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A SERIES OF ELEMENTS OF ORDER 4 
IN THE SYMPLECTIC COBORDISM RING 

VLADIMIR V. VERSHININ AND ALEKSANDR L. ANISIMOV 

ABSTRACT. A series of elements of order 4 in the symplectic cobordism ring is 
constructed. 

The classical cobordism graded rings consist of finitely generated abelian groups in 
each dimension. The complex cobordism ring have no elements of finite order and in 
the rings of the unoriented, oriented, special unitary and Spin cobordism all the ele
ments of finite order have order 2 [9]. The symplectic cobordism ring MSp* is such that 
MSp* ®Z[j] is the polynomial algebra over Z[\] with one 4&-dimensional generator for 
any natural number k [7,9]. The ideal of the elements of finite order Tors M Sp* contains 
the series of elements discovered by Nigel Ray: 0\ E MSpx, O; £ MSp8/_3, / = 1,2,... 
[8]. In small dimensions the ideal TorsMSp* contains only elements of order 2 [10]. One 
of the principal tools used to study M Sp* is the classical Adams spectral sequence. This 
thoroughly investigated by S. Kochman [4, 5]. 

The main result of this paper is the construction of a series of elements T/, / = 
1,2,... ,s, of order 4 in the symplectic cobordism ring, where dimT/ = 8/ + 95. The 
key element of the series is T\ in dimension 103. So, we are proving the following 

MAIN THEOREM, (i) There exists an indecomposable element Qj G MSp49 of 
order 2 in the symplectic cordism ring, such that the product 0i<D6+,£2i ^ 0. 

(ii) Let Ti G (OÔ+Z, 2, Cï\ ) , for i = 1,2, Then the elements T/ have order 4 and 
2r / = 01O6+/Q1 ^ 0 . 

The existence of the element T2 was announced by Stanley Kochman in [4]. 
The main tool of the work is the Adams-Novikov spectral sequence (ANSS) and the 

algebraic spectral sequences connected with it [1, 7,11]. The initial term of the ANSS is 
isomorphic to 

Ext^(BP*,BP*(J0), 

where BP*( ) is the Brown-Peterson homology theory, A* = BP*(BP) is dual to the 
Quillen algebra A* = BP*(BP) [1]. To study and compute this initial term algebraic 
spectral sequences can be used [7,11]. Such spectral sequence arise from a multiplicative 
invariant (under the action of the Quillen algebra) filtration in BP* = Zp[v\,..., v„. . . ] . 
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This filtration generates a filtration in Adams resolution of BP*(X) which in its turn gives 
rise to a spectral sequence converging to 

Exu(BP*,BP*(JO). 

Its initial term is isomorphic to 

Ext* / ( f ib)(Z/p,BP, ®H*(X;Z/pj)9 

where ft is the Steenrod algebra and BP* is an object associated to BP* by the given 
filtration. In the classical case, considered by S. P. Novikov [7], filtration is given by the 
degrees of the maximal ideal / = (vo, v i , . . . , v,-,...), vo = p. 

Considering MSp, we are interested in the case/7 = 2. For our purposes the most 
convenient is the modified algebraic spectral sequence (MASS) [11]. The filtration of 
MASS on BP* is defined by the following function/(x): 

H?; „ v , *., for i = 0, 
/ ( V ' ) = < - f o r / X ) . 

The difference between the filtration defined by this function and the classical case is 
that vo has filtration degree equal to 2 in our case and equal to 1 in the classical one. We 
denote the object associated to BP* by this filtration by BP* — Z/2[ho, h\,..., hi9...], 
deg/zo = (2,0), dçghi = (l,2(2* — 1)), i > 1. The initial term of MASS is isomorphic 
to the polynomial algebra: 

