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HOMOGENEOUS POLYNOMIALS, CENTRALIZERS
AND DERIVATIONS IN RINGS

ONOFRIO MARIO DI VINCENZO AND ROSA SAGONA

ABSTRACT  Let d be a non-zero dertvation on a primitive ring R and f(x;, ,x,)a
homogeneous polynomial of degree m We prove that the conditiond (f (r, rm)') =
0, forall r, ,r, € R, with t dependingon ry, ,r,, forces R to be a finite dimen-

sional central simple algebra and f power-central valued on R We also obtain bounds
on[R Z(R)] in terms of m

Let C be a fixed commutative ring with 1 and let C{X} be the free algebra over C
generated by a countable set X of noncommutative variables. If R is a C-algebra then
given a polynomial f = f(xj,...,x,) in C{X} in n variables, f induces a map R" — R
which is said to be algebraic valued.

The study of such functions includes as a special case the theory of algebras with
polynomial identities or with central polynomials (see [10]).

Many results have been proved concerning the relationship between a ring R and the
valuations in R of some nonzero polynomial in C{X} (see [1], [4], [5] and [9]).

We recall that the polynomial f(xy,...,x,) is said to be power-central valued in R 1f
for all ry,...,r, in R there exists an integer t = #(ry,...,r,) > 1 such that f(ry,...,r,)
is in Z(R), the center of R.

The main result of this paper is the following:

THEOREM 2. Let R be a primitive rning, f(x,...,x,) a homogeneous polynomial of
degree m. Suppose that d 1s a non-zero derivation on R such that, forall ry,...,r, € R,
there existst € N, t = t(ry, ..., rp), such thatd(f(rl, s ,r,,)’) =0.IfcharR =p > O we
assume that f is not an identity for p X p matrices in characteristic p. Then f(xy, ..., x,)
is power-central valued and R is a finite dimensional central simple algebra. Moreover,
if f is not a polynomial identity on R then either d 1s an inner derivation on R or Z(R) ts
infinite of characteristic p # 0.

We also obtain bounds on [R : Z(R)] in terms of m.

The hypothesis that f is not an identity for p X p matrices in characteristic p # 0 1s
required in the result of [9], that if D is a division ring and f power-central valued on D
then D is finite dimensional over its center. Since that result is fundamental in what we
do, we assume this hypothesis throughout this paper.
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HOMOGENEOUS POLYNOMIALS 23

As a consequence of our result we also obtain a characterization of the subring T(R) of
R of those elements which commute with some power of the valuations of f(xy, ..., x,).
More precisely as in [3] let

T(R) =
{a€R|af(r,...,r)) =f(r1,....,r)a;r,....ra ERt=ta,r,...,r,) > 1}

Then either T(R) = Z(R) or R is a finite dimensional central simple algebra and f is
power-central valued.

Notice that in the special case when f is multilinear it was proved in [2] and [3] that
if R is a prime ring with no non-zero nil right ideals then f must be power-central valued
and R satisfies the standard identity of degree n + 2.

In all that follows f = f(xy, ..., x,) will denote a homogeneous polynomial of degree
m, we assume also that d is a non-zero derivation on R which is C-linear (i.e. for all
¢ € C,r € Rd(cr) = cd(r)) and satisfies the following condition:

d(f(ri,...,r)) =0

forall ri,...,r, € R, t = K(ry,...,r,) > 1. Moreover, if char R = p we assume that f is

not a polynomial identity for p X p matrices in characteristic p. Finally, since throughout

R will be a prime ring, we may assume that C is a domain and R is torsion free over C.
We begin with the case when f is power-central valued. We set as in [9]

log(m[m/2] + 1)

= 2]+1
@(m) log2 (Im/2]+ 1)
where [x] is the integral part of the real number x.
We have the following theorem.
THEOREM 1. Let R be a primitive ring, f(x,...,X,) a homogeneous polynomial of

degree m. If char R = p we also assume that f is not a polynomial identity for p X p ma-
trices in characteristic p. If f is power-central valued in R then R is a finite dimensional
central simple algebra. Let N2 = [R : Z(R)], then
1) either f is a polynomial identity for (N — 1) X (N — 1) matrices over Z(R) and
N<i(m+2)or
2) Z(R) is a finite field with |Z(R)| < ¢(m)m and N < ¢(m) + 1.

