
J. Fluid Mech. (2024), vol. 981, A1, doi:10.1017/jfm.2023.989

The influence of turbulence and inertia in radial
fracture flow
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Industrial applications of flow through fractures such as geothermal energy or hydraulic
stimulation involve forcing large flow rates through small fractures, thereby inducing
inertial fluid behaviours and turbulence. The most common fracture flow model, Poiseuille
flow (the cubic law), is incapable of capturing these phenomena and thus the impact
of inertial and turbulent forces in fracture flow has remained relatively unexplored. The
GG22 flow model is a newly derived fracture flow model that is capable of capturing
inertial, transient and turbulent forces. In this article, we apply the GG22 flow model
to hydraulic stimulation of radial fractures for the first time to determine how these
phenomena manifest. We show that inertia and turbulence only manifest near the wellbore
(within 30 radii) and lead to changes in fracture shape and injection pressure but have little
impact on tip behaviour. Turbulence increases wellbore pressure and aperture while inertia
decreases wellbore pressure and aperture. The majority of the pressure loss along the
fracture occurs near the wellbore and is captured by turbulence where entrance correction
factors would otherwise be needed. Using water, turbulence is the dominant mechanism
that causes departures from Poiseuille flow at high Re. The solution departs immediately
upon the manifestation of turbulence (Re ≥ 2 × 103), while inertial effects manifest at
higher flow rates (Re ≥ 2 × 104). Using slickwater, the opposite trend is observed: inertial
effects manifest first (Re ≥ 5 × 103), while turbulent effects are delayed (Re ≥ 104). In
both cases, the threshold for departures from the Poiseuille flow solution are low and the
differences are large.

Key words: computational methods

1. Introduction

Fluid flow through deformable and propagating fractures is an important process in many
applications including contaminant and groundwater transport, geothermal energy and
hydraulic stimulation. The most common model for simulating fluid flow in fractures
is Poiseuille flow, also called the ‘cubic law’. The range of applicability of Poiseuille
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Figure 1. Reynolds number near the wellbore as a function of wellbore diameter and injection flow rate
assuming water as the injected fluid. Here D is the wellbore diameter and Q is the injection flow rate. Even
small flow rates can induce very large Reynolds numbers at the wellbore.

flow has been a topic of much research (Witherspoon et al. 1980; Zimmerman, Kumar &
Bodvarsson 1991; Ge 1997; Oron & Berkowitz 1998; Konzuk & Kueper 2004; Zimmerman
et al. 2004; Ranjith & Viete 2011; Wang et al. 2015; Yu, Liu & Jiang 2017), but this range
is usually not discussed in simulations of industrial fracture flow applications. Poiseuille
flow is derived under the assumptions of steady-state laminar flow through parallel plates
and is therefore incapable of capturing inertial, transient or turbulent fluid behaviours. It
is usually assumed that these phenomena have negligible effects, but without the ability
to capture these behaviours, their relative importance is not well understood. Turbulence
is the exception, and has been well-studied through a variety of different models and
methods (Nilson 1981; Tsai & Rice 2010; Dontsov & Peirce 2017; Zia & Lecampion 2017;
Lecampion & Zia 2019; Zolfaghari & Bunger 2019). However, these models also neglect
inertia and therefore the interactions between turbulence and inertia remain unknown.

The frequency of these phenomena is especially prevalent in axisymmetric/radial
fractures. Near the wellbore, the large flow rates are distributed around a very small
circumference, leading to very large Reynolds numbers. These large Reynolds numbers
decay quickly as the fluid is dispersed into the fracture, leading to a loss of kinetic energy
that must be conserved or dissipated elsewhere in the domain. Large Reynolds numbers
also imply the development of turbulence near the wellbore: consider for example the
properties of water and a wellbore diameter of 15 cm, then a flow rate of 1 L s−1 is
sufficient to produce inlet Reynolds numbers in excess of 2000. Figure 1 illustrates the
relationship between injection flow rate, injection Reynolds number and wellbore diameter
assuming water as the injected fluid. Near the tip, the gradient of aperture is large, which
is a significant violation of the Poiseuille assumption, but the flow rate is small, so without
investigation it is difficult to estimate the importance of inertial behaviours.

The complexity of fluid–fracture interactions at high flow rates is further compounded
by the choice of fracturing fluid. More energy is required to pump fluid down the wellbore
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to the fractures at high flow rates due to the development of turbulence in the wellbore.
Consequently, it is common to introduce friction reducers into the fluid to create slickwater
(Lecampion & Zia 2019; Detournay 2020). Friction reducers disrupt the development of
turbulence such that the transition from laminar to turbulent flow is delayed to much higher
flow rates at the cost of higher viscosity. Slickwater thus reduces the effects of turbulence
at high flow rates but has negligible impact on the inertial behaviour of the fluid.

The primary barrier to investigating these phenomena has been the inability of
current models to capture them, particularly inertia. The recently derived GG22 model
(Gee & Gracie 2022) is a newly developed model for fracture flow that is capable of
capturing the nonlinear fluid flow behaviours of turbulence, inertia and transience. It is
derived by integrating the higher-dimensional incompressible Navier–Stokes equations
over the fracture aperture to generate a set of reduced-dimension governing equations
that can capture the phenomenon of interest without the computational burden of the
full Navier–Stokes equations (Gee & Gracie 2022). It has been shown that the GG22
model recovers the Poiseuille flow solution under Poiseuille flow conditions, and conserves
energy in non-parallel plate geometries where Poiseuille flow does not (Gee & Gracie
2022).

In this article, we use the GG22 model to establish the impacts of inertia and turbulence
on the propagation of axisymmetric hydraulic fractures through numerical simulation
of hydromechanically coupled rock mass stimulation. First, we describe the governing
equations of the rock mass deformation, fluid flow and hydromechanical coupling. In § 3
we establish the parameters of the hydraulic fracturing scenario under investigation. In
§ 4, we investigate the solutions to the model problem by varying the fluid physics model,
starting with the standard Poiseuille flow solution, then introducing one new phenomenon
at a time until we reach the full GG22 fluid model. Next, we discuss the impacts of surface
roughness and fracture toughness on the observed results. Last, § 7 investigates how the
findings change when the fluid is changed from a Newtonian fluid like water, to a fluid
with friction reducers like slickwater. Finally, § 8 summarizes our findings and results.