(Z/2)[c2,...,ck,..., wi, . . . , uj,..., h0,hi,..., hh...], 

where A: = 2 , 4 , 5 , . . . ; * ^ 2" - l;y = 1,2,...; i = 0 , 1 , . . . ; degc* = (0,0,4*), 
degiiy = (0,1,2(2> - 1)), deg/*0 = (2,0,0), deg/*, = (l,0,2(2' - 1)), i > 1. The 
generators Uj (j > 1) may be chosen as the projections of the Nigel Ray elements O^-2, 
u\ is the projection of 6\ = Oo and the elements ht and Ck may be chosen so that the 
following formulae for the first differential are fulfilled: 

d\{hi) = h0uh 

d\(ck) = Y^(hk.+\ukj+i + hkj+\uki+\)c2kx • • • c2ki • • • c2kj • • • c2ks, 

where * +1 = 2kl + • • • + 2ks is the binary representation of the number * +1. Moreover if 
* is odd then the projection of the Ray element O ^ in the i^'^-term of the MASS has 
the form 

$ £ 1 = U\Ck + Y, Ukj+\C2k{ • • • Cfi • • • C2ks + YJ ^rnCJm , CJm <E E%0'*. 
2 7=1 0<m<^-

The coefficients cJm may be computed using S. Kochman's formula from [6] and simul
taneously the action of the Landweber-Novikov operations Su on the elements ck can be 
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obtained. This is done up to O i 4 and C26- Let us denote by <j>kx+\y...&+\ the main part of 
the projection of the element O M : 

s 

^ + 1 , . . . A + 1 = U\Ck + Z ) ukf+lc2ki ' ' * ^2kJ ' ' ' C2ks ' 
7=1 

Then the elements $Wl ,...,„, can be chosen as the generators of i^'1'* of the MASS as well 
as projections of On. The differentials dr of the MASS don't change the third grading t, 
they increase the second grading s by 1 and the first grading q they increase by r [11]. 

Let £, 77 and £ be elements of i^'1'* of the MASS. Suppose that they are cycles of d\. 
We keep the same notations for their images in E%1'*. Direct computations show that all 
Massey products of the type (£, ho, rj) are defined and if the last grading t is less than 106 
then almost all of them contain zero. In this case the matrix Massey products 

<&Ao,»?,Ao>, (&Ao, fo,0, ( ) j ) ) 

are defined. Let c^v be the element in 2^'°'* which is defined by the formula d\(c^v) G 
(£,,ho,ri) uniquely up to cycles of the differential d\. We denote by h% the element in 
£}'°* such that dx{h^) = h0^. Then we have 

h0c^ + h^ G (£, Ao, rç> *o), £%c + Ccta + ^ , < e (& A0, 07,0, ( ^ ]} • 

Let us denote the first Massey product by J ^ and the second by !f^,v We c n o o s e 4>tj as 
the canonical representative of !Fui,uhUj and cy-i as the canonical representative of cUuUj. 
If an element £ G ^î'1'* has the decomposition £ = £ , W/Q in .Ë '̂1'* for some c,- G £^0'* 
then the element £,- A/C/ will be taken as the representative of h^. We'll take h^ as the 
canonical representative of J3^ . Under these conditions the elements 7 ^ and S\JV are 
defined uniquely in E%l,t of the MASS for t < 108. For simplicity we denote J-UiMjjuk by 
Uijjc, %uUjMj,khy ^Q,k and 7UX^JMJÀ by V>i,M- The generators of E%u for f < 108 are 
given in the Table 1. The generators of É^yt for r < 108 are given in the Table 2. 

LEMMA 1. Let £, 77 #«</ £ fo? distinct elements ofE1^ of the MASS, t < 108, a«rf 
fef /, j , k be distinct integers from the set {2,3,4,5}. Then the following list exhausts all 
the relations for the generators ofL%l,\ t < 108: 

(1) Ui<j>jJc + Uj4>ijt + Uk4>iJ = U\UJijyk 

(2) ujhj,k + hAj,k = «i Vfyv* + "y"*4'-i 

(4) uJ$i,j,k + « / ^ = ^iV^M 

(5) ffj = n j ^ , ^ , , ! +«?4-i + w7?4-i 

(7) Uifyjf + ^ , v ^ + <M>u,* = ^iV^iM 

ft^ ^ A : , = uiC2/-i+2*-i-l + W / C 2 ' - 1 + 2 * - 1 - l + W A : C 2 ' - 1 + 2 / - 1 - l 

^ ' ^ij,k = U\C2i-l+2J-l+2k-l-\ + uiC2J-xC2k~l ~^ ujC2i~lC2k~l * UkC2i~lC2/-1 
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(10) tflnfi+CFw + tfi&n + Wu« = °-

PROOF. It is done by using the decomposition of given elements through the gener
ators of Ex of the MASS. 