PROOF.  Since R is primitive, R is a dense ring of linear transformations on a vector
space V over a division ring D.

Suppose that V is infinite dimensional over D; then, for every integer k, f is power-
central valued on Dy, the ring of k X k matrices over D. We can regard D;_; as the
subring of Dy consisting of all k X k matrices with zero in the last row and last column.
Thus f(x), ..., x,) is nil-valued on D;_,. By [9] (Theorem 1.7, Corollary 1.8) either f is
an identity of Dy_, or Dy_, is a finite ring and f(x1, . . .,x,)?"™ is a polynomial identity
on Dy_;. In any case we must have 2k < ¢(m)m + 2 for all k, and this is a contradiction.
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24 O M DI VINCENZO AND R SAGONA

Therefore dimp V = tand so R ~ D,

Ift = 1then R ~ D1is adivisionring and by Theorem 3 2 of [9] R 1s finite dimensional
over 1ts center Z(R) Alsoif N> = [R Z(R)], f1san identity for (N —1) x (N —1) matrices
over Z(R), f(x1, ,x,)" 15 a central polynomal on R and N < (m +2)

Suppose now ¢t > 1 The previous argument shows that f 1s nil-valued in D, ;, hence
f 1s an 1identity on D Thus [D Z(D)] = r* and R ~ D, 1s a central simple algebra and
N? = ()2 = [R  Z(R)] Since f 1s power-central valued on R and the center of R 1s a
field, f also has multinomial degree one on R (see Definition O 2 of [9])

If Z(R) 1s not algebraic over a finite field, then by Theorem 3 8 of [9] we can conclude
that N < %(m + 2), f 1s an 1dentity on (N — 1) X (N — 1) matrices over Z(R), and
f(x1,  ,x,)" 1s central on R

Finally suppose that Z(R) = Z(D) 1s algebraic over a finite field P As [D  Z(D)] = 12
one has that every element a of D 1s algebraic over P Hence P(a) 1s a finite field and so
there exists an integer s = s(a) greater than 1 such that ¢* = a By a result of Jacobson,
this suffices to conclude that D 1s commutative ([6] Theorem 3 1 2) Therefore, in this
case, r = I, N = tand R ™~ Zy As we said above f 1s nil-valued on Zy | and so
Theorem 1 7 of [9] again implies that erther f 1s a polynomial 1dentity on Zy_; or Z1s a
finite field of order |Z| < ¢(m)m and N — 1 < ¢(m)

In any case N 1s bounded by an explicit function of the degree m of f(x;, ,x,) This
completes the proof

REMARK 1 Let F be a finite field of order g and R = Fy Assume f(x;, ,x,) 1S
power-central valued on R and leta = f(r;, ,r,) forr;, ,r, € R If a®® € F then
we have

1) erther a 1s nilpotent, hence s(a) < N, or

2) a1s mvertible, and by Lagrange’s Theorem a! XV Pl = 1
As aresult f(x;, ,x,)™ 1sa central polynomial on Fy, where

N
M =N|GLW,F)|=N ¢V [[(¢ -1

=1
Moreover, either f(x;, ,x,) 1s a polynomial identity on Fy_; and so N < %(m +2) or
N < ¢(m)+ 1 and g < ¢p(m)m with m = degree of f

Notice that i1f d 1s the inner derivation induced by an element a of R then the condition
d(f(r;, , r,,)’) =O0forallr, ,rm R, t=1t(r,, ,r,) > 11mpliesthataisin
T(R) whichis TR) ={a € R | af(r1, ,r) =f(r, .,m)at==tar, ,r.)} As
quoted 1n [3], T(R) 1s a subring of R containing Z(R), invariant under all automorphisms
of R, moreover we notice that the proof of Lemma 1 1n [3] holds also for homogeneous
polynomuals, hence we have the following