2. Governing equations

Consider an impermeable rock mass under in situ stresses as illustrated in figure 2(a).
Fluid flows through fractures which may propagate through the rock mass. Axisymmetric
conditions are assumed, such that the rock mass, Ωs, is considered as a two-dimensional
body and the fractures are considered as one-dimensional spaces characterized by an
aperture w(r, t) with negligible transverse flow. Typically, fluid flow within fractures is
characterized by the Poiseuille flow equation. In this work, we use the GG22 fluid model
to explore the phenomena that arise at high flow rates (Gee & Gracie 2022). The GG22
model is a recently derived model for fracture flow which captures inertial, transient and
turbulent fluid behaviours. Similar models have been developed for applications in blood
flow through elastic arteries (Olufsen et al. 2000) and thin film lubrication (Szeri 1998).

The GG22 flow model is a two-field model that describes the behaviour of an
incompressible fluid with a flux, q(r, t), and a pressure, p(r, t). The incompressible
fluid has density ρf and viscosity μ. The governing equations of the GG22 model in
axisymmetric form are

∂w
∂t

+ 1
r

∂

∂r
(rq) = 0, (2.1)

∂q
∂t

+ 1
r

∂

∂r

(
rα

q2

w

)
= − w

ρf

∂p
∂r

− 1
2

fD
w2 q2, (2.2)
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Figure 2. Mathematical domain for an impermeable axisymmetric rock mass under in situ stress with discrete
pre-existing fluid-filled fractures. Fracture propagation is controlled by the fracture process zone ahead of the
fracture tip which follows a cubic traction–separation law. (a) Mathematical Domain and (b) cubic cohesive
traction–separation law.

in which (2.1) is the continuity equation describing the conservation of fluid mass, and
(2.2) describes the conservation of fluid momentum. The conservation of momentum
equation is comprised of several new terms compared with the Poiseuille flow model.
These terms will be referred to as follows:

transient term:
∂q
∂t

, (2.3)

convective term:
1
r

∂

∂x

(
rα

q2

w

)
, (2.4)

pressure term: − w
ρf

∂p
∂r

, (2.5)

friction term: − 1
2

fD
w2 q2. (2.6)

The transient term and the convective term will collectively be referred to as ‘the inertial
terms’. While turbulence cannot exist without inertia, the friction term is differentiated
because friction is a dissipative phenomenon, while the transient and convective terms
capture transformative phenomena. The convective term relates to the convection of
momentum by the bulk fluid and enables the conservation of energy of the fluid in response
to temporal and spatial changes in aperture (Gee & Gracie 2022).

In addition to the fields q, p, the conservation of momentum is also a function
of two dimensionless coefficients which are functions of the flow regime. First, the
momentum correction factor, α(Re), considers the increase in total momentum carried by
a non-uniform velocity profile across the aperture. Assuming a parabolic velocity profile
in laminar flow and a 1/7 power-law profile in turbulent flow, the momentum correction
factor is defined as

α =
{

6
5 if Re ≤ ReL

64
63 if Re ≥ ReT

, (2.7)

Re = ρf |v̄|w
μ

= ρf |q|
μ

, (2.8)
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Figure 3. Friction factor as a function of Reynolds number for a standard Newtonian fluid (water) and a fluid
enhanced with friction reducers (slickwater).

in which ReL is the Reynolds number defining the threshold between the laminar regime
and the transitional regime, and ReT is the Reynolds number defining the threshold
between the transitional regime and the fully turbulent regime.

The friction factor fD accounts for the dissipation of fluid momentum by viscous and
turbulent forces. In the laminar regime, dissipation is the result of viscous shear forces,
and in the turbulent regime dissipation is caused by both viscous shear and turbulent
eddy formation. An empirical relationship is required to determine the friction factor
in the turbulent regime, and so the Colebrook–White equation is adopted for simplicity
(Colebrook 1939). The friction factor is thus defined as

fD =

⎧⎪⎪⎨
⎪⎪⎩

24
Re

if Re ≤ ReL

1√
fD

= −2 log
(

ε

7.4w
+ 2.51

Re
√

fD

)
if Re ≥ ReT

, (2.9)

in which ε is a measure of the surface roughness of the fracture. In the transitional fluid
regime, ReL < Re < ReT , both the momentum correction factor and the friction factor
are linearly interpolated. Assuming a Newtonian fluid as the injection fluid (water), the
transition from the laminar to the turbulent regime begins at Re ≈ 2000, while the fully
turbulent regime begins at Re ≈ 5000. The friction factors for water are illustrated in
figure 3.

To reduce the energy required to pump the fluid down the wellbore, it is common
to introduce friction reducers into the fluid to create slickwater (Lecampion & Zia
2019; Detournay 2020). Friction reducers are long-chain polymers which may be added
in small quantities to disrupt the formation of turbulent eddies, delaying the onset
of turbulence (Virk 1975). The reduction in friction factor reaches a maximum drag
reduction (MDR) asymptote at small concentrations (Virk 1975). The concentration is
dilute, so the density of the bulk fluid remains unchanged, but the viscosity is affected.
The fluid becomes non-Newtonian and experiences shear thinning, with the viscosity
approaching an asymptotic viscosity after shear degradation. After degradation, the fluid
viscosity is approximately constant. It is thus assumed that the slickwater has experienced
sufficient shear in the wellbore that it has reached its asymptotic viscosity in the fracture.
A Newtonian fluid behaviour is thus assumed in the fracture with an apparent viscosity
of 5 mPa s (Habibpour & Clark 2017). The friction reducers delay the onset of turbulence
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from Re ≈ 2000 up to Re ≈ 3 × 104. Fully turbulent flow is observed at Re ≈ 5 × 105, so
there is a transitional regime between the fully turbulent and MDR regimes. In the MDR
regime, which begins at Re ≈ 1000, the MDR asymptote is correlated with the Reynolds
number such that fD ∝ Re−0.7 (Virk 1975). The friction factor for slickwater is illustrated
in figure 3.

In the laminar regime, the friction term simplifies to (−12μ/ρf w2)q. Under Poiseuille
flow conditions, i.e. steady flow through parallel plates, the conservation of momentum
equation (2.2) recovers the Poiseuille flow constitutive model,

0 = − w
ρf

∂p
∂r

− 12μ

w2ρf
q =⇒ q = − w3

12μ

∂p
∂r

, (2.10)

such that flux is a function of the pressure gradient, q = f ( p), and the fluid may be
described with a single field, p(r, t).