LEMMA 2. i) Let £,rç,C0 G E%U °fthe MASS, t < 108, and such that.% is 
defined, then ty^ and ^oç are a^so defined and the following equalities hold: 0J3^ = 

ii) Iffyj) and J3^ are defined, then ^,^+c ù a^so defined and the following equality 
holds: \ v + J%££ = \n+ç-

PROOF, (i) If J ^ is defined by the expression 

(C,A0,C,Ao> = h0cu + h^, 

then Jfy^ may be given by the formula: 

(9^hoX,ho) = 0(hocu + hthcy 

The proof of (ii) may be given the same way. 

LEMMA 3. Let £,£;C' = 0 be one of the relations of Lemma 1 and let £,-,£ E 
iQ'1'* Z>e swc/i ^a / f/ie sum of their t-gradings is less then 108 and %ç.£ are defined, then 

PROOF. Let us consider, for example, the first relation: 

We have the following decomposition: 

so: 

A^ = AicMy,Mik +AjfcC^-i +hjC2k-\, 

and 

We have: 

so 

and 
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Now we have the following decompositions: 

\aj,k = AO(C2/-I+2/-I+2*-I-I +C2i-iCUj,uk)
 + hi(hicUj,Uk+hkc2j-i +hjC2k-i), 

\,hk = ^0(̂ 2'-1+2/-1+2*-1-l + c2J-^cuhuk)
 + hj(h\CUhuk + V ï - ' + hiC2k-i), 

\ÂJ = ho(c2i-i+2>-i+2*-i-\ +C2k-iCUiMj) + hkQl\CUiMj + hiC2j-\ +hjC2i-i), 

-ftuuuJijjc — ^o(^2'-1+2/-1+2*-1-l +c2/-lCw/,w* + c2/-,cw/,w* + c2k~iCuhUj) 

+ h{hiCUjMk + fyc^, + hkcUtMj). 

Adding these equalities, we get the necessary relation. The rest of them may be proved 
by analogy. 

LEMMA 4. i) The Massey product ($2,3,4, ô> 2̂,3,4 ) is defined in El
2
1'*, has indeter

minacy equal to zero, and it defines an element g G ($2,3,4» ho, 1̂ 2,3,4) which is not equal 
to zero in El

2'
hm. 

ii) The following equalities hold: ($2,3,4,^0,^2,3,4) = ($3,4, ^ o , ^ 3 4) = 

($2,4,^0,^2,3,4) = ("4,^0,^2,3,4) = ($2,3,^0,^2,3,4) = ("3,^0, ^2,3,4) = (M2,/*0, ^2,3,4) 
(the indeterminacy of each term is equal to zero). 

Hi) hog = 0 in E2-term of the MASS. 

PROOF, (i) The element Q belongs to the Massey product ($2,3,4, ho, 2̂,3,4 ). So it has 
the following decomposition: 

Q = {{U\h2 +U2h\)c\\ + (MI /*3 + U3h\)c9 + (U\h4 +1/4/^1^5^13 

+ (("2^3 + U3h2)c2Cs + (u2h4 + "4^2)^2^4)^11 

+ ((W2^3 + U3h2)c4Cs + (u3h4 + U4h3)c2C4)c9 

+ («2^4 + U4h2)c4CS + (u3h4 + U4h3)c2Cs)c5. 