LEMMA 1 If D 1s a division ring then either T(D) = Z(D) or [D  Z(D)] = N?,
fe,  ,x)Niscentralin D and N < %(m +2)

REMARK 2 If T(R) = R and R 1s an algebra finite dimensional over its center Z,
then for r;, ,r, € R there exists ¢ > 1 such that f(r;, ,r,)" centralizes a fixed basis
of Rover Z
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Hence f(ry,...,r,) € Z, thatis f is power-central valued.
We continue with:

LEMMA 2. Let R = GF(2); be the ring of 2 X 2 matrices over GF(2). Then either
T(R) = Z(R) or f(x1,...,x,)° is central in R.

PROOF. We consider the following set-partition of R:

00 1 0
Z_{[o 0]’[0 1]—1} the center of R,

£={{o o)-lo o)-[1 o) [0 V)-[¥ V)0 1]
1o of’{o ol oo 1)1 1)10 1
the set of non-central idempotents,

9\[2{[8 (1)][(1) 8],[} :]]thesetofnilpotentelementsand

_ (11 b_[IO _[O 1] _[1 l} E[Ol
T o )T )Tl o) Tl o)V T L
the set of non-central invertible elements of R.

We remark that the 6-th power of all elements of L lies in the center of R; in fact
a*=b=c =Iandalsou’ =V’ =1.

Hence, if f(xy, ..., x,) is not power-central valued then there exist sy, ...,s, € R such
that f(sy,...,s,) = e € E.

If a € T(R), then a commutes with f(sy, ... ,sn)! = e and for any automorphism 3 of
R we also have af(sf, sy :f(sf, ..., 5))a, where t depends on a, 51, ...,s, and 3.

Since any two distinct elements of ‘£ are conjugate in R this implies that a centralizes
all of ‘E. Let ‘E be the subring of R generated by ‘E; then the previous argument shows
that either f(x1, ..., x,)° is a central polynomial in R or T(R) C C(E) = C(E) = Z(R)
and this proves the lemma.

Now, we extend the previous result to primitive rings with a nontrivial idempotent.
More precisely we have:

LEMMA 3. Let R be a primitive ring with a nontrivial idempotent, f(xy,...,x,) a
homogeneous polynomial of degree m. Then either T(R) = Z(R) orf(x1, ... ,Xy) is power-
central valued in R (and the conclusion of Theorem 1 holds).

PROOF. T(R) is a subring of R invariant under all automorphisms of R; also, by
Lemma 2, we may assume that R # GF(2),. Hence, since R is a prime ring with a
non-trivial idempotent, by [8, Theorem] either T(R) = Z(R) or T(R) D I, a non-zero
two-sided ideal of R.

Suppose then T(R) # Z(R).

Since R is primitive, R is a dense ring of linear transformations on a vector space V
over a divisionring D; also /, as an ideal of R, is dense on V over D. Moreover T(R) D |
implies T(I) = I.

If V is finite dimensional over D, then R = Dy and so R = [ and T(R) = R. Hence
T(D) = D and, by Lemma 1, D is finite dimensional over its center. It follows that R is
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finite dimensional central simple algebra and by Remark 2, f 1s power-central valued, as
required

Suppose now that V 1s not finite dimensional over D If ¢ 1s the function described
before Theorem 1, define an integer M as follows

_ %(m +2)+ 1 1f Z(D) 1s an infinite field
o(m)+2 otherwise

Now, by [6, Theorem 2 1 4] Dy 1s a homomorphic 1mage of a subring S of I Clearly
T(S) = S and so, T(Dy) = Dy As above this implies that f 1s power-central valued in
Dy and this, by Theorem 1, contradicts the choice of M

Next we are going to examine the general case concerning an arbitrary derivation d
The first result 1s the following lemma, (see [2], [3] and Lemma 1)