The rock mass is modelled as a quasistatic impermeable linear elastic axisymmetric
medium under in situ stress. The equilibrium equation governs the deformation of the
rock mass, such that

0 = ∇ · σ (u) on Ωs, (2.11)

σ − σ 0 = C : ε, (2.12)

in which u(r, z, t) is the rock mass deformation, σ is the axisymmetric Cauchy stress
tensor, σ 0 is the in situ stress tensor, C is the axisymmetric elasticity tensor and ε is the
axisymmetric linear strain tensor. The rock mass contains fractures defined by an aperture,
w, which is a function of the deformation of the rock mass. The relationship between
aperture and deformation is

w = w0 + nΓc · u|Γc, (2.13)

in which w0 is some residual aperture in a pre-existing cemented fracture that may arise
from surface roughness and Γc is the fracture surface. The pre-existing cemented fractures
are modelled with a traction–separation law such that a quasibrittle cohesive fracture
process zone forms ahead of the fracture. A cubic traction–separation law (Tvergaard 1990)
is adopted, as illustrated in figure 2(b). The traction–separation law is defined as a function
of the aperture according to

tcoh(w) =
{

27
4 fuΔ(1 − 2Δ + Δ2), w − w0 ≤ wc

0, w − w0 > wc
, Δ = w − w0

wc
, (2.14)

wc = 48
27

Gc

fu
, (2.15)

in which fu is the cohesive strength of the rock mass, Gc is the fracture energy and wc
is the critical aperture which defines the boundary between the cohesive zone and the
physical fracture tip. The reopened fracture length is measured as the radial distance
from the wellbore to where the aperture exceeds the critical aperture defined by the
traction–separation law w − w0 > wc. The rock mass is therefore subject to tractions on
the fracture surfaces such that

σ · nΓ ±
c

= (−p + tcoh)I · nΓ ±
c

on Γ ±
c (2.16)

in which nΓ ±
c

is the corresponding normal to the positive or negative face of the fracture,
Γ ±

c . Fracture propagation in a cohesive-zone model is significantly influenced by fluid lag
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Parameter Symbol Value

Elastic modulus E 60 GPa
Poisson ratio ν 0.25
Tensile strength Fu 10 MPa
Asperity roughness ε 0.5 mm
Residual aperture w0 5 μm
In situ stress σ0 25 MPa
Depth h 2000 m
Wellbore diameter D 15 cm
Water density ρf 1000 kg m−3

Water viscosity μ 1 mPa s
Slickwater density ρf 1000 kg m−3

Slickwater viscosity μ 5 mPa s

Table 1. Model problem simulation parameters.

and vaporization behind the crack tip (Garagash 2019; Liu & Lecampion 2021). This effect
has been neglected in favour of simplifying the model physics and isolating the effects of
the new fluid model but should be otherwise included to capture accurate propagation
behaviour.

3. Model problem

In this paper, we consider a single hydraulic fracturing scenario and examine how it reacts
to varying fluid physics.

Consider the reopening of a cemented radial fracture with a small residual aperture,
w0 applied uniformly along the cemented fracture. The cemented fracture extends to the
end of the computational domain, where a Dirichlet condition is imposed on the pressure
such that the pressure is fixed at the far-field hydrostatic pressure of p̄ = ρf gh in which
g is the acceleration due to gravity and h is the fracture depth. The residual aperture
allows leak-off through the fracture tip, but as w0 → 0, the traditional impermeable
fracture rock mass solution is recovered. A residual aperture of w0 = 5 μm is assumed,
which results in negligible leak-off in the example below and yield similar results when
w0 ≤ 50 um. The far-field pressure p̄ is placed far enough away from the fracture tip that
the effects of injection do not reach the far-field boundary and the flux through the far-field
boundary is negligible. The surface roughness of the fracture faces is conceptualized as
asperities which are compressed in the initial stress state and decompress as the fracture
opens. The maximum relative roughness is initially set to ε/w = 0.99 and decreases as
the fractures open. The asperities are set to a maximum roughness of ε = 0.5 mm. The
selected parameters for this model problem are summarized in table 1

The cemented radial fracture exists within an impermeable granite rock mass at a depth
of h = 2000 m and a minimum in situ stress of σ0 = 25 MPa. The rock mass has a
tensile strength of Fu = 10 MPa, an elastic modulus of E = 60 GPa and Poisson’s ratio
of ν = 0.25. The dimensions of the computational domain are illustrated in figure 4. The
computational domain is symmetrical along the axis of the fracture.

Fluid is injected into a wellbore with a diameter of D = 15 cm. The injection rate
Qo(t) is specified in terms of the injection Reynolds number, Re = ρf q̄/μ = ρf Qo/μπD.
Injection rates of Re = 10 up to Re = 2 × 105 are considered. Two injection fluids are
considered: water with a density of ρf = 1000 kg m−3 and a viscosity of μ = 1 mPa s;
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Figure 4. Computational domain for the reopening of a cemented radial fracture.
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Figure 5. Applied injection rate over the simulated injection time.

and slickwater with a density of ρf = 1000 kg m−3 and a viscosity of μ = 5 mPa s. The
maximum injection Reynolds number corresponds to a maximum injection flow rate of
36 b.p.m. (5.75 m3 min−1, 96 L s−1) for water and 180 b.p.m. (28.75 m3 min−1, 480 L s−1)
for slickwater. The injection rate is applied with a linear ramp over the first 6 s, and a
constant injection rate for the rest of the simulated time as illustrated in figure 5. The
fracture propagation is simulated for a total of 60 s.

The model problem is solved numerically using a fully coupled monolithic mixed finite
element method–finite volume method. Finite elements are used to discretize the rock
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7.7 × 1013.4 × 10–7 1 × 10–510–4 10–3 10–2 10–1 100
Element area

101

Figure 6. Computational mesh with element area (m2), illustrating the refinement required near the wellbore
to resolve the pressure gradient.

mass, while finite volumes are used to discretize the fracture. The reader is referred to
Gee & Gracie (2023) for details on the derivation, implementation and verification of the
numerical method employed here. The injection of a fixed flow rate into a radial fracture
with turbulent flow leads to a large but finite pressure gradient at the wellbore (Lecampion
& Zia 2019), provided the wellbore radius is finite. Figure 6 illustrates the computational
mesh employed for these simulations. A very fine mesh is required near the inlet to resolve
the pressure gradient at the wellbore. Past the wellbore, a coarser mesh is employed along
the expected length of the fracture, and the coarsest mesh is applied along the exterior
edges of the domain. The fluid volumes follow the rock mass mesh with volumes exactly
aligned to the element edges along the fracture face.

A zero-toughness fracture case is considered first, such that the fracture propagation is
restricted only by the resistance of the initial residual aperture. In this case, the physical
tip is assumed to be the coordinate where w > w0. Next, various fracture toughnesses are
considered using the cubic cohesive zone traction–separation law.

