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Abstract

We examine urn models under random replacement schemes, and the related distribu-
tions, by using generating functions. A fundamental isomorphism between urn models
and a certain system of differential equations has previously been established. We study
the joint distribution of the numbers of balls in the urn, and determined recurrence rela-
tions for the probability generating functions. The associated partial differential equation
satisfied by the generating function is derived. We develop analytical methods for the
study of urn models that can lead to perspectives on urn-related problems from analytic
combinatorics. The results presented here provide a broader framework for the study of
exactly solvable urns than the existing framework. Finally, we examine several applica-
tions and their numerical results in order to demonstrate how our theoretical results can
be employed in the study of urn models.
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1. Introduction

Urn models have been a popular research subject for many years due to their applicability
in a wide range of fields, including computer science, economics, physics, business, genetics,
and ecology. We refer interested readers to the entire textbook [15]; [18] provides a wealth of
information regarding urn models, and presents some significant developments. [16, 17] stud-
ied various urn models and their corresponding distributions with statistical inference problems
[13, 20].

A fundamental isomorphism between urn models with two types of balls and certain sys-
tems of ordinary differential equations was established in [9]. This highly innovative method
makes it possible to obtain probability distributions from the solutions of the differential sys-
tems. [8] introduced the partial differential equation approach to urn models with two types
of balls, and derived the probability generating functions as solutions to the partial differential
equation.

Since the pioneering works of [8, 9], the theory and applications of urn models based on ana-
lytical methods have received increased attention from probabilists, statisticians, and applied
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scientists [2, 6]. The urn models are recognized as exactly solvable urns, and the methodol-
ogy is known as analytic combinatorics, which have been studied in various situations [10].
A chapter of [20] is devoted to analytic urns, and provides a comprehensive list of references.
[11] considered several diminishing urns with two colors, and obtained the exact distribu-
tions by solving partial differential equations, while [21] developed an analytical theory for the
study of Pólya urns with random rules. Urn models under random replacement schemes have
been studied by many researchers; [1, 14, 22] obtained asymptotic results (see also references
therein). We are concerned with exact probability distributions via the methods of analytic
combinatorics.

In this study we treat urn models with (m + 1) types of balls under random replacement
schemes, and develop the exact theory of analytic urns with their applications. The results pre-
sented here serve as a bridge between discrete-time urn processes and continuous analysis (in
particular, the theory of differential equations). In Section 2, urn models containing (m + 1)
types of balls under random replacement rules are explained. We also describe the history
of urn evolution, and the enumerative approach to all histories using generating functions. In
Section 3, the fundamental isomorphism between urn models with random addition rules and
differential equations established in [21] for urn models with two types of balls is general-
ized to urns with random addition rules and (m + 1) types of balls. In Section 4, we consider
the joint distribution of the numbers of balls in the urn after n draws, and provide recurrence
relations for the probability generating functions. Furthermore, we derive a partial differential
equation satisfied by the generating function. Finally, in Section 5, we discuss several applica-
tions related to urn models with random addition rules for illustrative purposes. Two partition
numbers used in Section 5 are examined further in the appendix.

2. Urn models

2.1. Motivating example

We provide a simple example that illustrates urn histories and their enumeration. From an
urn initially containing two white balls and one blue ball, a ball is chosen at random, its color
is observed, and the ball is returned to the urn with additional balls: if the color of the chosen
ball is white, one white ball and two blue balls are added to the urn; if the color of the chosen
ball is blue, two white balls and one blue ball are added to the urn. The trial then repeats. It is

common to represent the replacement scheme with the addition matrix A =
(

1 2

2 1

)
. We denote

the starting state by WWB. Note that there are initially two white balls. At the first drawing, one
possible history of the urn evolution corresponds to the drawing of a white ball, in which case
we return it to the urn together with one new white ball and two new blue balls. If a blue ball
is chosen in the second drawing, it is returned to the urn together with two new white balls and
one new blue ball. We have one possible history of urn evolution, described by the following
sequences:

WWB → WWWBBB → WWWWWBBBB,

where the ball chosen in each step is underlined. Another urn evolution history is as follows:

WWB → WWWBBB → WWWWWBBBB,

We regard the two sequences as different histories, as although they share the same urn
composition after two draws, they arrived at it through different stochastic paths. From this
perspective, all histories are equally likely.

We will enumerate urn histories using exponential generating functions.
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2.2. Urn scheme

Consider a Pólya urn model containing balls of (m + 1) different types of labels, which
is characterized by a random replacement scheme. From an urn containing bi balls labeled i
(i = 0, 1, . . . ,m), a ball is drawn, its label is noted, and the ball is returned to the urn along with
additional balls depending on the label of the drawn ball; if a ball labeled i (i = 0, 1, . . . ,m) is
drawn, Aij balls labeled j (j = 0, 1, . . . ,m) are added, where Aij (i, j = 0, 1, . . . ,m) are discrete
random variables. This scheme is represented by the (m + 1) × (m + 1) replacement matrix A
of discrete random entries as

A =

⎛
⎜⎜⎜⎜⎜⎝

A00 A01 · · · A0m

A10 A11 · · · A1m

...
...

. . .
...

