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Abstract

Certain definite integrals involving spherical Bessel functions are treated by relating
them to Fourier integrals of the point multipoles of potential theory. The main result
(apparently new) concerns

where /,, l2 and N are non-negative integers, and r, and r2 are real; it is interpreted as a
generalized function derived by differential operations from the delta function
fi(r, — r^. An ancillary theorem is presented which expresses the gradient V2"y/m(V) of
a spherical harmonic function g(r)YLM(U) in a form that separates angular and radial
variables. A simple means of translating such a function is also derived.

1. Introduction

Some of the best-known differential equations of mathematical physics lead to
Fourier integrals that involve Bessel functions when, for instance, they are
solved under conditions of rotational symmetry about a centre. As long as the
integrals are absolutely convergent they are amenable to the classical analysis of
Watson's standard treatise, but a calculus of wider serviceability can be expected
from the theory of generalized functions. This paper identifies a class of
Bessel-function integrals that are Fourier integrals of derivatives of the Dirac
delta function in three dimensions. They arise in the practical context of
manipulating special functions-notably when changing the origin of the polar
coordinates, for example, in order to evaluate so-called two-centre integrals and
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12 ] Integrals of Bessel functions 369

convolutions [6, 11 (equation 22), 12, 14, 17]. A simple translation formula is
presented which serves to indicate that context.

The translation formula would find application in calculating the potential
integrals, overlap integrals, molecular integrals, cluster integrals, collision in-
tegrals and so on which variously describe the classical, quantum and statistical
mechanics of atomic interaction.

An underlying theme of this work is my belief that calculations of the above
type are facilitated by an interplay of direct and Fourier methods.

2. Single Bessel function

The infinite integral,

C dt t>JXrt),Jo

has been defined classically by first damping the integrand and then resorting to
the limit of no damping. Thus [18, page 514, and 21, page 391]

lim / dt

If one defines vn = v + In + 1, where n is a non-negative integer, then it will be
seen that, if 0 < ji ^ vn, the above expression diverges as r -»0. On the other
hand, if r =?= 0, the expression vanishes as n -» vn > n, when the lower gamma
function becomes singular. There is clearly a deep singularity at the point r = 0,
H = vn > n. It is here argued that this integral and others like it can be
interpreted usefully as generalized functions.

We shall be restricting the discussion to half-odd-integer values of the param-
eters, which means spherical Bessel functions,

and we shall rely upon their connexion [19, page 410 and 21, page 50],

fike
2""ky/m(flk), (1)

with the spherical harmonics Ylm(Q) in R3, the integer / being non-negative and 9,
denoting spherical polar coordinates (0, <#>) [2] pages 18-19 and [9] pages
494-495. This approach will allow us to harness the rotation-group theory and
algebra of spherical harmonics which, as Sack has well observed, are practically
indispensable nowadays [15].
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Let us begin with the Dirac delta function in R3, whose Fourier representation
is

S(r) = f d3ke2""k,

where the integral is understood as a generalized function [7] pages 197-198, and
repeated differentiation of which gives a tensor,

We now define the differential operator Ylm(V) as a component of an irreducible
spherical tensor, directly analogous to the regular Laplace harmonic Ylm(r) =
r'Y,JSlT) [1], [4] page 127, and [16] appendix 2. It should be noted that Y,JV) is
proportional to the irreducible spherical-tensor component (Im) of the differen-
tial monomial V'. Then we can at once derive the Fourier transform,

3ke2^k2"Ylm(k). (2)

This derivative of the delta function may be regarded as representing the point
multipole (nlm) of potential theory [2] pages 12-1A and [13]. Making an angular
integration according to equation (1), we obtain

f d3ke2™*k2»Ylm(k) = 4m'Ylm{Slt) f" dk.k2" + '+2J,(2-urk). (3)

By acquiring a Bessel function in this way the radial integral assumes the form
considered previously, with v = / + \.

Direct factorization is another means of separating the angular and radial
variables of the point multipole, for which the following theorem is helpful.