4. The effects of turbulence and inertia

In this section, we will examine the behaviour of the fracture propagation problem
described in § 3. To isolate the fluid behaviour, a zero-toughness fracture is considered
(Gc = 0 J m−2). We will consider the problem with four layers of fluid physics by
modifying the conservation of momentum equation (2.2). First, we will consider the
problem using the standard Poiseuille flow model, which assumes steady laminar flow
through a constant aperture. Next, we will upgrade the friction term to capture turbulent
flow, but neglect the inertial terms introduced by the GG22 model. Third, we will assume
laminar flow, but introduce the inertial terms into the conservation of momentum. Last, we
will consider the full GG22 conservation of momentum equation. By layering the physics
one at a time, we will be able to isolate how each term affects the solution and determine
the flow rate threshold at which each layer becomes relevant. It is assumed throughout this
section that a standard Newtonian fluid (water) is used as the fracturing fluid, and friction
reducers have not been introduced.

4.1. The Poiseuille flow solution
First, we discuss the standard Poiseuille flow solution as a baseline case for the
model problem. The Poiseuille flow model is the standard assumption for most fracture
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Figure 7. Wellbore pressure from injecting water at various flow rates with a Poiseuille flow model. The
Poiseuille flow solution shows a spike in pressure to reopen the fracture, then decreases over time.

flow simulations. Steady laminar flow is assumed and the conservation of momentum
equation (2.2) simplifies to

0 = − w
ρf

∂p
∂r

− 12μ

ρf w2 q, (4.1)

which can be rearranged as a constitutive relationship between flux and pressure such that

q = − w3

12μ

∂p
∂r

. (4.2)

Figure 7 illustrates the pressure at the wellbore. There is an initial peak pressure
associated with the reopening of the fracture, followed by a monotonic decrease in
pressure. Within the constitutive equation there are two competing processes: fracture
lengthening and fracture opening. Lengthening requires an increase in pressure at the
wellbore to propel the fluid a farther distance. Opening decreases the pressure at the
wellbore as the resistance to fluid flow decreases. The injection pressures indicate that
fracture opening generally dominates, but at higher injection rates, the pressure decreases
more slowly over time as fracture lengthening has a greater contribution.

Figure 8(a) illustrates the pressure along the fracture after 60 s of injection at the
highest tested injection rate of Re = 2 × 105. The pressure decreases monotonically until
the fracture tip. There is a discontinuity in the pressure gradient at the fracture tip as
the residual fracture aperture allows fluid to flow ahead of the reopened fracture tip.
Though the pressure gradient is large, the aperture is small, and the flow towards the tip
from the cemented fracture is negligible compared with that from the reopened fracture.
In the example, the tip behaviour does not appear to be influenced significantly by tip
leak-off. Farther ahead of the fracture tip, the pressure slowly returns to the far-field
pressure. Figure 8(b) illustrates the aperture along the fracture. The aperture decreases
monotonically and continuously. There is a discontinuity in the aperture gradient at the
tip.
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Figure 8. Pressure and aperture along the fracture with a Poiseuille flow model after 60 s of injecting water at
a rate of Re = 2 × 105. (a) Pressure decreases along the fracture and a sharp decrease in pressure is observed
at the fracture tip and (b) aperture decreases along the fracture.

4.2. The effects of turbulence
Next, we consider replacing the Poiseuille constitutive equation with a turbulent friction
term. Given that most fracture flow simulation tools are developed for Poiseuille flow, the
inclusion of the inertial terms in the conservation of momentum equation are intrusive and
require significant modifications. The implementation of a turbulent friction term without
the inertial terms is therefore an attractive prospect for capturing the effects of turbulence
with minimally intrusive implementation.

The equation for conservation of momentum (2.2) becomes

0 = − w
ρf

∂p
∂r

− fD(q)

w2 q2, (4.3)

which may be rearranged into a nonlinear constitutive equation

q = − w3

ρf fD(q) · q
∂p
∂r

. (4.4)

Figure 9 illustrates the pressure at the wellbore for increasing flow rates. There is an
initial local peak pressure associated with the opening of the fracture, as observed in
the Poiseuille flow case. Unlike the Poiseuille flow case, at sufficiently high flow rates
to induce turbulence, the required pressure to maintain the injected flow rate increases
due to the resistance created by turbulence. With a turbulent flow model, the pressure
required to maintain a flow of Re = 2 × 105 is approximately four times greater than with
the Poiseuille flow model.

Figure 10(a) illustrates the pressure along the fracture compared with the Poiseuille
flow case after 60 s at the highest tested injection rate of Re = 2 × 105. There is a region
of significantly elevated pressure near the wellbore extending up to 5 m along the fracture
radius. Farther along the fracture, the fluid returns to laminar flow and the pressures are
similar to the Poiseuille flow profile. Figure 10(b) illustrates the aperture distribution along
the fracture. The elevated pressures near the wellbore create a region of increased aperture,
with an increase of 90 % at the wellbore in this case. The aperture decreases monotonically
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Figure 9. Wellbore pressure from injecting water at various flow rates considering a turbulent model but
neglecting inertia. The inclusion of turbulence requires much higher pressures to achieve the same injection
rates. Large pressures are required to open the fracture, then pressure decreases, but the increasing flow rate
increases resistance to flow resulting in a peak pressure at 6 s when the flow finishes ramping up to its prescribed
injection rate.
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Figure 10. Pressure and aperture along the fracture with a turbulent flow model that neglects inertia after 60 s
of injecting water at a rate of Re = 2 × 105. (a) A large increase in pressure is observed near the wellbore to
overcome the turbulent resistance. The flow returns to laminar flow farther along the fracture and the solution
resembles the Poiseuille flow solution after 10 m and (b) the large increase in pressure at the wellbore causes a
large increase in aperture (a 90 % increase in this simulation). To preserve the total injected volume, the fracture
is slightly shorter than the Poiseuille case.

along the fracture, but the curvature of the aperture changes around 20 m. To conserve the
total injected volume, the aperture farther along the fracture is slightly smaller and the
overall fracture length is slightly shorter than the Poiseuille flow case.
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Figure 11. Wellbore pressure from injecting water at various flow rates considering a model including inertial
terms but assuming laminar flow. A reduction in pressure is observed as the decreasing fluid velocity creates
a positive pressure gradient at the wellbore. Pressure here is measured relative to the hydrostatic pressure, so
total pressure remains positive.

4.3. The effects of inertia
Next, we consider the behaviour of fracture growth when we introduce the inertial terms
but maintain the laminar flow assumption from Poiseuille flow. The conservation of
momentum equation (2.2) becomes

∂q
∂t

+ 1
r

∂

∂r

(
r
α

w
q2
)

= − w
ρf

∂p
∂r

− 12μ

ρf w2 q, (4.5)

and cannot be rearranged into a constitutive equation. It remains a separate coupled
governing partial differential equation which must be simultaneously solved.

