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Abstract
An early extension of Lindeberg's central limit theorem was Bernstein's
(1939) discovery of necessary and sufficient conditions for the convergence
of moments in the central limit theorem. Von Bahr (1965) made a study of
some asymptotic expansions in the central limit theorem, and obtained rates
of convergence for moments. However, his results do not in general imply
that the moments converge. Some better rates have been obtained by
Bhattacharya and Rao for moments between the second and third. In this
paper we give improved rates of convergence for absolute moments between
the third and fourth.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 6OFO5;
secondary 60 G 50.

1. Introduction and summary

The moments of a distribution are among its most useful and accessible
characteristics. Hence it is not surprising that one of the earliest extensions of
Lindeberg's central limit theorem was Bernstein's (1939) discovery of a necessary
and sufficient condition for the convergence of absolute moments in the central
limit theorem. Bernstein's theorem may be stated as follows: Suppose that for
each n^l, Xnl, Xn2,..., Xnkn are independent random variables with zero means
and finite variances satisfying ^EX^ = 1, and that the Xni are asymptotically
negligible in the sense that mza.j<knP(\Xnj\>e)-*0 as n^-oo for all e>0. Then

and the/rth absolute moment of Sn (j> > 2) converges to that of the standard normal
distribution if and only if

Brown (1969, 1970) gave a characteristic function proof of Bernstein's result.
Von Bahr (1965) made a study of some asymptotic expansions in the central limit
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theorem and their application to the rate of convergence of moments. Bhattacharya
and Rao (1976) have improved on some of von Bahr's results in the case 2</?<3.
In this connection see also Michel (1976), who tackles the problem via non-uniform
estimates of the rate of convergence in the central limit theorem. Our aim in this
paper is to obtain simplified rates of convergence of moments, especially in the
case 3</?<4.

Let [ip (p > 2) denote the pth absolute moment of a standard normal variable.
If p is an even integer it is well known that the rate of convergence of £ | S n | p

to fip depends on whether earlier moments match those of the standard normal
distribution. For example, if Sn = 2™ Xjljn where the Xj are i.i.d. (independent
and identically distributed) with finite sixth moments and with third and fourth
moments equal to /w3 and mi respectively, then

If mi = /x4 = 3 and m3 = 0 then the rate of convergence is O(n~z); if
10/M|+15(/W4-3)#0 then the rate is Ofn'1). When/;>3 and the Xj are not i.i.d.,
it is more difficult to see how to frame the results so as to obtain a good rate of
convergence of jE'lS'np to fip. We will confine our attention to the range 2<p^4.
Our results are stated in Section 2 and the proofs given in Section 3.

2. Rates of convergence

Von Bahr's most general rates of convergence are given in his Theorem 4,
and in the case 2<p^4 they can be summarized as follows: If kn = n then for all

£+Z49+1)/(J)-2)), if 2 <p< 3,

(Actually von Bahr's results apply in the case when Xni = X/J^EXf)-*, where
{Xn,n^ 1} is a sequence of independent random variables. Also, his result in the
case 2<p<3 is rather more complicated than that given here.) In general this
does not imply that E\Sn\

9^-ixg, although Bernstein's work tells us that this is the
case for all q<p, provided only that Ln^-0 and that the random variables in each
row are asymptotically negligible. In the cases (a) 0<q^p = 3, and (b) 0<^<2,
2</><3, Bhattacharya and Rao (1976), Theorem 18.1, have shown that
\E\Sn\

q-iig\^Cdnp^:CLn, where the constant C depends only onp and q, and

= inf S f |*-,|»«*P+S f
i .1 {ix î««> i J {\xn,\>

In case (b) when the Xi are i.i.d. this yields an error bound of o(n~ip~2)/2), slightly
improving on the 0(n~<p~2)/2) bound due to von Bahr. However, there is no
such improvement in case (a).
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Our results are most significant in the case 3 <p < 4, where there is no published
improvement of von Bahr's. We state them for the larger range 2<p^4. They
contain those of von Bahr in the i.i.d. case, except when 0<q<p—2, when his
rates are slightly better than ours. The reason for this is that we have used a
simpler method for estimating the integrals of the tails of characteristic functions.
(See his remark on p. 817.) In the case of a general triangular array this meant
a considerable simplification of the proofs and the results.