LEMMA 4  If R s a division ring then f(x1, ,Xy) is power-central valued and R 1s
finite dimensional over its center

PROOF LetS = {r € R | d(r) = 0}, then for x € S we have
0=d(l)=dox ")y =dx '+xdx ') =xd(x ")

which implhies d(x~!) = 0, that1s x ! € §, so that S 1s a proper subdivision ring

of R, moreover for all ry, ,r, € R there exists t = #(r;, ,r,) > 1 such that
flr, ,m) €S

Letr = f(r;, ,r),1f x € R —S we can choose t > 1 such that ¥ € §, (xrx™ )" =
(xf(rl, ,r,,)xfl)’ =ferx,  Lxrx ') € Sand ((1 +x)r(1 +x) I)t €S

Thus, using a Brauer-Cartan-Hua type argument, for some a,b € S we have

)] xr¥ = ax
(1+x7 = b(1 +x)

Subtracting we get ¥ = b+ (b — a)x, hence (b — a)x € S Since S 1s a subdivision ring
of Rand x € S thena = b

From (I) we deduce x¥ = Fx

Let now y € S By the first part of the proof we have (x + y)* = r (x +y) for a
suitable ¢ Since x** = r' x we get y' = "'y Therefore T(R) = R and by Lemma 1 f
1s power-central valued and [R Z(R)] < %(m +2)

We continue with

LEMMA S Let R be a prume ring and suppose that T(R) = Z(R) Ift € R is such that
£ =0thendit) =0

PROOF Let 0 # t € R be such that 7 = 0, then the map 7, R — R defined by
1:(r) = r+tr — rt+ trt1s an automorphism of R Even if R does not have a unit element
wewrite ,(r) = (1+0)r(l —t)and also (1 +t)r =r+trorr(l+1t) =r+rt
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Let x = f(ry,..., ry); there exists s > 1 such that d(x*) = 0 and d((l +)x*(1 — t)) =
d(((1+0x(1 = 0)") = 0. Thus d((1 + 91 = (1 +1) = d((1 + 1) = d(O and

d((1+0x'(1 =0 +1) = (1 +0x°(1 — )d(1). Therefore (1 — nd(Dx* = x*(1 — 1)d(®),
that is (1 — £)d(f) = z for some z € T(R) = Z(R), and so d(t) = z(1 +1).

It follows that 0 = d(f?) = td(t) + d(r)t = 2z. If charR # 2 then z¢t = 0. Moreover
since z € Z(R) either z = 0 or z is not a zero divisor in R; in any case d(f) = 0.

Now we suppose that charR = 2 and we split the proof into two different cases:
Z(R) # GF(2) or Z(R) = GF(2).

CASE 1: Z(R) # GF(2). LetY € Z(R) —{0,1}. Then d(¥*) = /(1 +¥*t) for some
7 € Z(R). Since d(¥?) = Yd(Y) + d(Y)Y = 27d(Y) = 0 we also have d(¥?t) = ¥?d(t) =
Y2z(1+1). So we get z'(1+7%£) = Y2z(1+1). Hence Y2(z' —2)t € Z(R). As tis not a central
element of the prime ring R, this implies z = z. Thus z = ¥’z and so (Y2 + 1)z = 0. Since
Y% + 1 # 0 we get z = 0 and, once again, d(1) = 0.

CASE 2: Z(R) = GF(2). Suppose that d(t) # O for some ¢t € R with > = 0. By
the first part of the proof, d(r) = 1+t If r € R then (trt)> = 0. Hence d(trt) = 0 or
d(trt) = 1 + trt again. But d(trt) = d(tr)t + trd(t) = d(tr)t + tr(1 + t); hence d(trt)t = trt.
However, as we mentioned above, d(trt) = 0 or d(trt) = 1 + trt. Hence trt = d(trt)t = 0
ortrt =1t.

As a consequence tRt = GF(2)z.