Am0 Am1 · · · Amm

⎞
⎟⎟⎟⎟⎟⎠ . (2.1)

The rows are indexed by the label of the drawn ball, and the columns are indexed by the
label of the added ball. We assume that Ai0 + Ai1 + · · · + Aim = θ (≥ 0), Aii ≥ −1, and Aij ≥ 0,
i �= j, for i, j = 0, 1, . . . ,m. The row sums of the replacement matrix are always constant with
the value θ , which implies that a constant number of balls is added. The condition of steady
linear growth of the urn size is said to be ‘balanced’, and the parameter θ is called the balance
of the urn. The urn is said to be ‘tenable’ if we can perpetually sample from the urn according
to the replacement scheme. Throughout this article, we limit ourselves to considering tenable
balanced urns.

For i = 0, 1, . . . ,m, let Bi
n denote the number of balls labeled i after n draws from the urn.

The total number of balls after n draws, denoted by τn =∑m
i=0 Bi

n, is a deterministic quan-
tity due to the balance condition. We then have τn = τ0 + nθ = b0 + b1 + · · · bm + nθ, where(
B0

0, B1
0, . . . , Bm

0

)= (b0, b1, . . . , bm) and τ0 = b0 + b1 + · · · + bm. Assume that the joint dis-
tribution of (Ai0, Ai1, . . . , Aim) has the probability mass function πai0,ai1,...,aim = P(Ai0 =
ai0, Ai1 = ai1, . . . , Aim = aim), i = 0, 1, . . . ,m.

2.3. Enumerating histories

Let hn(i0, i1, . . . , im) be the number of histories that corresponds to an urn with(
B0

n, B1
n, . . . , Bm

n

)= (i0, i1, . . . , im) after n draws, and let

H(x0, . . . , xm, z) =
∞∑

n=0

∑
i0,i1,...,im≥0

hn(i0, . . . , im)xi0
0 · · · xim

m
zn

n!

be the exponential generating function. The generating function of the total number of histories
is expressed as H(1, 1, . . . , 1, z).

Proposition 2.1. For a tenable balanced urn under scheme (2.1), the total number of possi-
ble histories after n draws is given by τn = τ0(τ0 + θ ) · · · (τ0 + (n − 1)θ ), and the generating
functions of the total number of histories can be expressed as

H(1, 1, . . . , 1, z) =
⎧⎨
⎩

eτ0z, θ = 0,

1
(1−θz)τ0/θ

, θ > 0.
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The joint probability mass function and the probability generating function of
(
B0

n, . . . , Bm
n

)
can be captured through the generating function H(x0, . . . , xm, z) as

P
(
B0

n = i0, . . . , Bm
n = im

)= hn(i0, . . . , im)

τ0 · · · τn−1
=
[
xi0

0 · · · xim
m zn
]

H(x0, . . . , xm, z)

[zn]H(1, . . . , 1, z)
, (2.2)

E

[
x

B0
n

0 x
B1

n
1 · · · x

Bm
n

m

]
= [zn]H(x0, . . . , xm, z)

[zn]H(1, . . . , 1, z)
, (2.3)

respectively, where we use the notation
[
xi1

1 xi2
2 · · · xik

k

]
g(x1, x2, . . . , xk) to extract the coefficient

of xi1
1 xi2

2 · · · xik
k in a multivariate generating function g(x1, x2, . . . , xk).

It is interesting to note that we can write the generating function H(x0, . . . , xm, z) through
the joint probability mass function and probability generating function of

(
B0

n, . . . , Bm
n

)
:

H(x0, . . . , xm, z) =
∞∑

n=0

∑
i0,...,im≥0

τ0 · · · τn−1P
(
B0

n = i0, . . . , Bm
n = im

)
xi0

0 · · · xim
m

zn

n!

=
∞∑

n=0

τ0 · · · τn−1E

[
x

B0
n

0 x
B1

n
1 · · · x

Bm
n

m

] zn

n! .

We define the operator D by

D =
m∑

i=0

∑
ai0+ai1+···+aim=θ

πai0,ai1,...,aimxai0
0 · · · xaii+1

i · · · xaim
m

∂

∂xi
,

which is suited for describing the urn histories.

Proposition 2.2. Under the initial urn condition
(
B0

0, B1
0, . . . , Bm

0

)= (b0, b1, . . . , bm) and the
replacement scheme as in (2.1), the generating function of the urn histories is expressed as

H(x0, x1, . . . , xm, z) =
∞∑

n=0

Dn(xb0
0 xb1

1 · · · xbm
m

) zn

n! . (2.4)

Proof. For n ≥ 0, we define the function Hn(x0, x1, . . . , xm) by

Hn(x0, x1, . . . , xm) =
∑

i0,i1,...,im≥0

hn(i0, i1, . . . , im)xi0
0 · · · xim

m , n ≥ 1,

H0(x0, x1, . . . , xm) = xb0
0 xb1

1 · · · xbm
m .

Then, the generating function H(x0, x1, . . . , xm, z) of the urn histories can be rewritten as

H(x0, x1, . . . , xm, z) =
∞∑

n=0

Hn(x0, x1, . . . , xm)
zn

n! .

The property of the operator D yields Hn+1(x0, x1, . . . , xm) =D(Hn(x0, x1, . . . , xm)).
Hence, we have

Hn(x0, x1, . . . , xm) =Dn(H0(x0, x1, . . . , xm)) =Dn
(

xb0
0 xb1

1 · · · xbm
m

)
. �
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3. Urn models and systems of differential equations

We study urn models with random replacement schemes by employing analytical methods.
Based on an isomorphism theorem, we associated the urn model with a system of differential
equations. More specifically, we obtain the following theorem.