THEOREM. Let Xni, 1 ^j^kn, be a sequence of independent random variables with
zero means and finite variances satisfying ^,jE(X^}) = 1, and let Sn = Yt)Xni.
Suppose that Ln = ^,jE\ Xni \p < oo, where 2<p<4. Let ybp denote the absolute
7?th moment of the standard normal distribution. There exists an absolute constant
Co such that for all q in 0<q^p, and whenever Ln^l {and \ ES%\ < 1 ifp > 3),

(1) | E\ 5n|«-/*fl| < C8"i-"| sin (far) | MJq(4-p),

where

if3<p<4.

In the case p = 4, |JB|5lt|*-/«t|<CjCai£Jr*i+|£S«|«) if T.jEX^l and

REMARK. It follows from von Bahr's Theorem 2 that in the i.i.d. case,
|-E|S»|8-/*a| = ^(M-1) when Xx has finite fourth moment, whereas |£,S3| = £(„-*)
if E(XD=£0. Hence the rate of convergence of E\Sn\

p to fip may be considerably
faster than the rate of convergence of \ES\ \ to 0, although in general it will not be
faster than the rate of convergence of | ES% |2 to 0.

3. The proofs

We will begin by establishing two lemmas. In our proofs the symbol C denotes
a generic constant depending only onp, not necessarily the same at each appearance,
while Clt C2, C3 and Q denote particular versions of C. The symbols 6, <p and i//
denote generic complex- or real-valued functions of the real variable t, dominated
by 1 for all /. Rl z denotes the real part of z.

Let fnj and /„ be the characteristic functions of Xni and Sn, respectively, and
let rn} =fni-\. If E\Sn\v«x> we will write

/»/>) = 1 + S (UYEXyrl + a^t),
r=2

m
fnif) = 1 + S &YES'Jrl + <xn(t)

and
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where /w = 2 if 2 <p < 3, m = 3 if 3 <p < 4, and ocnj(t) is of the form

«„//) = C6nj{t)\t\*E\Xnj\».

(See Loeve (1960), p. 199.)

LEMMA 1. There exist constants Ap and Bp depending only on p such that whenever
2<p<4, 0<<?</>, £ n < l (and\ESl\^l ifp>3),

Ap is bounded away from oo and Bp is bounded away from zero.

PROOF. We will give a proof in the case 3</><4. Now,

\ t\PE\ Xnj\

\ t |PLJ<|

if {tl^B^L-1^, where B™ = minil^Cj)-*}. Furthermore,

t\H(E\Xj*>r*>+(E\Xn^)^+(E\Xni\Pf} if/<

if p < 4 and LH ̂  1. It follows that if 11 \ < Bp
x) and Ln ^ 1 then the principal-valued

logarithm of fni is given by

logA/0 = Wt?EXli+Wt?EXl}+oLn0)+C6nj{i)\t\*E\Xnj\v

and that of/„ is given by

fn(t) =

say. Now,
\

if LB < 1, | ESI I < 1 and | f | < Bp = min {£«>, (eCa)-*}. Also,

if / . n<l and | f | ^ l , and so

M) = er*{l - \it* ES\ + ̂  *n,{t) + C<pn{t) \ t \\Ln
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Consequently,

The functions Rlcxnj(t) = E{cos(tXni)— l + $t*X*j} are non-negative, and since

I B\Rlfn(t) - e-*2) <-<*+1> dt
<o

< S IB"R1 «„//)/-(p+1)dt + C(Ln + \ESl|2) IB"t*-vdt.
} 'o 'o

For each A > 0,

^E{\XnJYA{\\Xnj\)],

where A(x) = $%(cost— \+\t7)t~ip+1) dt is a continuous bounded increasing
function with ,4(0) = 0 and ^(oo) = 7r/2r(/> + l)|sin£/>7r|. See Pitman (1968), p.
428.) Hence

Vl/n(')-<
0

where ^ p is bounded as/?->4. 5 P is bounded away from zero. This completes the
proof of Lemma 1.

