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A VANISHING THEOREM FOR HYPERPLANE COHOMOLOGY

G.I. LEHEER

Let A be a hyperplane arrangement in an arbitrary finite dimensional vector space
V and let G ^ GL(V) be an automorphism group of A. If A is a complex
representation of G such that (A,l)Gjr = 0 for all pointwise isotropy groups GB

(H e A), then we prove the "local-global" result that A does not appear in the
representation of G on the Orlik-Solomon algebra of A. The result is applied to
complex reflection groups and to finite orthogonal groups. It may also be viewed
as a combinatorial result concerning the homology of the lattice of intersections of
A. A more general version of the main result is also discussed.

1. INTRODUCTION

Let V be a finite dimensional vector space over a field k and suppose A is a finite
collection ("arrangement") of hyperplanes in V. Orlik and Solomon have denned a
graded exterior algebra A(A) (in [7], see [8, Chapter 3] for an exposition), which in
this work we take to be over C, the complex numbers. In the case k = C, they showed
that

(1.1) A[A) = H*(MA,C) as graded C-algebras where MA = V\ \J H is the

associated hyperplane complement.
If G is a finite subgroup of GL(F) which stabilises the set A then G has an

induced action on A(A) and it is this graded representation of G with which we are
concerned. When A is the set of complexified reflecting hyperplanes of a Weyl group
W, it was shown in [3] that

(1.2) (H'(M\ytC),e)w — 0 for all j where M\y is the corresponding complex
hyperplane complement, e is the alternating character of W and (, ) w denotes the
standard multiplicity form (or inner product of characters).

The proof of (1.2) was by a "reduction mod p" argument, which related the
Poincaxe series of the multiplicity to a count of the rational regular semisimple orbits
in a reductive Lie algebra via £-adic cohomology (see [3] and [4]).

The purpose of the present work is to show that (see (2.3) below) for A ^ 0, we
have:
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THEOREM 1 . 3 . Let X be a complex representation of G which contains no non-

zero vector fixed by any group GH — {<7 G G \ gv = v for v £ H} [H £ A). Then

(A'(A),X)a=0 for ail j .

Clearly (1.3) may be thought of as a "local-global" result. The hypotheses relate

to the restrictions of the representation A to the "local" isotropy groups GH (S £ A)

and the conclusion concerns the "global" representation A*(A).

An easy consequence of our result is

(1.4) Let G be a finite unitary reflection group acting on the C-vector space V.

Let Ma be the complement of the union of its reflecting hyperplanes. Then

(Jff '(MG,C),det± 1)G = 0 for all j ,

where det is the determinant character of G.

Of course (1.4) has (1.2) as a special case. Clearly our main result (2.3) has a
combinatorial interpretation in terms of the lattice L(A) (see Section 3 below and
[8, Chapter 6]). In its combinatorial context, the result belongs to the circle of ideas
discussed in [10] and [2]. Moreover in view of the connection between (1.2) and the
theory of reductive groups (see [3]) and Lie algebras over finite fields one might expect
other applications there (see [1]).

After giving the proofs of our main statements in Section 3, we give, in Section 4,
a slightly more general version of the main result. In Section 5 we give an application
in the context of the finite orthogonal groups to the arrangement of "non-isotropic"
hyperplanes in an orthogonal space over a finite field.

2. NOTATION AND STATEMENT OF RESULTS

Notation will be as in [8, Chapters 3, 6]. Given V, A; and A as in Section 1, the

algebra A(A) is defined as follows.

(2.1) A(A) is generated as (unital, associative, graded) C-algebra by {an \ H £

A} (degaf/ = 1 for H £ A) subject to the relations

(2.1.1) aHaK = -0.K0.H (H,K £ A).

(2.1.2) UHlt... ,H. £ A and codimv (#i 0 . . . n H.) < s then

( - I ) ' O H , ...aH....aH, = 0 .

Following Orlik and Solomon, one associates with A the lattice L(A) of all inter-
sections of elements of A, ordered by the reverse of inclusion. Then L(A) has a bottom
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element V and top element T(L) — f| H. It is known that L(A) is a geometric lat-

tice and hence that its order complex (the simplicial complex with simplexes the chains

in L(A)\{V,T(L)}) has the homotopy type of a bouquet of spheres.

The lattice L(A) has rank function r(X) = codimy (X) {X £ L(A)). We write

r(T(L)) = r — r(A) for the rank of the arrangement.

DEFINITION 2.2: For X £ L(A) write Gx - {g e G \ gv = v for all v £ X} and
Nx = {geG\gX=X}.

Clearly Gx is a normal subgroup of Nx • If D Fix 5 = -^ > then Nx =

NG(GX).