Theorem 3.1. Under the initial urn condition
(
B0

0, B1
0, . . . , Bm

0

)= (b0, b1, ..., bm) and the
replacement scheme as in (2.1), the generating function of the urn histories is given by
H(u0, u1, ..., um, z) = xb0

0 (z)xb1
1 (z) · · · xbm

m (z), where u0 = x0(0), u1 = x1(0), . . ., um = xm(0)
such that u0u1 · · · um �= 0, and (x0(t), x1(t), . . . , xm(t)) is the solution to the differential system
of equations ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ0(t) = x0(t)E
[
x0(t)A00x1(t)A01 · · · xm(t)A0m

]
,

ẋ1(t) = x1(t)E
[
x0(t)A10x1(t)A11 · · · xm(t)A1m

]
,

...

ẋm(t) = xm(t)E
[
x0(t)Am0x1(t)Am1 · · · xm(t)Amm

]
.

(3.1)

Proof. From the Taylor series expansion (around t = 0) of the function xbi
i (t + z), i =

0, 1, . . . ,m, we have

xbi
i (t + z) = xbi

i (t) + ∂

∂t
xbi

i (t)
z

1! + ∂2

∂t2
xbi

i (t)
z2

2! + · · · .

The product of the functions xb0
0 (t + z)xb1

1 (t + z) · · · xbm
m (t + z) is

xb0
0 (t + z)xb1

1 (t + z) · · · xbm
m (t + z) =

∞∑
n=0

∑
i0+i1+···+im=n

(
n

i0, i1, . . . , im

)(
∂ ti0

∂ti0
xb0

0 (t)

)

×
(
∂ ti1

∂ti1
xb1

1 (t)

)
· · ·
(
∂ tim

∂tim
xbm

m (t)

)
zn

n!

=
∞∑

n=0

∂n

∂tn

(
xb0

0 (t)xb1
1 (t) · · · xbm

m (t)
) zn

n! .

We denote the operator ∂/∂t as D̃. Then, we have

xb0
0 (t + z)xb1

1 (t + z) · · · xbm
m (t + z) =

∞∑
n=0

D̃n
(

xb0
0 (t)xb1

1 (t) · · · xbm
m (t)
) zn

n! . (3.2)

By highlighting the relationship of the two expansions (2.4) and (3.2), if we let D = D̃, or

D
(

xb0
0 (t)xb1

1 (t) · · · xbm
m (t)
)

= ∂

∂t

(
xb0

0 (t)xb1
1 (t) · · · xbm

m (t)
)
,
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we have H(x0(t), x1(t), . . . , xm(t), z) = x0(t + z)b0x1(t + z)b1 · · · xm(t + z)bm , which is the same
as letting

m∑
i=0

∑
ai0+ai1+···+aim=θ

biπai0,ai1,...,aimxb0+ai0
0 · · · xbi+aii

i · · · xbm+aim
m

=
m∑

i=0

bix
b0
0 · · · xbi−1

i · · · xbm
m
∂

∂t
xi(t).

This is possible if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ0(t) = x0(t)
∑

a00+···+a0m=θπa00,...,a0mx0(t)a00x1(t)a01 · · · xm(t)a0m,

ẋ1(t) = x1(t)
∑

a10+···+a1m=θπa10,...,a1mx0(t)a10x1(t)a11 · · · xm(t)a1m,

...

ẋm(t) = xm(t)
∑

am0+···+amm=θπam0,...,ammx0(t)am0x1(t)am1 · · · xm(t)amm .

By setting t = 0, we get

H(x0(0), x1(0), . . . , xm(0), z) = x0(t + z)b0x1(t + z)b1 · · · xm(t + z)bm
∣∣
t=0

= x0(z)b0x1(z)b1 · · · xm(z)bm . �

We note that the factorial moment of Bi
n, i = 0, 1, e...,m, can be derived through the

generating function H(x0, . . . , xm, z). The next theorem provides the detail.

Theorem 3.2. The joint (r0, . . . , rm) descending factorial moment of
(
B0

n, . . . , Bm
n

)
is given by

E

[(
B0

n

)
r0

· · · (Bm
n

)
rm

]
=

[zn]
∂r0+···+rm

∂xr0
0 · · · ∂xrm

m
H(x0, . . . , xm, z)

∣∣∣∣
x0=···=xm=1

[zn]H(1, . . . , 1, z)
,

or equivalently

E

[(
B0

n

)
r0

· · · (Bm
n

)
rm

]
= r0! · · · rm! [(x0 − 1)r0 · · · (xm − 1)rm]H(x0, . . . , xm, z)

[zn]H(1, . . . , 1, z)
,

where
(
Bi

n

)
ri

= Bi
n

(
Bi

n − 1
) · · · (Bi

n − ri + 1
)
, i = 0, 1, . . . ,m.

Proof. In terms of (2.3), we have

E

[(
B0

n

)
r0

· · · (Bm
n

)
rm

]
= ∂r0+···+rm

∂xr0
0 · · · ∂xrm

m
E

[
x

B0
n

0 x
B1

n
1 · · · x

Bm
n

m

]∣∣∣∣
x0=···=xm=1

.