LEMMA 2. There exist constants Ap and Bp depending only onp such that whenever

^(p is bounded away from oo anrf fi^~2 & bounded away from zero.

PROOF. We will give a proof in the case 3 </?<4. As in the proof of Lemma 1,
we can show that if j t \ < QL-1 / P then | rni \ < \. Furthermore,

and so if | *| < C^'1'* ^ C^E] Xn} \ vyl'v then

I rni |
2 < 4{C*-" + Ctp + Cf}\t\PE\ Xni \P.

Consequently the principal-valued logarithm of fni is given by

and that of/n, by
log/n(0 = -if- li
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Hence if 11\< QL" 1 ^ then

-^-lit* ESl)\

< C211 \PLn exp (-ht* + C2\t \PLn)+e-&{\ - cos {\fi ESI)}

<C2\t\P e-1*'3 Ln +16 er* | ESI f

if I^CeQLJ-1^-2*. Let Af = C2+l and B™ = (GCJ-wr-v. If
| i | ̂  min { Q V , 5

then
IRlfn(t)-e-i<>\ <A£\t«+

Now suppose that \t\>C1L~1/p. Let %ni = JTB̂ —7B̂  where ymj- is independent
of Znj- but with the same distribution. Then

E^nj = 2EXlp EXl^O and Z
so that

Consequently
|/»(0|2 = II

if \t\^CsLn)-
1^-^. Let .B],2* = (3C3)-1/ (P-2>. If

then

Let A™ = 2C?>, Ap = m&\{A^\Af} and 5 p = m i n ^ 1 ' , ^ } to obtain the
desired result.

PROOF OF THEOREM. Suppose that Z-n<l, l l s S 3 ! ^ , 0<q<,p<A and q^2. Let
A:g = 77-/[r(tf+l)|sin^7r|]. By Lemma 1 of Brown (1970),

kQ\E\Sn\«-fiq\ = | PVl<*„(')-<*('))t
Jo

= | f°
Jo

<| f
Jo
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for any constants Cx «S C2. Our Lemmas 1 and 2 now imply that

kq\E\Sn\«-pq\

<C3{(Mn/(4-/0)+Mn (">(t6+\t\e)e-'*<zdt+ f°° r^+^dt},
JCl J^in-W"-8)

where C3 is bounded away from oo, and Cx and C\~2 are bounded away from zero,

where C is bounded away from oo. Hence

| E\ 5n|«-Ma| < el"* "2»| smiqn\MJq(4-p),

where Co is an absolute constant. By setting q = p and taking the limit as p \ 4,
and noting that E\ X\p -*E\ X\* as p f 4, we see that

provided that Z,n = S ^ ^ y < 1 and |£S* | < 1.

REFERENCES

B. von Bahr (1965), "On the convergence of moments in the central limit theorem", Ann.
Math. Statist. 36, 808-818.

S. Bernstein (1939), "Quelques remarques sur le theoreme limite Liapounoff', Dokl. Akad.
Nauk SSR {Comptes rendus) 24, 3-8.

R. N. Bhattacharya and R. R. Rao (1976), Normal Approximation and Asymptotic Expansions
(Wiley, New York).

B. M. Brown (1969), "Moments of a stopping rule related to the central limit theorem",
Ann. Math. Statist. 40, 1236-1249.

B. M. Brown (1970), "Characteristic functions, moments and the central limit theorem",
Ann. Math. Statist. 41, 658-664.

M. Loeve (1960), Probability Theory (Van Nostrand, Princeton).
R. Michel (1976), "Nonuniform central limit bounds with applications to probabilities of

deviations", Ann. Probability 4, 102-106.
E. J. G. Pitman (1968), "On the behaviour of the characteristic function of a probability

distribution in the neighbourhood of the origin", / . Austral. Math. Soc. 8, 423-443.

Department of Statistics
University of Melbourne
Parkville, Victoria 3052
Australia

https://doi.org/10.1017/S1446788700038830 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038830