THEOREM 1. (Chain rule). / / / is a generalized function of position in R 3 and
depends only on the radius r, then

Ylm(V)Xr) = Ylm(T)(r-ld/dr)'f(r), (4)

in the sense of generalized functions, namely

fd3ry(r)Ylm(V)f(r) = /rf3r/(r)(/-9/3r)+'y/m(r)Y(r),

where the adjoint {denoted by a dagger) is (r"'3/3r)+/ = (-l)'r~l(r~ld/dr)'r.

PROOF. This starts from the Wigner Eckart theorem, which allows the case of
m = / to suffice [2] pages 56-59 and [3] pages 77-79, and from the fact that
YU(V) is proportional to the monomial (3/9x + id/dy)'; the rest of the argu-
ment is similar to Jones' theorem on V2f(r) [7] pages 215-216. (Incidentally the
result (4) applies also to functions in the ordinary sense [4] page 175.) In
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addition there are the following lemmas on radial differentiation of the delta
function,

V2"5(r) = (-2)"/i! (r-ld/dr)"S(T) (5)

= 8<2n+2\r)/4TT(n + 1), (6)

which can be proved by means of adjoints using an arbitrary test-function
y ~ r1N, and further [7] pages 62-63,

r'8(k\r)/k\ = (-l)'S(k-'\r)/(k - /)! (k > I). (7)

From equations (4)-(7) it follows that

so that the variables are separated.
Assembling equations (2), (3) and (8), and equating their radial parts, we have

the result,

which represents the integral as a generalized function localized at r = 0. The
same formula has been obtained, rather more directly, by Kay, Todd and
Silverstone [8] equation (24).

3. Two Bessel functions

While in the previous section an integral over one Bessel function has been
derived from a point multipole, it will now be shown that an integral over two
Bessel functions can be derived in a similar way by translating the point
multipole. It may be recalled that generalized functions can be translated by the
following Fourier transform technique [12], [14] and [17]:

/(r, + r2) =

and

/(k) = f d3re-2vik%T).

(10)

It is convenient in what follows to treat angular variables by the methods of
Racah algebra, and to define the coupled basis [3] page 36 with elements,

(11)
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where <fi|/m) is just the spherical harmonic Ylm(Q) in Dirac notation, and the
final factor is a Clebsch Gordan coefficient. The tensors (11) have been called
bipolar harmonics [2] pages 55-56. Their virtue is that they present the same sort
of closure relation (a Laplace series) as do the spherical harmonics of which they
are composed [4] pages 342-359 and [9] pages 494-495:

f (12)
Im J Im

2 <nifi2|/1/2;LM></1/2;LA/|/>=<fi,fl2|/>. (13)

By this means a function of two positions can be expanded in terms of bipolar
harmonics. In the case of /(r, + r2), the expansion contains the following scalar
product,

r2)> = ( 4 ^ 1 ( , )

(14)

Here we have used equations (11), (10), and then (1) for the angular integration
over fi, and fi2, together with the fundamental composition theorem of spherical
harmonics [2] page 57 and [3] page 164,

(2/, . . / v - . 2 . . , , x , ] 0 / 2 0 | L 0 > < L M | Q > ( 1 5 )

4TT(2L + 1)

When the generalized function to be translated is the point multipole,

/(r)=V2T/m(V)S(r),

the requisite Fourier transform is provided by equation (2):

/(k) = (2mf + 'k2"Ylm(k).

On substitution of this into equation (14), and after angular integration,

•>

X jdk{2TTk)ln+'+X(2<nrxk)jli{2TTr2k). (16)

The matrix element vanishes unless L = I, (/, + /2 + /) is even, and the usual
triangular condition is mutually satisfied:

|/, - 12\ < / < / , + l2.
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The positive power of k in the integrand of equation (16) means that we have
a Weber Schafheitlin integral which classically is not convergent [21] page 399.
The classical expressions assuming convergence vanish, both for the case of
rx =£ r2 and at the discontinuity r, = r2, because of a singular gamma function
occurring as a denominator [21] equations 13.4(2) and 13.41(2).

Direct angular integration is another means of separating the angular and
radial variables of the translated point multipole. To that end we invoke the
following gradient theorem.