Figure 11 illustrates the pressure at the wellbore for increasing injection rates. At
sufficiently high flow rates, the inertial terms induce positive pressure gradients and
therefore the pressure at the wellbore required to maintain the injection flow rate decreases.
There is an initial peak positive pressure associated with reopening the fracture, after
which as the flow rate increases, the wellbore pressure drops precipitously. The pressures
illustrated in figure 11 are gauge pressures relative to the hydrostatic pressure, and so
the negative gauge pressures are still positive absolute pressures and cavitation is not a
concern.

The dominant term behind the negative pressure is the continuity term. Consider the
case of injection at a constant rate into a set of radial parallel plates (constant w). In
this case, the steady-state solution for flux takes the form, q ∝ 1/r. The velocity of the
fluid is proportional to the flux, q = v̄w, where v̄ is the average fluid velocity across
the cross-section. Thus, as the flux moves away from the wellbore, the velocity of the
fluid must decrease to maintain continuity. When the fluid velocity is decreasing, that
kinetic energy must be transformed into potential energy or be dissipated. If the friction
term cannot dissipate the excess kinetic energy faster than the rate at which the fluid is
decelerating, that excess energy is transformed into potential energy in the form of an
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Figure 12. Pressure and aperture along the fracture with a model that includes inertial terms but assumes
laminar flow after 60 s of injecting water at a rate of Re = 2 × 105. (a) The slowing fluid introduces a positive
pressure gradient near the wellbore and creates negative pressures. The effect is localized near the wellbore
and the solution returns towards the Poiseuille flow solution within 1 m and (b) the negative pressures cause a
decrease in the aperture near the wellbore. To accommodate the total injected volume, the fracture length must
increase.

increase in fluid pressure. The result is the development of a positive pressure gradient
at the wellbore despite the positive direction of flow. The negative pressure causes the
aperture to decrease, which then increases the friction term, leading to non-monotonic
interactions at high Re.

Figure 12(a) illustrates the pressure along the fracture when considering the inertial
terms with laminar flow compared with the Poiseuille flow solution after 60 s at the highest
tested injection rate of Re = 2 × 105. Similar to the turbulent flow solution, there is a
region of deviation from the Poiseuille flow solution near the wellbore, but it does not
extend as far as in the turbulent solution. Approximately 1 m along the fracture, the fluid
returns and the pressures are well approximated by the Poiseuille flow profile. Figure 12(b)
illustrates the aperture profile along the fracture. The negative pressures at the wellbore
induce a decrease in the aperture at the wellbore, which also increases the velocity and
thereby exacerbates the influence of the convective term. To conserve the overall injected
volume, the fracture is slightly longer than the Poiseuille flow case and the apertures near
the tip are slightly larger.

4.4. The combined effects of inertia and turbulence
Based on the results of the previous sections, we can observe that the two phenomena
of inertia and turbulence are in conflict. One seeks to increase pressure and decrease
crack length, while the other seeks to decrease pressure and increase crack length. Only by
combining the two phenomena into a single model can we observe the true fluid behaviour.
Thus, we now consider the full GG22 flow model and solve the conservation of momentum
equation as

∂q
∂t

+ 1
r

∂

∂r

(
r
α

w
q2
)

= − w
ρf

∂p
∂r

− fD(q)

w2 q2. (4.6)

Figure 13 illustrates the pressure at the wellbore for increasing injection rates. The
overall form of the pressure curves is similar to the turbulent-only solution in figure 9, but
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Figure 13. Wellbore pressure from injecting water at various flow rates considering a model with turbulent and
inertial terms. In general, the turbulent solution is dominant, however, the influence of the negative pressures
from the inertial terms significantly reduce the pressures.
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Figure 14. Pressure and aperture along the fracture with turbulent and inertial terms after 60 s of injecting
water at a rate of Re = 2 × 105. (a) Turbulence is dominant over the inertial terms in the pressure solution but
inertia reduces the pressures within the first metre and (b) though the differences in pressure are significant
when comparing turbulent solutions with and without inertia, the translation to aperture is more modest. The
inertial turbulent solution shows only marginally smaller apertures compared with the full turbulent model.

the peak pressures at t = 6 s are reduced. We therefore observe that the turbulent friction
factor is dominant at lower Re and the effects of the inertial terms do not manifest until
higher Re, though it has significant effects on the pressure (a reduction of 5 MPa at t = 6 s
for Re = 2 × 105).

Figure 14(a) illustrates the pressure along the fracture after 60 s at the highest
tested injection rate of Re = 2 × 105. The full model pressure generally aligns with
the turbulent-only model, though pressures are reduced up to 20 % in the vicinity of
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the wellbore. Figure 14(b) illustrates the aperture along the fracture. The increase in
aperture from turbulence reduces the influence of inertia, as the increased aperture at the
wellbore results in a lower fluid velocity to maintain the prescribed wellbore flux (q = v̄w).
The decrease of pressure at the wellbore does not translate directly to the same decrease in
aperture, and though it is reduced compared with the turbulent-only model, the reduction
is small. We attribute this difference to the fact that aperture and pressure are no longer
directly correlated through a constitutive equation and instead are now indirectly correlated
through a partial differential equation. The crack length is similar to the turbulent-only
model. In all cases, the changes in crack length are very small, of the order of 10−3

compared with the overall fracture length. Compared with existing turbulent and inertial
flow studies, Zia & Lecampion (2017) conclude by dimensional analysis that the inertial
terms are always negligible. In the context of the fracture tip and the asymptotic fracture
propagation solution, our results do agree with this conclusion. However, our results
indicate that this statement is not true when concerned with the near-wellbore behaviour.
While turbulence is dominant using water, the reduction in pressure at high flow rates is
significant. Thus, for the prediction of near-wellbore behaviours with water as the injection
fluid (such as important operating parameters like injection pressure), turbulent behaviour
is dominant but inertial terms are not negligible.

Figure 15 illustrates how the various fluid models affect the distribution of stress in
the rock mass. The Poiseuille flow model generates a single stress concentration at the
fracture tip. Introducing turbulence generates increased fluid pressure at the wellbore,
which in turn increases the stresses in the rock mass at the wellbore. Including inertia
but neglecting turbulence causes the pressure to decrease at the wellbore and restricts
the wellbore aperture. Echoing the fluid pressure behaviours, the stress concentration
induced by the inertial terms is more localized than the stress concentration induced by
turbulence. The full GG22 fluid flow model shows stress concentrations at the wellbore,
but the magnitude and size of the concentrations are reduced due to the influence of inertia
compared with the turbulent-only model.