It is easy to see that the two results are equivalent. �
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4. Urn models and partial differential equations

4.1. Generating functions

Consider the joint distribution of
(
B1

n, B2
n, . . . , Bm

n

)
. The probability generating function of(

B1
n, B2

n, . . . , Bm
n

)
is denoted by φn(t); that is,

φn(t) =E

[
t
B1

n
1 · · · t

Bm
n

m

]
=
∑

i1,...,im≥0

P
(
B1

n = i1, . . . , Bm
n = im

)
ti11 · · · timm ,

where t = (t1, . . . , tm).
We define the generating function as H(t1, . . . , tm, z) = H(t0, t1, . . . , tm, z)

∣∣
t0=1.

Immediately, we can observe the following relation:

H(t0, t1, . . . , tm, z) = tτ0
0 H

(
t1
t0
, . . . ,

tm
t0
, tθ0z

)
.

In terms of (2.2) and (2.3), the joint probability mass function and probability generating
function of

(
B1

n, B2
n, . . . , Bm

n

)
can be expressed as

P
(
B1

n = i1, . . . , Bm
n = im

)= [ti11 · · · timm zn]H(t1, . . . , tm, z)

[zn]H(1, . . . , 1, z)
,

φn(t) = [zn]H(t1, . . . , tm, z)

[zn]H(1, . . . , 1, z)
,

respectively.
It is worth mentioning that the generating function H(t1, . . . , tm, z) can be captured through

the joint probability mass function and the probability generating function of
(
B1

n, . . . , Bm
n

)
:

H(t1, . . . , tm, z) =
∞∑

n=0

∑
i1,...,im≥0

τ0 · · · τn−1P
(
B1

n = i1, . . . , Bm
n = im

)
xi1

1 · · · xim
m

zn

n!

=
∞∑

n=0

τ0τ1 · · · τn−1φn(t)
zn

n! .

4.2. Recurrence relations for probability generating functions

We can evaluate the joint probability mass function of
(
B1

n, . . . , Bm
n

)
through recurrence

relations that can be established easily using probability generating functions.

Theorem 4.1. Under the initial urn condition
(
B0

0, B1
0, . . . , Bm

0

)= (b0, b1, . . . , bm) and the
replacement scheme in (2.1), the probability generating functions φn(t) for n ≥ 0 satisfy the
following recurrence relations:

φn(t) = α0(t)φn−1(t) +
m∑

i=1

ti(αi(t) − α0(t))
τn−1

· ∂φn−1(t)
∂ti

, n ≥ 1, (4.1)

φ0(t) = tb1
1 tb2

2 · · · tbm
m , (4.2)

where αi(t) =E

[
tAi1
1 tAi2

2 · · · tAim
m

]
.
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Proof. (4.1) is an immediate consequence of the following conditional expectation:

φn(t) =E

[
t
B1

n
1 · · · t

Bm
n

m

]
=E

[
t
B1

n
1 · · · t

Bm
n

m | B1
n−1, . . . , Bm

n−1, Aij, 0 ≤ i, j ≤ m
]

=
m∑

i=0

E

[
Bi

n−1

τn−1
t
B1

n−1+Ai1

1 · · · t
Bm

n−1+Aim
m

]

=E

[
t
B1

n−1+A01

1 · · · t
Bm

n−1+A0m
m

]

+
m∑

i=1

E

[
Bi

n−1

τn−1

(
t
B1

n−1+Ai1

1 · · · t
Bm

n−1+Aim
m − t

B1
n−1+A01

1 · · · t
Bm

n−1+A0m
m

)]
.

The initial condition (4.2) is easily obtained by the definition of the probability generating
function. �

As a special case of m = 1, consider the Pólya urn model containing two different labels:
0 and 1. If α0(t1) �= α1(t1) and we can find the antiderivative∫

α0(t1)

t1(α1(t1) − α0(t1))
dt1,

we provide the simpler recurrence. The transformation

ψn(t1) = exp

( ∫
τnα0(t1)

t1(α1(t1) − α0(t1))
dt1

)
φn(t1)

yields

ψn(t1) = t1(α1(t1) − α0(t1))

τn−1
I(t1, θ ) · ∂ψn−1(t1)

∂ti
, n ≥ 1, (4.3)

ψ0(t1) = tb1
1 I(t1, τ0), (4.4)

where

I(t1, a) = exp

( ∫
a α0(t1)

t1(α1(t1) − α0(t1))
dt1

)
.

By differentiating (4.1) and (4.2), and making use of

E[Aji] = ∂

∂ti
αj(t)

∣∣∣∣
t1=···=tm=1

, i = 1, . . . ,m, j = 0, . . . ,m,

E[Bi
n] = ∂

∂ti
φn(t)

∣∣∣∣
t1=···=tm=1

, n ≥ 0, i = 1, . . . ,m,

we can readily establish the recurrence relations for the expected values of Bi
n, n ≥ 0, i =

1, . . . ,m.

https://doi.org/10.1017/jpr.2022.103 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.103


Exactly solvable urn models and their applications 843

Corollary 4.1. For i = 1, 2, . . . ,m, the expected values E
[
Bi

n

]
, n ≥ 0 satisfy the recurrence

relations

E[Bi
n] =E[Bi

n−1] +E[A0i] +
m∑

j=1

E[Aji] −E[A0i]

τn−1
·E[Bj

n−1], n ≥ 1, i = 1, . . . ,m,

E[Bi
0] = bi, i = 1, . . . ,m.

In the case of m = 1, [12] studied recurrence relations with a slight modification of (4.1)
and (4.2), known as recurrences of Eulerian type, and considered the applications to the Pólya
urn models.