THEOREM 2. If g is a generalized function of position in R3 and depends only on
the radius r, then

</.'",|V2n>'/m(V)g(r)|/2/M2> = </,«,! Ylm(Sl)\l2m2>Dnllih(r)g(r), (17)

in the sense of generalized functions, namely

Here D denotes the radial differential operators,

= {-lyWvPft-OD^ (n>c), (19)

and

DNJ=r\r-^/Zr)NrN-J, (20)

where

2a = / + / , - l2, 2b = I + l2 - /„ 2c = /, + l2 - I. (21)

PROOF. AS it was for Theorem 1 of the previous section, proof is by way of the
Wigner Eckart theorem. This treatment is more general (and possibly less
cumbrous in form) than the results of Santos and Bayman [1] and [16] appendix
2, which are restricted to the case of n = 0. The case of n = l2 = b = c = 0,
/, = / = a, reduces to the previous theorem.

The power of the theorem may be indicated by applying it to Bessel functions.
If one takes equation (1) as a definition of the Bessel function, then equation
(17) can be used to generate a differential relation between two such functions,

This formula contains Bessel's equation as a special case, n = l, l=a = b = 0,

/, = l2 = c, and also the recursion relations characteristic of these functions;
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indeed the operator (18) can be regarded as a product of successive ladder
operators for Bessel functions [10] page 60.

To resume, we factorize the translated delta function into the product of a
spherical shell function and an angular selector,

S(r, + r2) = 4170(1-,, r jXnj-G,) , (22)

where

°(ri> ri) = £(/-, - r2)/A-wrxr2 (23)

and

<fi,|-S2> = 2 V(2/ + 1)<Q,O2|//; 00>, (24)

the latter expanding as another expression of the closure (12). It follows that the
matrix element which is required is

</,/2; /m|Vf K/m(V,)5(ri + r2)>

= V ( M 2 / 2 + l))</,0|/0, /20>Z)n//|/2(r1)a(r1, r2),

(25)

for which equations (22), (24), (17) and (15) have been used in turn.
To equate equations (16) and (25) is to represent the non-classical Weber

Schafheitlin integral as a generalized function. Thus,

= W (- l ) n + aZ)n//i/2(r1)a(r1,.2), (26)

provided the coupling coefficient <7,0, /20|/0> does not vanish. In a simple
special case, n = l=a = b = 0, /, = l2 = c, the derivatives drop out and
equation (26) reveals the orthogonality [20],

2k) = o(rx, r2), (27)

which is plainly a form of the Hankel inversion theorem [18] page 52 and [21]
pages 453-464. A further check is provided by considering the limit of r2 —> 0:
the second Bessel function vanishes unless l2 = 0, so we may take /, = / = a,
c = 0; on the right-hand side o(r,, r^ —* 8(r,). Equation (26) then reduces to the
result of the previous section.

It is no restriction to impose a condition upon n or /; and indeed if the
exponent of k is small enough we may set n = 0 and employ the form (18) of the
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differential operator, so that equation (26) appears as

f dk{2TTk)'> + l>-2c + X{2-nrxk)jh(2Trr2k)

= 7r(-l)'' + />Z>/l-c,,,('-.)A2-c,,2('-2M'-,, r2), (0 < c < /„ /2), (28)
while if the exponent is large enough we may set c = 0 in equation (21) and
employ the form (19), which gives

f dk{2vk)'> + l>+2n + X{2Trrlk)jlp.irr2k)

= 7r(-l)/' + ̂ D/,/i(rO^('i)A2//'2)£ro('2)<>('-|> r2). (29)

Here symmetry appears explicitly when it is recognized that £)t(r,)o(r1, r^ =

4. Three Bessel functions

It is easy to see from the argument of the previous section that an integral
over three Bessel functions can be derived by a second translation of the point
multipole. The full algebra soon becomes unwieldy, however, so attention will be
confined to the simple case of the undifferentiated delta function, by way of
illustration. One defines the triple coupled basis [3] page 40,

1, l2m2, l3m3\ll2lm}, (30)

which satisfies a closure relation analogous to equation (13). The previous
Fourier-transform argument is now repeated until, instead of equation (16), we
reach

</,/2/3; /,2//n|8(r, + r2 + r3)>

dk.k2j,p.-nrxk)jl2{2irr2k)jli{2'nr3k). (31)

In equation (31) we have a classically respectable integral which has already
been treated, and in a similar manner, by Jackson and Maximon [5].