If 0 # a € tRthen 0 # aRt C tRt = GF(2)t and so t € aRt. Hence aR = (R for all
0 # a € R and this says that ¢R is a minimal right ideal of R. Thus R is a primitive ring
with minimal right ideal zR. Moreover its commuting ring is GF(2) as tRt = GF(2)z. If
I # 0is an ideal of R then #/r # 0. Hence tit # 0 for some i € I; thustit =randsot € I.
Since 2 is a nonzero ideal of R, t € I*. Hence 1 + t = d(¢) € d(I?) C d(DI+1d() C I.
Together with ¢t € I this implies that 1 € I and so I = R. In other words R is simple.
Since R is simple with 1 and has a minimal right ideal, R is simple artinian and since the
commuting ring of R is GF(2), by Wedderburn’s theorem we conclude that R ~ GF(2),
for some k € N [7]. But in this case, as proved by Jacobson, any derivation is an inner
derivation (see p. 100 of [6]) and by Lemma 3 we obtain d = 0 which is a contradiction.

We now settle the case when R contains a nontrivial idempotent.

LEMMA 6. Let R be a primitive ring with a nontrivial idempotent. Then f(x,, . .., Xxy)
is power-central valued.

PROOF.  Suppose that R = GF(2);,. Then, as we quoted above, d is the inner deriva-
tion induced by a certain element a of R. Asd # 0, a € Z(R). Hence T(R) # Z(R) and
by Lemma 2 f(x,. .. ,x,)0 is a central polynomial on R.

Assume now that R # GF(2), and let A be the subring generated by all square zero
elements of R. A is invariant under all automorphisms of R. Since R is a prime ring with
a nontrivial idempotent, by [8, Theorem], A contains a nonzero ideal / of R. On the other
hand, by Lemma 3 either T(R) = Z(R) or f is power-central valued.
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In the first case by Lemma 5 d(x) = O for all x € A and so d(I) = 0. Now, since 0 =
d(I) O d(IR) = Id(R), by the primeness of R we obtain d(R) = 0 which is a contradiction.
Hence in any case f is power-central valued on R and R is a finite dimensional central

simple algebra.

Finally we have:

THEOREM 2. Let R be a primitive ring, f(xi,...,Xx,) a homogeneous polynomial of
degree m. Suppose that d is a nonzero derivation on R such thatforallry, . ..,r, € Rthere
existst € N, t = t(ry,...,rp), with d(f(rl,...,r,,)’) = 0. IfcharR = p > 0 we assume
that f is not an identity for p X p matrices in characteristic p. Then f (xy, ..., X,) is power-
central valued and R is a finite dimensional central simple algebra. Let N> = [R : Z(R)];
then

1) either f is a polynomial identity for (N — 1) X (N — 1) matrices over Z(R) and
N < %(m +2) or
2) Z(R) is a finite field with | Z(R)| < ¢(m)m and N < ¢(m) + 1.
Moreover, if f(x1,...,x,) is not a polynomial identity on R then either d is an inner
derivation or Z(R) is infinite of characteristic p # 0.

PROOF. Let V be a faithful irreducible right R-module with endomorphismring D a
divisionring. First we assume that V is infinite dimensional over D and R does not contain
a nontrivial idempotent. This says that R does not have nonzero linear transformations
of finite rank.

We will prove that these assumptions lead to a contradiction.

Let vr = 0 for some v € R and r € R, and suppose that vd(r) # 0. Since r has infinite

rank, there exist wy,...,w, € Imr such that vd(r),wy,...,w, are linearly independent
andletvy,...,v, € Vsuchthatw, =v,r,i=1,...,n.

Let M = M(x,...,x,) be a nonzero monomial of f(xi,...,x,) and let
degx‘ M(xy,...,x,) =m, > 1, hence my +---+m, = m = degf.

By considering the order of the x,’s in M(xy,...,x,) we construct a partition of
4 = {1, . m} in n disjoint subsets, one for each x,. More precisely we define, for

i = 1,...,n, the subset 4, of 4 in the following way:
JEA &M= M,x,Mj’

where M, = M,(xy,...,x,) has degree j — 1 and Mj’ = Mj’(xl, ...,X,) has degree m — j.
In other words, in the ordered monomial M, 4, is the set of positions in which x, occurs.