4.3. Partial differential equations

We find the generating function H(t, z) by employing the partial differential equation
approach. We derive the partial differential equation satisfied by the generating function
H(t, z).

Theorem 4.2. Under the initial urn condition
(
B0

0, B1
0, . . . , Bm

0

)= (b0, b1, . . . , bm) and the
replacement scheme in (2.1), the generating function H(t, z) satisfies the partial differential
equation

τ0α0(t)H(t, z) = (1 − θzα0(t))
∂H(t, z)

∂z
−

m∑
i=1

ti(αi(t) − α0(t)) · ∂H(t, z)

∂ti
, (4.5)

H(t, z)
∣∣
z=0 = tb1

1 tb2
2 · · · tbm

m , (4.6)

where αi(t) =E
[
tAi1
1 tAi2

2 · · · tAim
m
]
.

Proof. From (4.1), we have

∞∑
n=1

τ0 · · · τn−1φn(t)
zn−1

(n − 1)! =
∞∑

n=1

α0(t)τ0 · · · τn−1φn−1(t)
zn−1

(n − 1)!
∞∑

n=1

m∑
i=1

ti(αi(t) − α0(t)) · τ0 · · · τn−2
∂φn−1(t)
∂ti

zn−1

(n − 1)!

∂H(t, z)

∂z
= τ0α0(t)H(t, z) + θzα0(t)

∂H(t, z)

∂z
+

m∑
i=1

ti(αi(t) − α0(t)) · ∂H(t, z)

∂ti
. �

As a special case of m = 1, we examine the Pólya urn model containing the labels 0 and 1.
If α0(t1) �= α1(t1) and we can obtain the antiderivative∫

α0(t1)

t1(α1(t1) − α0(t1))
dt1,
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we provide the simpler partial differential equation. When

	(t1, z) =
∞∑

n=0

τ0τ1 · · · τnψn(t1)
zn

n! ,

(4.3) and (4.4) yield the following partial differential equation:

∂	(t1, z)

∂z
= t1(α1(t1) − α0(t1))I(t1, θ )

∂	(t1, z)

∂t1
, (4.7)

	(t1, z)
∣∣
z=0 = tb1

1 I(t1, τ0), (4.8)

where

I(t1, a) = exp

( ∫
a α0(t1)

t1(α1(t1) − α0(t1))
dt1

)
.

First-order partial differential equations can often be solved by the method of characteris-
tics. The partial differential equation in (4.7) can be written as

dz

1
= − dt1

t1(α1(t1) − α0(t1))I(t1, θ )
.

Note that

d

dt1

(
z +
∫

dt1
t1(α1(t1) − α0(t1))I(t1, θ )

)
= 0.

We then see that η(t1, z) = C, where

η(t1, z) = z +
∫

dt1
t1(α1(t1) − α0(t1))I(t1, θ )

.

Therefore, the generating function	(t1, z) can be expressed as	(t1, z) = G(η(t1, z)), where
the function G is specified by the initial condition (4.8) as G(η(t1, 0)) = tb1

1 I(t1, τ0).

5. Applications

5.1. Coupon collector’s urn

Consider the coupon collector’s problem with a loss. Suppose that there are k distinct types
of coupons bearing the numbers 1, 2, . . ., k, and that a coupon is placed in each package.
Assume that a coupon of type i is collected with probability 1/k, i = 1, 2, . . . , k. A customer
buys a product daily; they can retain the coupon with probability p, or may lose it with prob-
ability 1 − p (0< p ≤ 1). We are interested in the probability that they collect every type of
coupon m or more times after n days. When p = 1, the problem corresponds to the classical
coupon collector’s problem.

We can formulate this problem with the adequate urn model. Suppose that initially there are
k balls all labeled (0) in the urn. When a ball labeled (0) is picked up, its label changes to (1)
with probability p or remains the same with probability 1 − p. When a ball labeled (1) is picked
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up, its label changes to (2) with probability p or remains (1) with probability 1 − p, and so on.
If a ball labeled (m − 1) becomes a ball labeled (m), it remains so forever. This experiment is
repeated n times.

The replacement matrix is expressed as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B(p) B(p) 0 · · · 0

0 −B(p) B(p) · · · 0

...
...

. . .
. . .

...

0 · · · 0 −B(p) B(p)

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×(m+1)

, (5.1)

where B(p) denotes the Bernoulli random variable taking value 1 with probability p and 0 with
probability 1 − p (0< p ≤ 1). The system of differential equations is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ0(t) = px1(t) + (1 − p)x0(t),

ẋ1(t) = px2(t) + (1 − p)x1(t),

...

ẋm−1(t) = pxm(t) + (1 − p)xm−1(t),

ẋm(t) = xm(t),

with x0(0) = u0, x1(0) = u1, . . ., xm(0) = um. Then, the solution is

x�(t) = e(1−p)t

[
um

(
ept −

m−�−1∑
i=0

(pt)i

i!

)
+

m−1∑
i=�

ui
(pt)i−�

(i − �)!

]
, �= 0, 1, . . . ,m.

Under the initial urn condition (B0
0, B1

0, . . . , Bm
0 ) = (k, 0, . . . , 0), the urn history generating

function is given by

H(u0, u1, . . . , um, z) = (x0(t))k = e(1−p)kt

[
um

(
ept −

m−1∑
i=0

piti

i!

)
+

m−1∑
i=0

ui
piti

i!

]k

. (5.2)

The probability mass function of Bm
n can be expressed in terms of the Stirling numbers.

