation was adopted. As the first s tep it was possible 
to find differential rotat ion, caused by the convection, tha t basically corresponded 
to t ha t observed at the solar surface. In the next s tep the calculations of the 
hydromagnetic equations ( l ) - ( 4 ) were brought to the point tha t dynamo excitation 
of a magnetic field occurs (Gilman and Miller, 1981; Gilman, 1983). 

The magnetic fields excited in these models deviate significantly from those 
observed on the Sun. The models of Gilman (1983) do show cyclic behaviour with 
t ime, bu t , in contrast to the solar field, t he toroidal belts migra te toward the 
poles and not to the equator. A number of reasons can be listed, tha t might be 
responsible for these discrepancies: 

(i) First of all, Boussinesq approximation must be mentioned, which does not 
allow the steep density gradient in the solar convection zone to be modelled. 

(ii) T h e number of grid points is restr icted by the capacity of the available 
computer. In the calculations quoted here the cell size lies above tha t of the super 
granules. The physics of the subgrid scales is taken into account by a parametr iza-
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tion according to the mean-field concept. In this case there is simply an eddy 
viscosity and turbulent magnetic viscosity. 

(iii) If the boundary conditions are taken into account in a rigorous way they 
have to guarantee a fit to a solution of the problem outside the sphere. Because 
magnetic fields are long range physical quantities, the description of their influence 
generally requires non-local boundary conditions. For example, mean-field models 
such as those mentioned in section 3 consider the sphere to be embedded in an 
insulating space. If a grid point method is used for integration non-local boundary 
conditions require an additional mathematical effort. Therefore the local boundary 
condition B ( a n = 0 is used in all cases. There is no physical justification. 

(iv) The most important reason may arise from the fact that differential ro­
tation represented by, say, the A-effect and the a-effect are caused by the same 
convective motion. In the simulations both effects are simultaneously generated 
and the excited magnetic field is produced by their common action. In the mean-
field model quoted in section 3 that shows a nice agreement with the real sun, the 
differential rotation and a-effect are independently chosen: there is a rotational 
shear at the bottom of the convection zone and an a-effect in the upper regions. 
The differential rotation that is generated in the models of Gilman does not show 
this structure. 

Further efforts in the field of numerical simulations have been directed towards 
removing of the Boussinesq conditions. G. Glatzmaier attacked the problem using 
the anelastic approximation (Glatzmaier, 1984, 1985a, b), which allows more com­
pressibility effects to be taken into account. However, it is still restricted to the 
low Mach number regime. The final results of these investigations are very similar 
to those of Gilman. In particular, a poleward migrating field was still found. 

6. Numerical experiments 

A new development has started in recent years with the elaboration of computer 
codes for fully compressible convection. Firstly two-dimensional models were con­
sidered (e.g. Chan et al, 1982; Hurlburt et al, 1984), and these have recently been 
extended to three dimensions (Chan and Sofia, 1986; Stein and Nordlund, 1989). 

These investigations are carried out in rectangular boxes. They do not really 
pretend to simulate the solar cycle, but rather are numerical experiments carried 
out in order to study convection, including the effects of magnetic fields (Hurlburt 
and Toomre, 1988; Nordlund and Stein, 1989). With the aim of comparing results 
with those of mean-field magnetohydrodynamics Brandenburg et al. (1990) sim­
ulated conditions where the a-effect and turbulent magnetic diffusivity may be 
determined. 

The most interesting question clearly is whether the well-known relation 

a = - ^ u ' - c u r l u ' (30) 

can be confirmed. This relation has been derived on the basis of the second or­
der correlation approximation in the high-conductivity limit (c.f. e.g. Krause and 
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Radler, 1980). It relates the parameter a to the helicity u' • curl u' of the turbu­
lent motions. It should be noted that the proportionality of a to (—u' • curl u') has 
been confirmed in an experiment with liquid sodium (Steenbeck et al., 1968). 

At first glance the results derived by Brandenburg et al. (1990) contradict rela­
tion (30) in so far as the calculated a is directly proportional to the helicity. What 
can be the reason? The discrepancy is surely due to the fact that the calculation 
of a in (30) is based on isotropic conditions where the boundaries are distant. 
Both conditions are clearly violated in the numerical experiment. The direction 
of gravity is preferred in the model and downdrafts extend from the top to the 
bottom of the layer (cf. Stein and Nordlund, 1989). 

However, homogeneity is guaranteed in the horizontal planes. If the anisotropy 
is taken into account, relation (25) must be replaced by 

£ = avBv + aHBH. (31) 

A similar derivation to that leading to (30) then gives 

oo 

<*n = - \ J «',(*.*)• (cud u'(x,* + i-)),dr (32) 

o 

which may be evaluated as 

<*H = - ^ u V C c u r l u ' ) , . (33) 

The horizontal a is related to the vertical helicity. The latter relation is, indeed, 
confirmed by the above mentioned numerical experiment. 

The authors continued their investigations by introducing a non-vanishing 
mean-current and a gradient of the mean velocity. As a result a comparison with 
the standard expressions of the turbulent diffusivities becomes possible, which 
gives a fairly good agreement. 

7. Conclusion 

The comparison of mean-field results with those of numerical experiments is not 
in any case possible in a simple way. 

Mean-field theories are generally based on assumptions that provide a practi­
cable, or even comfortable, process of analytical deduction. The latter include the 
use of (i) statistical averages, (ii) two-scale property, i.e. weak variations of the 
mean quantities in space and time over scales of the fluctuations, and (iii) distant 
boundaries. In addition it has to be noted that a certain closure is always used, 
i.e. a decision concerning the neglect of higher order statistical moments. 

Numerical simulations are generally restricted by the efficiency of the computer. 
Even the best of today's computers are not capable of solving a sufficiently well 
posed problem of magnetoconvection in a spherical shell. Restriction of the model, 
e.g. to a rectangular box, to artificial boundary conditions, etc., have to be taken 
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into account. In addit ion, devices have to be introduced to guarantee numerical 
stability. 

For these reasons the discrepancies revealed by a comparison are not surprising. 
In future modelling of si tuations corresponding more closely to reality by numerical 
simulations will become increasingly possible. Then it will become possible to 
compensate for the weak aspects of mean-field theories, especially the badly known 
parameters and the difficulties with nonlinearities. 
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