Figure 16(a) illustrates the pressure at the wellbore after 60 s of injection for various
Re. The full flow model deviates from the Poiseuille flow model as soon as turbulence is
induced at Re ≈ 2 × 103. The full model and the turbulent-only model remain similar up
to Re ≈ 2 × 104, after which the effects of inertia manifest and the full model deviates
from the turbulent-only model. Figure 16(b) illustrates the aperture at the wellbore after
60 s of injection time. The full model deviates from the Poiseuille flow model as soon as
turbulence is introduced, but the effects of inertia are more modest and differences with
the turbulent-only model are small.

Figure 17 illustrates the fraction of inertial and turbulent forces to the total pressure
drop observed along the fracture. As the inertial and turbulent forces are localized to the
wellbore (approximately 2 m or 13 wellbore diameters), this fraction indicates the ratio of
entrance losses to the total pressure loss along the fracture. This fraction is calculated as

entrance loss fraction = �pFull − �pPF

�pFull
, (4.7)

in which �pFull is the difference between the wellbore pressure from the full GG22
model and the far-field pressure, and �pPF is the difference between the wellbore pressure
from the Poiseuille flow and the far-field pressure. We observe that the majority of the
pressure loss that occurs along the fracture is attributable to entrance losses. The fraction
of entry losses increases rapidly after turbulence is induced at Re = 2000, surpassing 0.5
by Re = 5000. It approaches an asymptote of 0.93 at higher Re, though the exact value of
this asymptote is likely unique to this specific problem set-up. Crack length and injection
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Figure 15. Rock mass stresses and fluid pressures for an injection rate of Re = 2 × 105 with water for various
flow models after 60 s of injection. Displacements are scaled ×2000. (a) Poiseuille flow model: a stress
concentration is observed near the fracture tip. (b) Turbulent-only flow model: the increased fluid pressure
at the wellbore creates a stress concentration at the wellbore. (c) Inertia-only flow model: the decreased fluid
pressure at the wellbore creates a stress concentration at the wellbore. (d) Full GG22 flow model: the interaction
of turbulence and inertia decrease the magnitude of the stress concentration at the wellbore compared with the
turbulent only model.

time do not appear to have a significant impact on the ratio. These results imply that
entrance losses, a phenomenon observed experimentally (Lecampion et al. 2017) and often
attributed to wellbore perforations, may be described wholly or in part by turbulent and
inertial forces which develop near the wellbore due to high Re flow conditions. However,
true near-wellbore behaviour is a complicated phenomenon, confounded by the flow in the
wellbore, the effects of perforations and near-wellbore tortuosity (Bunger & Lecampion
2017). This model does not capture all these near-wellbore effects but suggests that these
effects must be considered in combination with inertia and turbulence to fully capture the
near-wellbore behaviour. These results imply that near-wellbore behaviour, in addition to
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Figure 16. Pressure and aperture at the wellbore after 60 s of injecting water at a various flow rates.
(a) Comparison of wellbore pressures after 60 s. The full physics behaviour departs from the Poiseuille flow
solution by Re = 5000. The inclusion of turbulence increases the injection pressure by a factor of approximately
four. Including turbulence but neglecting inertia overestimates the required pressure by up to 20 % in the tested
range and (b) turbulence increases the pressure at the wellbore which in turn increases the aperture. Despite
the large pressure differences that arise by neglecting inertia, this does not translate to the same difference in
aperture. Smaller apertures are observed, but the difference is more modest.
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Figure 17. Relative contribution of turbulent and inertial forces to the total pressure difference along the
fracture. Water is assumed as the injection fluid. The contribution of turbulent and inertial forces to the pressure
difference rapidly increases once turbulence is induced and eventually converges towards an asymptote of 0.93.
Crack length L seems to have little effect on the contribution in this case, but may have a larger effect in longer
fractures.

turbulent flow in the well, may govern the wellbore pressure and thus the power required
to inject fluid at these high flow rates into the fractures.

With regard to the implications and importance of inertia to the overall fracture
propagation, Zia & Lecampion (2017) conclude by dimensional analysis that the inertial
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terms are always negligible, while Garagash (2006) concludes that inertial terms are
only important in the early-time solution. We have shown that inertia is primarily
a near-wellbore effect in fracture propagation, so in this context we can recast the
conclusions of Garagash (2006) to understand that the conclusion that inertial terms
are only important in the early-time is analogous to assuming that near-wellbore effects
become negligible as the fracture length increases. In the context of the overall fracture
length, our results agree with this conclusion, and the scaling arguments presented
by Garagash (2006) may be used to estimate the importance of inertia to the overall
fracture propagation. However, inertia is a phenomenon that occurs relative to the
forces over a cross-section, independent of the fracture length. Thus, when concerned
with near-wellbore behaviour, the inertial effects are not negligible at high flow rates.
Furthermore, the total pressure drop along the fracture appears to be dominated by
near-wellbore behaviour caused by turbulent and inertial effects. By neglecting this
combination of effects near the wellbore, it may be possible to predict the overall fracture
length, but considerably under- or over-estimate the amount of power (product of flow rate
and pressure) required to generate a fracture of that length.

Based on these observations, the authors make the following recommendations for
the simulation of axisymmetric fractures with Newtonian hydraulic fracturing fluids.
For injection flow of Re < 2000, the Poiseuille flow model appears to be adequate. For
injection flow rates in the range of 2 × 103 ≤ Re ≤ 2 × 104, one should include the effects
of turbulence but may neglect the effects of inertia with minimal error. For injection flow
rates Re > 2 × 104, one should include both the effects of inertia and turbulence. If one is
only interested in predicting crack lengths and apertures, it appears that one could apply
a higher upper bound on the range of applicability of the turbulent-only model at the
cost of over-predicting the pressures. For wellbore diameters of 10, 15 and 20 cm (4, 6,
8 in.), these thresholds correspond to flow rates of 0.65, 0.98, 1.3 L s−1 (0.24, 0.36 and
0.48 b.p.m.) for the onset of turbulence effects (Re ≥ 2 × 103) and 6.5, 9.8, 13 L s−1 (2.4,
3.6 and 4.8 b.p.m.) for the onset of inertial effects (Re ≥ 2 × 104) assuming water as the
injected fluid.

While the results presented herein are discussed in terms of the dimensionless Re, the
system is nonlinear so the magnitudes of flow rate and wellbore diameter will have some
effect on the results presented. However, the differences in the size of the wellbore that
occur in practice are small, and the flow rates pumped through those wellbores scale with
wellbore size, so we expect qualitatively similar behaviour without significant differences
when considering wellbores sizes other than the 15 cm adopted here. Furthermore, these
results and recommendation thresholds assume water without additives as the injected
fluid. The use of additives in the injected fluid, such as slickwater, which reduce drag and
affect the transition from laminar to turbulent flow will influence these thresholds. The
effects of additives are discussed further in § 7.