Direct angular integration is another means of separating the angular and
radial variables of the twice-translated delta function. If (r, + r2 + r3) is to
vanish, we observe that there must be a rotation R with Euler angles p that
brings the vector triad (r,, r2, r3) into congruence with any given triangle of sides
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ri> r2< ri'> t n u s> w ^ can write

6(r, + r2 + r3) = *m(rx, r2, r3)f d3p<nfi2Sl3\R(p)\^^l°3y, (32)

where relative angles among the coplanar fl°, fi^, fi3 are determined by the given
triangle. The radial factor T can be defined by an angular integral,

*•(/•„ r2, r3) = (4TT)-3/2<000; 0|fi(r, + r2 + r3)>, (33)

which shows that it vanishes unless the lengths /•,, r2, r3 are capable of forming a
closed triangle, and it is evaluated [11] equation 22 from the normalization,

V ( r , + r2 + r3) = 8^1r2/-3
0r(r1, r2, r% (34)

where r° = |r, + r2|. Now, the scalar product of the spherically-symmetric delta
function (32) with the coupled basis (30) is zero unless / = 0, when the integra-
tion over Q,, J22, ft3 is invariant under the rotation R, and the integral over p is
elementary, so that

</,/2/3; 0|fi(r, + r2 + r3)> = (47r)3T(r,, r2, r3)</,/2/3; 0|fl?J2%>. (35)

Equating equations (31) and (35), we find

= TOi» r2> ri)(l\kl*>

provided the coupling coefficient does not vanish. Equation (36) is equivalent to
the result of Jackson and Maximon [5].

The effect here of admitting derivatives of the delta function would be to raise
the exponent of k in the integrand of equation (36), and to bring in radial
derivatives of the right-hand side. A similar result would follow if equation (36)
were subjected to the differential operators (20). Such derivatives introduce delta
functions at the discontinuities of the function r(rt, r2, r3).

5. Translating a spherical harmonic

In any theoretical study of the mechanics of atomic interaction, it is a
recurring task to evaluate 'two-centre' integrals which require the displacement
of an integrand from one centre to another [11] equation 22, [12], [14] and [17].
It will be shown that the integral of the previous section arises here in a natural
way.
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A direct method of translating a generalized function is to integrate over a
two-fold translation of the delta function, thus,

ft'i + r2> = / dfyfr, + r2 + r3)/(-r3), (37)

which has equation (10) as its Fourier representation. The function to be
translated is typically a spherical harmonic of the form, /(r) = g(r) YLM(Q). In
the Laplace expansion (13) of this form, some of the terms vanish by the Wigner
Eckart theorem, leaving a series with two indices, /,, l2. The required scalar
product is the integral,

</,/2; LA/|/(r, + r2)> = ^ + f rjdr3g(r3Xl,l2L; 0|8(r, + r2 + r3)>

f^^ ^ °), (38)
J\r,-r2\

 r\r2

using equations (37), (33)-(35). The rotational invariant that appears in the
integrand reduces to a function of two angles of the triangle [5],

L < / , / 2 ; L0|-n?3, -fi°3>, (39)

where <j>23 = <J>°3 + w. This is a bipolar harmonic which is simply evaluated
according to equation (11) as a finite sum of products of spherical harmonics,
the angles of which are determined by the sides of the triangle, as follows:

-cos 0° = (#•? - r\ + r\)/2rxrv

and (40)

It is also possible to describe the rotational invariant by zonal harmonics of all
three angles of the triangle [5].

The above method of translating a spherical harmonic function has an
advantage over existing techniques [6] because it recognizes the rotational
invariant and preserves the symmetry between the radii r, and r2.
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