We have the following formulas for the first differential: 

d\((c2cn + c4c9+c5cs)c\3) 

— Q + ((«2^*3 + U3h2)Cs + ("2^4 + U4h2)c4 + («3^4 + U4h3)c2)c\3 

+ (u3h4 + u4h3)cnc2 + (u2h4 + u4h2)c9c4 + (w2̂ 3 + u3h2)c5c\, 

d\(cn) = (u3h4 + u4h3), di(c9) = (u2h4 + u4h2), dx(c5) = (u2h3 + u3h2). 

Then the proof follows from these formulas, 
(ii) We have: 

d\ ((c5cs + c4c9)ci3) = Q + (u2, h0, ̂ 2,3,4)' 

d\((c5cs+c2cn)ci3) = Q + (U3, ho^234), 

d\((c4c9+c2c\\)c\3) = Q + (u4,ho9\l)2jA). 

The other relations can be proved the same way. 
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(iii) It follows from the formula: 

d\(h\h2c\\C\3 + h2h-}>c2c%c\\ + /22A4C2C4C11 + A1/Z3C9C13 + h2h^C4C^c9 + h^c^cç 

+ h\h4CsC\3 + h2h4C4C5Cs + h3h4C2C5cs + hlc4cscn + h\c2c%c9 + A4C2C4C5) = /*o£-

We call the pairs (</>2,3,4, ^2,3,4), (^3,4,^2,3,4)' (</>2,4, ^2,3,4)' (w4,^2,3,4)' (^2,3,^2,3,4)' 
(W3, ^234)' (^2,^234) forbidden. For each forbidden pair (£,Q the element J3^ is not 
defined. Now we consider the set of all the elements J ^ for each not forbidden pair 
(£, 0 E JE^'1'* such that the sum of the f-gradings of £ and ( is less then 108. They are not 
linearly independent (Lemma 3). We choose a basis from them. Then we add one more 
element which we denote by Ĵ M2 ^ )+(^2 34U23Ay and which has the following decompo
sition: 

^ 2 % ) % 3 , 4 ^ , 4 ) = *o(c5C8ci3 + c4c9cu) + hxhicgcn + hxhAc5cu 

+ h2h3Cs(cn + c8c5 + C4C9) + h\c2c%c9 + &4C2C4C5 

+ h2h4C4(C\3 + C8C5 + C4C9) + hh4C2{c%C$ + C4C9). 

We have obtained a complete system of generators of È^0,t, t < 108. 

LEMMA 5. The following list : 

1) t*k.n = ri\z; 
2) ZA^ = C % = ^ - % ; 

3) ^ = * o 4 - i + 2 ^ - i + * ^ 
4) ^^k,c = ^-%,C + no\?Ul1

; ^ ^ C € £2'U> ' < 1 0 8 (wKfer * e condition that 
all the elements of the formulae are defined) exhausts all the relations between 
the generators ofE^l,t andE^0,t

f if sum of their t-gradings is less than 108. 

PROOF. 1) We have: 

rfi(*^) = ^ + » l % . 

To prove 2) we have analogously: 

3) and 4) are proved by direct computations. 

Now we consider the ANSS for M Sp in small dimensions continuing the computa
tions of [10]. 

PROPOSITION 1. There exists an indecomposable element Qi G El
2
,5° in the ANSS 

whose projection to E^ of the MASS is equal to ̂ 2,3,4- It is permanent cycle of the ANSS 
and defines an element Qi E MSp49 of order 2 in the symplectic cordism ring. 

PROOF. It may be done by direct computations in the ANSS. The fact that Qi is 
indecomposable follows from its form in the term E\ of MASS and the fact that it has 
MASS-filtration degree equal to 1. 
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t 

? 
6 

14 

?.?. 