5. The effects of surface roughness

The friction factor as determined by the Colebrook–White equation is a function of two
terms: the relative roughness of the fracture surfaces compared with the aperture, and the
Reynolds number. At the Reynolds numbers considered in this analysis, the friction factor
is controlled primarily by the surface roughness term. As the flux is not constant along the
radius, neither is the friction factor, and the asymptotic friction factor is only reached near
the wellbore. As the Colebrook–White equation is primarily applicable in the context of
pipe flow, it is important to question the influence of the assumed empirical relationship on
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Figure 18. The influence of the surface roughness term on wellbore pressure after 60 s of injection. Water is
assumed as the injection fluid.

the results we are interpreting. The surface roughness we have specified is at the high end
of the range of applicability of the Colebrook–White equation, and as rock mass fractures
are highly heterogeneous and uneven, the friction factor is likely to be even greater in
reality. Thus, the onset of turbulence effects is likely under-estimated by the current study.
To further emphasize the need to consider these effects, let us examine the results using a
lower surface roughness.

We consider a very smooth fracture surface with a roughness up to ε = 10 μm and
compare it with the earlier results with a surface roughness up to ε = 500 μm, which is still
small compared with a real rock mass fracture. Figure 18 illustrates the wellbore pressures
after 60 s of injection time for high and low surface roughness. Both show significantly
different behaviour from the Poiseuille flow model and similar trends: they depart from
the Poiseuille flow solution as soon as turbulence is induced, and the influence of the
inertial terms manifests at higher Re than the influence of turbulence. The influence of the
inertial terms is greater in the low roughness case as the smaller pressures create smaller
apertures and therefore higher fluid velocities and greater inertial effects. The departure of
the full model from the turbulent-only model therefore occurs at lower Re than the high
roughness case. Nevertheless, it shows that even with smooth fracture faces, the influence
of turbulence and inertia cannot be neglected, and with larger roughnesses the findings
presented herein are only reinforced.

6. The effects of fracture toughness

Thus far, we have considered the reopening of a zero-toughness fracture for the model
problem described in § 3. In this section we will introduce fracture toughness through a
cohesive fracture process zone ahead of the fracture with a cubic traction separation law
(Tvergaard 1990).

Consider the definitions of the dimensionless viscous and toughness coefficients for a
penny-shaped fracture defined by Detournay (2004). The dimensionless viscous storage
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Figure 19. Fracture length and pressure at the wellbore for varying fracture energies (Gc, J m−2). Water
is assumed as the injection fluid. Negligible differences in fracture length are observed despite significant
differences in injection pressure. (a) Fracture length after 60 s. No significant difference in fracture length is
observed between the Poiseuille and GG22 flow models and (b) injection pressure after 60 s. At low Re, the
pressure is correlated by the fracture toughness. At high Re, the pressure is governed by the fluid resistance.
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while the dimensionless toughness coefficient is proportional to
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where KIC is the mode I fracture toughness of the rock mass. The two dimensionless
coefficients are inversely proportional to each other, such that one decreases as the other
increases. The viscous and toughness coefficients M and K are derived from fracture
propagation solutions assuming Poiseuille flow and linear elastic fracture mechanics.
These scaling coefficients are not directly comparable to the models considered here which
use the GG22 flow model and a cohesive fracture model and are instead used in analogy
only.

The toughness coefficient is proportional to time and inversely proportional to the
Reynolds number. This implies that the fracture propagation in axisymmetric fractures
starts as viscous-dominant propagation and transitions to toughness-dominant propagation
as the fracture length increases (Detournay 2004). As the toughness coefficient is inversely
proportional to the Reynolds number, it becomes less relevant at higher injection rates
and viscous effects become stronger. We therefore hypothesize that inertial and turbulent
effects will not manifest in toughness-regime propagation solutions for axisymmetric
fractures.

Figure 19(a) illustrates the fracture length and figure 19(b) illustrates the wellbore
pressure as functions of the injection rate after 60 s of injection with the GG22 and
Poiseuille flow models for fracture energies of Gc = 0, 250, 500 J m−2. The fracture
energies considered are very high for a brittle rock formation, but we consider high
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Figure 20. Injection pressure for various injection rates with slickwater considering the full GG22 model. The
higher viscosity of slickwater implies larger flow rates than water at the same Reynolds number, creating inertia
dominant flow and producing a positive pressure gradient at the wellbore which reduces pressure.

fracture energies to examine the asymptotic case and increase the toughness coefficient
at high injection rates. No significant differences are observed in fracture length between
the fluid models, but higher fracture toughness is correlated with shorter fractures. This
implies that the fracture length in the model problem considered here is governed primarily
by fracture toughness and the near-wellbore physics have minimal effect on the fracture
length. However, significant differences in wellbore pressure are observed between the two
models and the wellbore pressure is governed by the near-wellbore effects of turbulence
and inertia. This follows the conclusions drawn in § 4.4, that while tip mechanics govern
the fracture length, the amount of pumping power required to generate a fracture of that
length may be significantly over- or under-estimated without the inclusion of turbulence
and inertia.

7. The effects of friction reducers (slickwater)

It is common in hydraulic fracturing treatments to use slickwater to reduce the energy
of pumping the fracturing fluid down the wellbore (Lecampion & Zia 2019; Detournay
2020). The polymers introduced in slickwater delay the onset of turbulent flow from Re ≈
2 × 103 to Re ≈ 3 × 104, which has significant effects on the fluid behaviour (Virk 1975)
at the cost of higher viscosity, μ = 5 mPa s (Habibpour & Clark 2017). In this section we
examine how turbulent and inertial effects manifest in the zero-toughness fracture problem
(Gc = 0 J m−2) described in § 3.

Figure 20 illustrates the pressure at the wellbore for increasing injection rates. While the
behaviour is different from the water cases, the various terms in the governing equation
produce the same effects. In the laminar regime, water and slickwater exhibit the same
behaviour. As the slickwater enters the MDR regime (103 < Re < 3 × 104, fD ∝ Re−0.7),
we observe a reduction in pressure at the wellbore. Much like the case of inertia without
turbulence discussed in § 4.3, the slowing fluid supplies energy faster than it is dissipated
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Figure 21. Wellbore pressure after 60 s of injection with water and slickwater. (a) Slickwater wellbore pressure
for with various models as a function of Re. (b) Water and slickwater GG22 wellbore pressure as a function of
Re. (c) Water and slickwater GG22 wellbore pressure as a function of Q.

by friction, so a positive pressure gradient develops at the wellbore. The delayed onset of
turbulence implies that even at higher Re, inertial effects dominate the solution.