We can assume that 1 € A4, thatis M = ax;M{, where M| = o € C, and we let for
convenience v,,; = v;. By the Jacobson density theorem there exist aj, ..., a, € R such
that,fori=1,...,n

w,a, = {vjﬂ ifj € /ql
0 otherwise

and moreover, since vd(r), wy, ..., w, are linearly independent, we can set vd(r)a; = v,
and vd(r)a, = 0fori =2,...,n.
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We remark that if j € 4, then

Alj+l(xla s ’-xn) = Alj(xli e axn)xl and

Mj'_l(xl,...,xn) = x,Mj’(xl, cesXn)-

Hence vjA/Il’_l(ral,...,ra,,) = vyraM(ra,...,ra,) = w]a,Mj’(ral,...,ra,,) =
Vil Mj’(ral, ..., ray). Therefore we have

viM(ray, ..., ra,) = aviraiM|(ray, . .., ra,)
= anM|(ray, ..., ra,)

= av3M§(ra1, ..., ray)

= av,,M:,_l(ral,...,ra,,)

= Qpra;s
= avq.
In a similar way we can prove that
viM(ray,...,ra,) = av forj=1,...,n.

On the other hand if N(xi,...,x,) is a monomial of f different from M then
viN(ray, ..., ra,) = 0.Infact, let 1 <j < m be the smallest integer such that N = M,x,N'
and M = M x,M; witht # i.Sincej € 4 and ANA = @ wehavej ¢ A, andsow,a, = 0.
Hence

viN(ray, ..., ra,) = viM(ray, ..., ray)ra,N'(ray, .. ., ra,)

= avyraN'(ray, ..., ra,) = awa,N'(ray, ... ra,) = 0

Therefore vif(ray,...,ra,) = av;.
Now we will calculate vd(f (ray,... ,ran)). As above, since 1 € 4,

vd(M(ral,...,ra,,)) = avd(ralM{(ral, .. .,ra,,))
= avd(r)alM;(ral, .. rap)+ avrd(alM; (ray,..., ra,,))
= avd(r)a\M/(ray, ..., ray)

= av,M/(ray, ..., ray)

= Q.

Let N(xy,...,x,) be another monomial of f and let 1 < j < m be the smallest integer
such that N = Mx,N' and M = ij,MJ’ witht # j.
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Ifj = 1, then

vd(N(ral, A ra,,)) = vd(ara,N'(ral, e, ra,,))
= avd(Na,N'(ray, . .., ra,) + avra’(a,N'(ral s ra,,))
=0,

asvr=0andt # 1.Ifj > 1, then we can write
M(x]a"'rxn) :x]Mjll(xla"-s-xn)
with degMj”(xl, ...,Xn) = j — 2; hence

vd(N(ral, e ra,,)) = vd(arale"(ral, ..., ra)raN'(ray, ..., ran))

= avd(r)alllflj"(ral, ... raraN'(ray, ..., ra,)
+ avrd(ale"(ral, ...,ra)raN'(ray, . . ., ra,,))
= aszj"(ral, ... ra)raN'(ray, ... ra,)
4
= avyra;N'(ray, ..., ray)
= aw,aN'(ray, ..., ra,)
=0,
aswya; = 0.
This proves that vd(f(ral, ey ra,,)) = av;. Now, let s > 1 be such that

d(f(ral, el ra,,)“) = 0. Hence we have

0= vd(f(ra., e ra,,)s)
= Z vf(ral,...,ra,,)pd(f(ral,.--,ran))f("al,---,mn)q

prqg=s—1
= vd(f(ral,...,ra,,))f(ral, eyray)’ !
= ocvlf(ral,...,ra,,)“1
= (stl,

a contradiction.

Thus if vr = 0, vd(r) = 0.