Since the relations (2.1) are homogeneous (in the exterior algebra), A(A) has a

natural grading. We write A'(A) for the j t h graded component.

THEOREM 2 . 3 . Let A be an arrangement in the k-vector space V (k any field)

and let G ^ GL(F) be a finite group such that GA C ^ . Let A be a complex

representation of G satisfying

(2.3.1) For H £ A, we have (ltesgH (A), l ) = 0.

(2.3.2) ( A , 1 ) G = O .

Tien for j = 0 , 1 , . . . , r we have

where A(A) — © AJ(A) is the (complex) Orlik-Solomon algebra of A.
i=o

Note that if A is not empty, the condition (2.3.2) is a consequence of (2.3.1).

COROLLARY 2 . 4 . With notation as in (2.3), assume k - C and write MA =
V\ U H. Then (H>{MA,C),>)=0 for j= 0,1,... ,r.

COROLLARY 2 . 5 . WitA notation as in (2.3), suppose A^Q) and that there is
a homomorphism d : G —> fcx with non-trivial restriction to GH (each H 6 A). Then
{d(g) | g e G} is a (finite) cyclic subgroup d(G) of fcx . Let t : d(G) -* Cx be
any monomorphism and define S(g) = i.(d(g)) (g £ G). Then (Ai(A),ti)G — 0 for
j = 0 , . . . ,r.

COROLLARY 2 . 6 . Let G (^ 1) be a finite unitary reflection group of rank r

acting on the complex vector space V. If M\y is the complement of the reflecting

hyperplanes of G in V, then (H'(MW,C),det±1)G = 0 for j = 0 , 1 , . . . , r .

3. PROOFS

Let X e L(A) and write Ax={H£A\H^Xw. L(A)}. Then Ax is an
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arrangement in V which is stabilised by Nx (see (2.2). Hence we may speak of the
Nx-module A*(Ax) (j = 0,1,. • . ) .

LEMMA 3 . 1 . For each j G {0,1,2... }, there is an isomorphism oi G-modules:

A* (A)—* © Ind% (A'(Ax)) where (L/G)- denotes a set of representatives of

the G-orbits on L(A)j = {Y 6 L{A) | r(Y) = j}.

PROOF: This is essentially proved in [6, (2.4) and following remarks], using results
from [7]. Although the context in [6] is more specific, the arguments there yield the
statement (3.1). D

(3.2) PROOF OF THEOREM (2.3): Observe that the hypothesis (2.3.1) is equiva-
lent to

(2.3.1)' F o r 7 ^ l 6 L(A), we have (A,l)Gx = 0.
This is because for X < Y in L(A) we have Gx < Gy • Hence (A, l)G[i - 0 for

H € A implies that (A, l ) G x = 0 for X 6 L(A), X ^ V, because the elements of A
are the atoms of L(A).

Next, we have from (3.1), using Frobenius reciprocity,

(3.2.1) (A'(A),X)G=
xe(L/G)i

Observe that if j > 0, the hypotheses (2.3.1) and (2.3.2) apply with Ax,
^ x (A) in place of A, G, A respectively. This is because L(Ax) = {Y 6 L(A) |

Y ^ X}; hence if (2.3.1)' holds for Y € L(A), it holds also for Y G L(AX). To check
(2.3.2), observe that since R e s ^ (A) does not contain the trivial representation of Gx ,
we have a fortiori that Res^. (A) does not contain the trivial representation of Nx •
Hence f R e s ^ (A),1J = 0, proving (2.3.2). If j = 0, the above assertion is clear

from (2.3.2).

If X G Lj (that is, r(X) = j) then r(Ax) = j . It follows that if (2.3) holds for

j = r = r(A), then by applying it to all triples (Ax,Nx,Res%x (An with j — r(Ax)

and using (3.2.1), one obtains (2.3) for all j . We have therefore shown

(3.2.2) It suffices to prove (2.3) for j = r(A) = r.
Now the character of G on Ar(A) has been calculated by Orlik and Solomon in

terms of the lattice L = L(A) (see [8, (6.1.14)]):
(3.2.3) For g E G, trace (g,Ar(A)) = (-1)V9(T(£)) where fj.g is the M6bius

function of £» = {Y £ L | gY = Y].
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It follows that (abusing notation by identifying A with its character)

(3.2.4) (A*{A), X) = (- l) r IGf1 £ pt{T{L))\(g)
g€G

since (2.3.2) implies that £ X(g) = 0. But by a result of Rota [9], 1 + ng(T(L)) =
geG

x(L9), where x denotes Euler characteristic. Thus

where nj(Z9) is the number of chains a = Xo < . . . < Xj with X,- G £9\{T(£), V}.
Hence