Thus, while turbulence was the dominant effect at lower Re in pure water and inertia did
not become important until higher Re, we draw the opposite conclusion in slickwater.
In slickwater, inertia is the dominant effect at lower Re and turbulence only becomes
important at higher Re. Figure 21(a) illustrates the pressure at the wellbore after 60 s
of injection for various Re and models with slickwater. While the MDR regime begins
at Re > 1000, we observe that Poiseuille is a reasonably good approximation until Re ≈
5 × 103. At Re > 5 × 103, after which inertia creates deviations from the Poiseuille flow
solution. figure 21(b) compares the wellbore pressures for the full GG22 model between
water and slickwater. The higher viscosity of slickwater implies that a larger flow rate of
slickwater is required to produce the same Reynolds number, thus at low Re the slickwater
pressures are increased compared with water. The larger flow rates increase the inertial
effects, causing inertia to be the dominant mechanism in the wellbore pressure at large
flow rates. In a similar but inverted case to water, turbulence and inertia are in opposition.
Each mechanism moderates the other at high Reynolds numbers and turbulence reduces
the magnitude of wellbore pressure by 50 % in high Re slickwater flow. Turbulence leads
to deviations from the inertia-only solution at Re > 2 × 104. Figure 21(c) illustrates the
wellbore pressures for various models as a function of flow rate. Slickwater successfully
reduces the power needed to pump fluid down the wellbore at the same flow rate, and
inertial effects are not observed until flow rates of 0.7 m3 min−1 (11 L s−1, 4.5 b.p.m.).

Figure 22(a) illustrates the pressure along the fracture after 60 s of injection at the
highest tested injection rate of Re = 2 × 105 for both water and slickwater. Figure 22(b)
illustrates the aperture along the fracture. The larger viscosity of slickwater requires a
larger flow rate to generate the same Reynolds number, which creates longer fractures with
larger apertures and higher pressures away from the wellbore. The shape of the solution
is similar to the inertia-only model with water. The amplified inertial effects increase the
aperture of the fracture near the tip. As the model is nonlinear, the 5× increase in viscosity
and flow rate correspond to an approximately 5× increase in fracture volume, but only a
2× increase in pressure.

The trends observed with slickwater do not substantially change when a fracture
toughness is reintroduced. Similar trends to those observed with water in § 6 are
observed: at the flow rates large enough to induce inertial and turbulent effects, the
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Figure 22. Comparison of pressure and aperture along the fracture with water and slickwater after 60 s of
injection with an injection rate of Re = 5 × 104. (a) Pressure in the fracture is greater and inertial effects
dominate near the wellbore with slickwater and (b) the larger flow rate results in a larger fracture with an area
of reduced aperture near the wellbore due to inertial effects.

fracture propagation is pushed away from toughness dominant propagation and is instead
dominated by fluid behaviours.

8. Conclusions

We have investigated for the first time the effects of inertia and turbulence on the hydraulic
stimulation of fractured rock masses using the GG22 model, with effects manifesting
for both water and slickwater treatments. The phenomena of inertia and turbulence are
significant near the wellbore where the flux is greatest and are responsible for the majority
of the total pressure loss along the fracture. This suggests that inertial and turbulent forces
may provide a more accurate description for entrance losses, an experimentally observed
phenomenon which was previously accounted for in an empirical manner. As the flow
disperses into the fracture, laminar flow is recovered and the Poiseuille flow is well-suited
to modelling the flow behaviour. At the fracture tip, no inertial or turbulent effects are
observed due to the low flow rates. We observe that the fracture length is primarily
governed by fracture toughness and tip mechanics, while injection pressure is primarily
governed by the near-wellbore effects of turbulence and inertia. Neglecting to account for
these near-wellbore physics may lead to significant over- or under-estimation of the amount
of pumping power required to generate a fracture of a given length.

Using water as the injected fluid, the development of turbulence leads to significant
increases in the injection pressure and the formation of an area of increased aperture near
the wellbore relative to the Poiseuille flow solution. These significant changes in wellbore
aperture and pressure translate minimal changes in overall crack length. While turbulence
increases wellbore pressure, inertia at high flow rates reduces wellbore pressure. A model
which only includes turbulence leads to an overestimation of the injection pressure at high
Reynolds numbers. Turbulence is generally the dominant phenomenon, causing deviations
from the Poiseuille flow solution as soon as it is induced, at an injection Reynolds number
of Re ≈ 2 × 103, approximately corresponding to a flow rate of 0.4 b.p.m. Inertial effects
do not manifest until higher Reynolds numbers, deviating from a turbulent-only model
at Reynolds numbers of Re ≈ 2 × 104, approximately corresponding to a flow rate of
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4 b.p.m. Inertial and turbulent forces manifest primarily within 2 m of the wellbore
(13 wellbore diameters). Increasing surface roughness exacerbates turbulent effects and
delays the onset of inertial effects.

Using slickwater as the injected fluid, we observe the opposite trend. Slickwater delays
the onset of turbulence but not inertia, so inertia induces reduces the wellbore pressure
relative to the Poiseuille flow solution. Inertial effects in slickwater begin to manifest at a
Reynolds number of Re ≈ 5 × 103 (approximate flow rate of 5 b.p.m.). Turbulent effects
in slickwater begin to manifest at Re ≈ 2 × 104 (approximate flow rate of 18 b.p.m.).

Based on the observations in this work, any simulation of flow in a radial fracture from a
wellbore using water should at the very least include turbulent behaviour. The threshold for
the departure from the standard Poiseuille flow solution is low, and the change in fracture
geometry and flow behaviour is large. The threshold to induce inertial effects in water
is also relatively low, and simulations dealing with higher injection Reynolds numbers
should consider the implementation of inertia to capture the complete fluid behaviour.
While Poiseuille flow is better at approximating slickwater behaviour, any simulation of
flow in a radial fracture from a wellbore using slickwater should consider including inertial
behaviour. The threshold for considering turbulent behaviours in slickwater is higher, so
they may be neglected with minimal impact at modest Reynolds numbers.

Further work remains in determining the impacts of inertia and turbulence in fracture
flow, and validation with experimental observations is still required. A non-dimensional
scaling analysis of the GG22 equations applied to the problem of hydraulic stimulation is
required to investigate the influence of turbulence and inertia. Such a scaling analysis may
benefit from introducing alternative length scales to differentiate near-wellbore effects and
early-time effects. The GG22 solutions for hydraulic stimulation should also be compared
with existing semianalytical Poiseuille flow solutions to further establish the ranges in
which inertia and turbulence are important. Exploration into simulations with pulsing
injection rates and multidimensional flow behaviour may also lead to further insights on
the relevance of these overlooked phenomena.
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