Let 0 # v € V and suppose that vr and vd(r) are linearly dependent for all » € R. Let
x,y € Rbesuch that vx and vy are linearly independent. Then vd(x) = A vx, vd(y) = Ayvy
and vd(x +y) = Auyv(x +y), where Ay, Ay, Ay, are in D. Therefore Agyyvx + Agyyvy =
Axvx + Ayvy, and thus A, = A,. As a result there exists A € D such that vd(x) = Avx for
all x € R, with vx # 0. On the other hand, as we proved above, if vr = 0 then vd(r) = 0.
Hence vd(x) = Avx forallx € R.
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Since V is infinite dimensional over D, there exist v,,... v, € Vsuchthatv,v,,...,v,
are linearly independent, and we let for convenience v = v; = v,;. By the Jacobson
density theorem again, there exist by,...,b, € Rsuch that, fori =1,...,n

v,b, = { v 1) € ,‘2[,
0 otherwise
where the 4,’s are the sets defined above. As above we can easily prove that
vf(by,...,by) = avand so vf(by,...,b,)’ = &’vforalls € N.

Now, for some s € N, f(b1,...,b,)* €S = {x € R| d(x) = 0}. Hence thereis x € §
such that vx # 0 and we obtain 0 = vd(x) = Avx and so A = 0.

Thus if vr and vd(r) are linearly dependent for all v € V and r € R, then Vd(R) = 0
andsod = 0.

Therefore we may assume that there exist v € V, r € R such that vr and vd(r) are
linearly independent. Let a € R such that (vr)a = 0 and (vd(r))a # 0. By the above
0 = (vr)a = v(ra) implies (vr)d(a) = 0 and also vd(ra) = 0; hence 0 = vd(ra) =
vd(r)a + vrd(a) = vd(r)a # 0, a contradiction. Thus either V is finite dimensional over
D and R >~ D, or R contains a nontrivial idempotent.

This, together with Lemma 4 and Lemma 6, suffices to prove that f(xy,...,x,) is
power-central valued on R and R is a finite dimensional central simple algebra. More-
over [R : Z(R)] is bounded as in Theorem 1 by an explicit function of the degree of
f(x1,. .0, x0).

Finally, by a result of Jacobson [6, p. 100], either d is an inner derivation or
d(Z(R)) # 0. Inthis case, forall ry,...,r, € R and z in Z(R), we can choose t > 1 such
that d(f(zr1,...,zra)") = O and d(f(ry, ..., r)") = 0. Thus

0 =d(fGri,....zr)")
=d("f(r1,....r)')
=d@")f(r1,....r) +2"d(f(r1,.... 1))
=d@")f(r1,....m)"

Since R is primitive this implies that either f(xj,...,x,) is nil-valued on R or
d(Z™) = Oforall z € Z(R) with t = #(2).
Iff(x,...,x,)is not a polynomial identity on R, by Theorem 1.7 of [9], we must have

that Z(R) is a finite field and so d(Z(R)) = 0.

Therefore we obtain that d(z*) = 0 for all z € Z(R), and s = s(z) depends on z. Of
course this implies that Z(R) is infinite of characteristic p # 0; and this completes the
proof.

As quoted above we can interpret the case of the inner derivations in terms of elements
of T(R). Hence we obtain the following result which is of some independent interest:

COROLLARY. Let R be a primitive ring, f(xi,...,X,) a homogeneous polynomial of
degree m. If char R = p > 0 we assume that f is not an identity for p X p matrices in

https://doi.org/10.4153/CJM-1993-003-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-003-4

32 O M DI VINCENZO AND R SAGONA

characteristic p. Then either T(R) = Z(R) or f(xy, ..., X,) is power-central valued and R
is a finite dimensional central simple algebra. In the last case let N> = [R : Z(R)], then
1) either f is a polynomial identity for (N — 1) X (N — 1) matrices over Z(R) and
N<im+2)or
2) Z(R) is a finite field with |Z(R)| < ¢(m)ym and N < ¢(m) + 1.
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