30 
38 

46 
50 

54 

58 

62 
66 

70 
74 

78 
82 

86 
90 

94 
98 

102 
106 

Generators | 

Ml 1 

U2 1 

u3 1 
h ( - wic5 + u2c4 + W3C2) 1 

w4 1 
02,4 ( ~ U\C9 + U2C$ + W4C2) 

02,4 ( = U\Cn + "3^8 + W4C4) I 

^2,3,4 ( - W2Cii + W3C9 + W4C5) 

02,3,4 ( = U\C\3 + W2̂ 4̂ 8 + W3̂ 2̂ 8 + U4C2C4) 

^2.3.4 ( - «IC5C9 + W2(Cl3 + C4C9 + C5C8) + W3C2C9 + W4̂ 2̂ 5> 

U5 1 

V>2.3.4 ( = "1^5^11 + U2C4CU + W3(C13 + C2C\\ + C5Cg) + W4C4C5) 1 

02,5 ( = U\Cn + U2C{6 + W5C2) 1 

^2,3,4 ( = ulc5C\3 + W2C4(Ci3 + C4C9 + C5CS) + W3C2(Ci3 + C2C\\ + C5CS) 1 

+M4C2C4C5) 

03,5 ( = «IC19 + W3C16 + "5^4) 1 

^2,3,5 ( = U2C\9 + U3C17 + W5C5), 1 

^2,3.4 ( = "1^9^11 + U2C%C\\ + UlCxCg + W4(Cl3 + C2CU + C4C9)) 

02,3,5 ( = «1^21 + W2C4C16 + W3<?2Cl6 + U5C2C4) 1 

^2,3,4 ( = "1^9^13 + W2C8(Ci3 + C4C9 + C5CS) 1 

+M3C2C8C9 + «4C2(C13 + C2C\\ + C4C9)), 

^2.3.5 ( = "1^5^17 + W2(c2l + C4C17 + C5Ci6) + U3C2Cn + U5C2C5) 

04,5 ( = U\C23 + W4CI6 + W5C8) 1 

V>2,3,4 ( = ulcl\C\3 + U2C4CsCn + "3^8(^13 + C2C\\ + C5Cg) 1 

+W4<?4(Cl3 + C2CU + C4C9)), 

^2,3,5 ( = wlc5<?19 + W2C4C19 + tt3(c2l + C2C\9
 + C5C\6) + W5C4C5), 

^2,4,5 ( = W2C23 + w4^17 + U5C9) 

02,4,5 ( = "l<?25 + U2CSC\6
 + U4C2C\6 + U5C2Cs) 

^2,3,5 ( = " 1 ^ 2 1 + U2C4(C21 + C4C17 + C5Ci6) + U3C2(c2\ + C2C\9 + C5C\6) 

+U5C2C4C5)9 

V>2,3,5 ( = "1^9^17 + «2^25 + C%Cn + C9C\6) + W4<?2Cl7 + U5C2C9), 

^3,4,5 ( = W3<?23 + W4C19 + W5C11) 

TABLE 1. E%u OF THE MASS FOR t < 108 (GENERATORS) 

PROPOSITION 2. Ift<\ 08 f/iew we Aave */ze isomorphism: £ £ v = ££>*'' o/Tfte te/ms 
o/rte MASS. 

PROOF. All the elements of ££*'', f < 108, except g G £u»104, are cycles of higher 

https://doi.org/10.4153/CMB-1995-054-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-054-9


380 V. V. VERSHININ AND A. L. ANISIMOV 

t 
Generators 

16 

£4 ( = c\) 

24 

C6 

32 

c% (= 4) 
40 

cio,e4(= 4) 

48 

C\2 

56 
CM 

64 

C\6 (= 4) 

t 
Generators 

72 

C\%,e\%(=4) 

80 

<?20 

88 
C22,e22(=C2

n) 

96 

<?24 

104 

C26, ^26 ( = ^ 3 ) 

TABLE 2. £ÎJ'0'' OF THE MASS FOR t < 108 (GENERATORS) 

differentials by dimension reasons. For Q it follows because it belongs to the Massey 

product (^2,3,4,^0,^2,3,4). 

We denote by ir%(x) the projection of an element x G E%* of the ANSS to E2 of the 
MASS. We choose an elementzo G É^52 of the ANSS such that 7TQ(ZI3) = ^ , , 0 1 . Using 
the action of the Landweber-Novikov operations we prove that d^(z\^) = u\Çl\. 