(3.2.5) £ S

i=0 ff6O,-(t

where Cj(L) is the set of chains Xo < ... < Xj = a with Xi G L\{T(L), V} and Qa

is the stabiliser of cr in G, that is, {g £ G | gX< = Xj for t = 0 ,1 , . . . ,j} (the last
equality is obtained by reversing the order of summation in the previous one). But Ga

contains Gx0, since if g £ Gx0, 9 fixes Xo pointwise and hence fixes any subspace
of Xo- (Recall Xo < Xi means that Xi is a subspace of Xo.) It follows that since
Xo 7̂  Vj-the restriction of A to Ga does not contain \aa, whence the inner sum

E
Thus from (3.2.4), we obtain (Ar(A), X) - 0 and by (3.2.2) the proof is complete. D

(3.3) DEDUCTION OF COROLLARIES. Corollary (2.4) follows from the statement [8,
(5.4.14)].

(3.3.1) Suppose A is a complex arrangement in (2.3). There is a G-equivariant
isomorphism of graded C-algebras: A(A) —» H*{M^,C).

The G-equivariance is not pointed out in [8, 6.1.14], but is obvious from the
isomorphism, which is explicit.

Suppose now that we have the situation of (2.5). The character 6 clearly satisfies
the conditions of (2.3) and (2.5) follows immediately.

In the situation of (2.6), for each X £ L, X ^ V, Gx contains a non-trivial
reflection. Hence Res^ (det*1) is non-trivial and the result follows from (2.4).
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4. A GENERALISATION

Essentially the same proof as (3.2) yields the following slightly more general result.

THEOREM 4 . 1 . Let A be an arrangement in the k-vector space V (k any Reid)
and let G ^ GL(V) be a Unite group such that GA C A. Let X be a complex
representation of G satisfying

(4.1.1) For any chain a — Xo < Xi < .. . < Xj in L(A) (including the empty
chain), we have (Res'g^X), \)N = 0, wiere Na is the isotropy group of a in G.

Then for j = 0 , 1 , . . . , r we have

i
where A{A) = 0 A3(A) is the (complex) OrHk-Solomon algebra of A.

%=o

REMARK 4.2. An immediate consequence of (4.1) is that if A is the arrangement of all
hyperplanes in an n-dimensional vector space over the finite field F, and G=GL(n,F9 ),
then only pricipal series representations of G may appear in A(A). This result is of
course not new.

5. A N APPLICATION - FINITE ORTHOGONAL GROUPS

Let V be an n-dimensional vector space over the finite field Wq (q odd) and let
G = O±(n,q) be the isometry group of a non-degenerate symmetric bilinear form
j3( , ) on V. It is well known (see [8, 6.32] or [11]) that G is generated by reflections
(isometries fixing a hyperplane pointwise) in a set of hyperplanes of V. Any such
reflection r has the form

for some VQ 6 V such that /3{VQ, VO) ̂  0, that is, for some non-isotropic VQ .
It follows easily that the set A of hyperplanes corresponding to reflections in G is

(5.2) A = {u"L \u is a non-isotropic vector in V} .

We refer to the hyperplanes of (5.2) as non-isotropic. Note that in [8, 6.32] Orlik
and Terao erroneously state that A is the set of all hyperplanes of V.

Our result (2.5) may now be applied as follows.

THEOREM 5 . 3 . Let /?( , ) be a symmetric, non-degenerate bilinear form on the
finite dimensional vector space V over Fg (q odd). Assume dim V ^ 2. Let G be the
isometry group of(V,/3) and let 6 be the "sign" character ofG (6{g) = detp = ±1 € C
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for g £ G). If A is the arrangement of non-isotropic hyperplanes of V, then G acts
on (V,A) and we have

) a = 0 for i = 0 , l , . . ,

Using the fact that An(A) = Hn-2(L(A)) where L{A) is the lattice of the ar-
rangement A and n = dim V, we deduce immediately

COROLLARY 5 . 4 . Let L be the lattice of intersections of the non-isotropic hy-

perplanes of (F,/?) (notation as in (5.3)). Then {Hn-2{L),S)G = 0, wiere JJn_2

denotes homology with complex coefficients of the order complex of L and 6 and G

are as in (5.3).

EXAMPLE 5.5. Take n = 2 in (5.4) and let / ' ( L J ' T 1 ) ) = XIVI +

It is then easily verified that

The representation HQ(L) is then the permutation representation of G on the

non-isotropic lines of Ê  and the formula (5.4) reads as follows.

(5.5.1) Let n0 = #{{a,b) E F^ | o2 + b2 = 1}. Then n0 = 9 + 1 (respectively,

q — 1) if —1 is a non—square (respectively, square) in Vq .
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