For a real number a, a non-negative integer k, and a positive integer s, the numbers Sa,s(n, k),
n = sk, sk + 1, . . ., are defined by their exponential generating function

fa,s(t, k) =
∞∑

n=sk

Sa,s(n, k)
tn

n! = eat 1

k!
(

et − 1 − t

1! − · · · − ts−1

(s − 1)!
)k

. (5.3)

These numbers are known as the generalized non-central Stirling numbers of the second
kind [19].

Observing that

[
uk

m

]
H(1, 1, . . . , 1, um, z) = e(1−p)kt

(
ept −

m−1∑
i=0

piti

i!

)k

,

we have the following result under (5.3).
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Proposition 5.1. The probability that a customer has all the types of coupons at least m or
more times after n days is

P(Bm
n = k) = S(1−p)k/p,m(n, k)

k!pn

kn
.

In the case of m = 2, [21] considered the urn for a two-type coupon collection. Note that
it also mentioned a possible extension to an urn model with m colors, which stimulated our
interest in analytic urns. Furthermore, it discussed the use of asymptotic tools to obtain limit
laws.

5.2. Coupon collector waiting time problem

Under equivalent conditions to those presented in Section 5.1, we treat the waiting time
problem in coupon collection with a loss in the special case of m = 1. A customer buys a
product daily; they can retain the coupon with probability p, or lose it with probability 1 − p
(0< p ≤ 1). How many days does it take to collect every type of coupon? Let that time be
denoted by Tk.

From the obvious identity P(Tk ≤ n) = P(B1
n = k), n ≥ 1, we can express the probability

mass function of the waiting time Tk as

P(Tk = n) = P(Tk ≤ n) − P(Tk ≤ n − 1)

= S(1−p)k/p,1(n, k)
k!pn

kn
− S(1−p)k/p,1(n − 1, k)

k!pn−1

kn−1
, n ≥ 1.

Proposition 5.2. The probability mass function of the waiting time Tk is given by

P (Tk = n)= S(1−p)k/p,1(n − 1, k − 1)
k!pn

kn
, n ≥ 1.

By making use of (A.1) in the appendix, we can proceed to derive the probability generating
function of the waiting time Tk as

E[uTk ] = k!
∞∑

n=k

S(1−p)k/p,1(n − 1, k − 1)

(
pu

k

)n

=
k−1∏
i=0

(p − (pi/k))u

1 − (1 − p + (pi/k))u
.

This representation implies that Tk can be decomposed as a sum of k independent random
variables.

Proposition 5.3. For i = 0, 1, . . . , k − 1, let Yi be independent random variables with proba-
bility mass functions

P(Yi = y) =
(

p − pi

k

)(
1 − p + pi

k

)y−1

.

Then, the waiting time Tk can be decomposed as Tk = Y0 + Y1 + · · · + Yk−1.

The expected value and variance of Tk are expressed, respectively, as

E(Tk) = k

p

k−1∑
i=0

1

k − i
∼ k log k

p
, (5.4)
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V(Tk) = k

p2

k−1∑
i=0

pi + k(1 − p)

(k − i)2
= k2

p2

k−1∑
i=0

1

(k − i)2
− k

p

k−1∑
i=0

1

(k − i)
(5.5)

≤ k2

p2

k−1∑
i=0

1

(k − i)2
= π2k2

6p2
.

Remark 5.1. From (5.4) and (5.5), we have

Tk

(k log k)/p
→ 1

in probability.

Consider a numerical example in the case of n = 365 and p = 0.8. That is, we are interested
in the number of people we should meet until we have seen at least one person with every
possible birthday. In this case, the limit theorem yields approximately (365 log 365)/0.8 =
2691.83 tries to get a complete set, which means that the number of trials is 7.37 times the
number of birthdays. We mention that [7] considered the numerical example in the case of
n = 365 and p = 1.

5.3. Birthday urn

The birthday problem with recording failures can be approached with the same matrix as in
(5.1). Assume that each person is equally likely to have any of the 365 days in a year as their
birthday. Suppose that we randomly interview people individually. When we ask the person
for their birthday, we can record it with probability p, or fail to record it with probability 1 − p
(0< p ≤ 1). We need to determine the probability that, after interviews with n persons chosen
at random, at least m persons have the same birthday on record.

The probability mass function P(Bm
n = 0) can be evaluated effectively. For a real number

a, a non-negative integer k, and a positive integer s, the numbers Ma,s(n, k), n = 0, 1, . . ., are
defined by their exponential generating function

ga,s(t, k) =
∞∑

n=0

Ma,s(n, k)
tn

n! = eat
(

1 + t

1! + t2

2! + · · · + ts

s!
)k

. (5.6)

From (5.2) with k = 365, we have

[
u0

m

]
H(1, 1, . . . , 1, um) = e365(1−p)t

(
1 + pt

1! + (pt)2

2! + · · · + (pt)m−1

(m − 1)!
)365

.

From (5.6),

P(Bm
n = 0) = 1 − n!

365n
· [tn]g365(1−p)/p,m−1(t, 365).

Furthermore, the following result is established.

Proposition 5.4. The probability that among n persons chosen at random, at least m persons
have the same birthday, is given by

P(Bm
n = 0) = 1 − pn

365n
· M365(1−p)/p,m−1(n, 365). (5.7)
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FIGURE 1. The transition graph of the Ehrenfest urn.