We choose the generators of E2-term of the ANSS: 

yl0 G £ T > /.G G £ T , yi2 G %4\ yu G £°'56, J,6 G ̂ M , j / 1 8 G ̂ 7 2 , / 1 8 G £f 2 , 

2̂0 G £ f ° , y22 G 4 8 8 , y22 G i f 8 , y26 G 4 1 0 4 , y'26 G 4 ' 0 4 , 

such that 

*o(Vlo) = Cio, ^ O i o ) = C5 + C10 + ^ 6 , *o(yi 2 ) = C12, 7^(yi 4 ) = C14, 7^(Vi6) = Cg, 

TT^Olg) = Ci8, TT^Olg) = C9 + C2CH + ^(^10 + 4) + <4 ^ O ^ o ) = C20, ^ f e ) = <?22, 

^(V22) = Cll + ^14(^2 + 4) + C10(C12 + ̂  + c\) + C 6 ( < ^ + 4 + ^ ) , 

7Io(y26) = C26 + C10C2, 7r^(>26) = C13 + C11C2 + C5C8 + 44-

Using again the Landweber-Novikov operations we prove the following formulae for 
the differential di modulo elements having nonzero MAS S-filtration degree and mono
mials containing u\ : 

t f e O l o ) = M3> ^ ( / l o ) = W2W4 + u\ + W2W3O3, ^3(^12) = W2W3W4 + K3O3, 

^3(yi4> = " 2 ^ 6 + W2«3 (ï )5 + W2^>3«4, ^ ( V l ô ) = H2W4, d 3 ( y i 8 ) = W3W4, 

^3(^18) = W3W4 + W2W5 + W2W3O7 + 1 / 2 ^ 3 ^ 6 + W2W4O5, 

^3(y20) = W2W3W5 + W 2 W 4 0 6 + O3W4 + W2W3W4J4, 

<feG>22) = W3M5 + U3U4<3)6 + W4 + « 3 ^ , 

^ ( y ^ ) = 4U5 + W3W4O6 + W4 + W3W4J4 + u3<3>2
5, d3(y26) = W 3 $ i d3(y26) = u2Q

2
{. 

PROPOSITION 3. In MSp* the element 0i<D7Qi of dimension 103 w «of egwa/ to 
zero. 

PROOF. Let x G Z^'104 be an arbitrary element with the MASS-filtration degree at 
least 2 and such that d$(x) = M1O7Q1. Denote by \ the projection of this element into 
the term E2 of MASS. From the fact that S\i(u\Q}jÇl\) = u\Cl\ and ^ ( z ^ ) = u]Q\ we 
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obtain that Sn(x) = AUuçiv It follows from the description of is2-term of the MASS 
given earlier that there is no such element. If the element killing u\OjQ,\ has the MASS-
filtration degree equal to zero then it may be only 726 or y'26 as the only multiplicatively 
indecomposable. From the formulae d^iyie) = u^l, d^iy^) = i^fi? valid modulo 
elements of the MASS-filtration degree greater than zero and monomials containing u\, 
it follows that this is impossible. 

Let a and (3 be two elements of order 2 in MSp* so that the Massey product (a, 2, (3) 
is defined. 

PROPOSITION 4. If a and (3 both have the Adams filtration equal to 1 and h^cc = 
0,hoP = 0 in E2 of the Adams spectral sequence for M Sip, then we have: 2(a,2,(3) = 
0X a/3. 

PROOF. If follows easy from the description of the term E2 of the classical Adams 
spectral sequence for MSp given in [3] and convergence of the Massey products [2]. 

PROOF OF THE MAIN THEOREM. Let T\ belongs to the Massey product (0 7 ,2 , Qi ). 
It follows from the Propositions 3 and 4 that it has order 4 and 2T\ = OifyCli ^ 0. 
Let r,-, / = 2 , 3 , . . . , belongs to the Massey product (06+/, 2, Q\ ), then it has order 4 and 
21"/ = 0i<I>6+/£2i 7̂  0. It follows from the action of the operation S20-1) on 0i06+;Qi and 
for small values of/ from the computations in low dimensions. 
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