5.4. Waiting time in birthday problem

Consider the waiting time birthday problem with failures. Assume that each person is
equally likely to have any of the 365 days in the year as their birthday. Suppose that we ran-
domly interview people individually. When we ask each person for their birthday, we can
record it with probability p or fail to record it with probability 1 − p (0< p ≤ 1). Let Wm be
the waiting time until we find m people with a common birthday on record. We investigate the
distribution of the waiting time Wm in terms of Bm

n .
It is clear that P(Wm ≤ n) = P(Bm

n = 0). The distribution of Wm can be evaluated using (5.7).

Proposition 5.5. The probability mass function of the waiting time Wm is given by

P(Wm = n) = pn−1

kn−1
M(1−p)k/p,m−1(n − 1, k) − pn

kn
M(1−p)k/p,m−1(n, k).

5.5. Ehrenfest urn on graphs

Consider five urns labeled 0, 1, 2, 3, and 4, initially containing k balls in total. At any given
time, a ball is drawn from one urn with probability 1/k and moved to the adjacent urn with
given probabilities (see Figure 1). For i = 0, 1, 2, 3, 4, let Bi

n be the number of balls in the i-th
urn.

The associated system of differential equations is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ0(t) = 1

2
x1(t) + 1

2
x2(t),

ẋ1(t) = 1

3
x0(t) + 1

3
x2(t) + 1

3
x3(t),

ẋ2(t) = 1

3
x0(t) + 1

3
x1(t) + 1

3
x4(t),

ẋ3(t) = x1(t),

ẋ4(t) = x2(t),

with x0(0) = u0, x1(0) = u1, x2(0) = u2, x3(0) = u3, and x4(0) = u4.
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FIGURE 2. The joint probability mass function
(
B1

30, B3
30

)
.

For example, the solution x0(t) is given by

x0(t) = et
(

2u0 + 3u1 + 3u2 + u3 + u4

10

)

+3e− 2
3 t
(

2u0 − 2u1 − 2u2 + u3 + u4

20

)
+ 2u0 − u3 − u4

4
.

Under the initial urn condition
(
B0

0, B1
0, B2

0, B3
0, B4

0

)= (k, 0, 0, 0, 0), the expected values are

E[B0
n] = k

(
1

5
+ 3

10

(
1 − 5

3k

)n

+ 1

2

(
1 − 1

k

)n)
,

E[B1
n] = E[B2

n] = k

(
3

10
− 3

10

(
1 − 5

3k

)n)
,

E[B3
n] = E[B4

n] = k

(
1

10
+ 3

20

(
1 − 5

3k

)n

− 1

4

(
1 − 1

k

)n)
.

Therefore, we have E[B0
n] → k/5, E[B1

n] =E[B2
n] → 3k/10, and E[B3

n] =E[B4
n] → k/10 as

n → ∞. When k = 20 and n = 30, Figure 2 shows the graphs of the joint probability mass
function

(
B1

30, B3
30

)
.

5.6. Pólya–Ehrenfest urn

Consider two urns labeled 0 and 1. Initially, urn 0 contains b0 balls, and urn 1 contains b1
balls. At any given time, a ball in the urns is drawn and moved to the other urn with equal
probabilities. Therefore, the total number of balls constantly increases by 1. This urn model
was referred to as the Pólya–Ehrenfest model in [3]. The replacement matrix is expressed as( −1 2

2 −1

)
.

We consider the urn scheme alternating with equal probabilities between
( −1 2

2 −1

)
and( 1 0

0 1

)
, i.e. between a Pólya–Ehrenfest urn with probability

1

2
and a Pólya urn with probability

1

2
.
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FIGURE 3. The probability mass function of B1
50.

From the partial differential equations in (4.5) and (4.6) under the initial urn condition

(B0
0, B1

0) = (b0, b1) with α0(t1) = t21/2 + 1

2
and α1(t1) = 1/2t1 + t1/2, we have

dH(t1, z)

(b0 + b1) · 1
2 (t21 + 1) · H(t1, z)

= dz

1 − z · 1
2 (t21 + 1)

= − dt1
1
2 (1 − t1)(1 + t21)

.

The solution is given by

H(t1, z) =
(1 − t1)b0+b1

[
tan
( 1

2 (1 − t1)z
)+ t1

1 − t1 tan
( 1

2 (1 − t1)z
)]b0

[
1 − tan

( 1
2 (1 − t1)z

)+ t1

1 − t1 tan
( 1

2 (1 − t1)z
)]b0+b1

.

From the results presented in Corollary 4.1, the expected value of B1
n is

E[B1
n] = n(n − 1) + 2(b0 + b1)n + 2(b0 + b1 − 1)b0

2(b0 + b1 + n − 1)
.

In the case where b0 = 1, b1 = 1, and n = 50, we present graphs of the distribution of the
number of balls in urn 1 in Figure 3.

5.7. Multinomial urn

Assume that the random variables (Ai0, Ai1, . . . , Aim) have the probability mass function

P(Ai0 = ai0, Ai1 = ai1, . . . , Aim = aim) =
(

θ

ai0, ai1, . . . , aim

)
pai0

0 pai1
1 · · · paim

m ,

with p0 + p1 + · · · + pm = 1, i = 0, 1, . . . ,m. Then, we have αi(t) = (p0 + p1t1 + p2t2 + · · · +
pmtm)θ , i = 0, 1, . . . ,m.
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From the partial differential equation in (4.5), with (4.6) under the initial urn condition
(B0

n, B1
n, . . . , Bm

n ) = (b0, b1, . . . , bm), the solution is

H(t, z) = tb1
1 tb2

2 · · · tbm
m

[1 − θ (p0 + p1t1 + p2t2 + · · · + pmtm)θ z](b0+b1+···+bm)/θ
.

Proposition 5.6. Under the initial urn condition (B0
n, B1

n, . . . , Bm
n ) = (b0, b1, . . . , bm), the

probability generating function and probability mass function of (B1
n, B2

n, . . . , Bm
n ) are

given by

φn(t) = tb1
1 tb2

2 · · · tbm
m (p0 + p1t1 + p2t2 + · · · + pmtm)nθ ,

P(B1
n = i1, B2

n = i2, . . . , Bm
n = im) =

(
nθ

i0, i1 − b1, . . . , im − bm

)
pi0

0 pi1−b1
1 · · · pim−bm

m ,

i0 + i1 + · · · + im − (b1 + · · · + bm) = nθ .

5.8. Uniform urn

Assume that the random variables (Ai1, Ai1, . . . , Aim) have the probability mass function
P(Ai1 = ai1, Ai2 = ai2, . . . , Aim = aim) = (�+ 1)−m, with Ai0 = θ −∑m

j=1 Aij, where θ = m�.
Then, we have

αi(t) =
m∏

i=1

(
1 + ti + t2i + · · · + t�i

�+ 1

)
, i = 0, 1, . . . ,m.

From the partial differential equation in (4.5), with (4.6) under the initial urn condition
(B0

n, B1
n, . . . , Bm

n ) = (b0, b1, . . . , bm), we obtain the solution H(t, z) as

H(t, z) = tb1
1 tb2

2 · · · tbm
m[

1 − θ
∏m

i=1 (1 + ti + t2i + · · · + t�i )(�+ 1)z
](b0+b1+···+bm)/θ

.

Proposition 5.7. Under the initial urn condition (B0
n, B1

n, . . . , Bm
n ) = (b0, b1, . . . , bm), the

probability generating function and probability mass function of (B1
n, B2

n, . . . , Bm
n ) are

given by

φn(t) = tb1
1 tb2

2 · · · tbm
m

m∏
i=1

(
1 + ti + t2i + · · · + t�i

�+ 1

)n

,

P(B1
n = i1, B2

n = i2, . . . , Bm
n = im) =

∏m
j=1 T�,n,ij−bj

(�+ 1)n
,

where T�,n,k = [xk](1 + t + t2 + · · · + t�)n.

We note that the numbers T�,n,k are well known classically and have many combinatorial
aspects [10].
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Appendix A. The partition numbers

In this section we examine two partition numbers and derive the recurrence relations [4, 5].
For a real number a, a non-negative integer k, and a positive integer s, the generalized non-

central Stirling numbers of the second kind Sa,s(n, k), n = sk, sk + 1, . . ., are defined by their
exponential generating function given by (5.3).

Proposition A.1. The numbers Sa,s(n, k) satisfy the recurrence relations

Sa,s(n, k) = (k + a)Sa,s(n − 1, k) +
(

n − 1
s − 1

)
Sa,s(n − s, k − 1), n ≥ sk,

Sa,s(n, k) = 0, n< sk,

Sa,s(n, 0) = an, n ≥ 0,

Sa,s(0, 0) = 1.

Proof. By differentiating the generating function fa,s(t, k) with respect to t, we have

f ′
a,s(t, k) = (k + a)fa,s(t, k) + ts−1

(s − 1)! fa,s(t, k − 1).

By equating the coefficients of tn/n! on both sides of the above expression, we derive the
recurrence relations. �

For s = 1, we define the generating function of the numbers Sa,1(n, k) by ϕa,1(u) =∑∞
n=k Sa,1(n, k)un.

Proposition A.2. The generating function of the numbers Sa,1(n, k) is given by

ϕa,1(u, k) = uk
k∏

i=0

(1 − au − iu)−1, k ≥ 1. (A.1)

Proof. For s = 1, we have Sa,1(n, k) = (k + a)Sa,1(n − 1, k) + Sa,1(n − 1, k − 1), n ≥ k. By
multiplying the above expression by un and summing for n ≥ k under the initial conditions, we
get ϕa,1(u, k) = u(k + a)ϕa,1(u, k) + uϕa,1(u, k − 1) and

ϕa,1(u, k) = u

1 − u(k + a)
ϕa,1(u, k − 1).

By applying this recurrence relation repeatedly with ϕa,1(u, 0) = 1, we obtain (A.1). �

For a real number a, a non-negative integer k, and a positive integer s, the numbers
Ma,s(n, k), n = 0, 1, . . ., are defined by their exponential generating function given by (5.6).

Proposition A.3. The numbers Ma,s(n, k) satisfy the recurrence relations

Ma,s(n, k) = (k + a)Ma,s(n − 1, k) − k

(
n − 1

s

)
Ma,s(n − s − 1, k − 1), n ≥ s + 1,

Ma,s(n, k) = (k + a)n, n ≤ s.
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Proof. As in the proof of Proposition A.1, by differentiating the generating function
ga,s(t, k) with respect to t, we have

g′
a,s(t, k) = (k − a)ga,s(t, k) − k

ts

(s)!ga,s(t, k − 1).

By equating the coefficients of tn/n! on both sides of the above expression, we derive the
recurrence relations. �
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