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Group Actions and Singular Martingales II,
The Recognition Problem

Joseph Rosenblatt and Michael Taylor

Abstract. We continue our investigation in [RST] of a martingale formed by picking a measurable

set A in a compact group G, taking random rotates of A, and considering measures of the resulting

intersections, suitably normalized. Here we concentrate on the inverse problem of recognizing A from

a small amount of data from this martingale. This leads to problems in harmonic analysis on G,

including an analysis of integrals of products of Gegenbauer polynomials.

1 Introduction

In this paper we explore two circles of results in the area of harmonic analysis on com-
pact groups. The first centers about a class of martingales, whose unusual properties
came to light in [R1] and which have been studied further, from an ergodic theory
and harmonic analysis perspective, in [RST]. The second concerns the decomposi-

tion of a tensor product of representations of the rotation group SO(n) on spaces
of spherical harmonics, with particular attention to the product of zonal functions.
This second topic arises from our study of the first, though it takes a life of its own
and can be appreciated independently of the martingale problem.

Let us first define the class of martingales we are treating. Let G be a compact
group, with Haar measure m, normalized to have total mass 1. Let Z = G∞, with
product measure µ. Take A ⊂ G, measurable, with m(A) > 0. For x = (x1, x2, . . . ) ∈
Z, let

(1.1) f A
N (x) =

m(
⋂N

i=1 xiA)

m(A)N
.

The numerator measures how much the N-fold translates of A overlap. The denom-
inator is a normalizing factor, chosen so that

∫

Z
f A
N dµ = 1.

It is not hard to see that ( f A
N : N = 1, 2, 3, . . . ) is a martingale. Indeed, this fact is

just an inductive use of the well-known formula, a particular consequence of the Fu-
bini Theorem, that

∫

G
m(xA ∩ B) dm(x) = m(A)m(B) for all measurable sets A ⊂ G

and B ⊂ G. This formula is basic in the study of random translations of sets and
functions on groups. The study of random translations and the behavior of certain
randomly constructed sets that arise from them has a long history. The book by Ka-
hane [K] contains many interesting results of this type. One of the important themes

in [K] is the interplay between the use of probability theory and harmonic analysis in
the study of random translations. This same interplay occurs in [R1], [R2], [RST],
and to some degree in this article, although the emphasis in this article is more on
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432 Rosenblatt and Taylor

the harmonic analysis side of this interaction. We expect that the martingales ( f A
N )

and their generalizations will have other roles to play, both in terms of probability

theory and harmonic analysis, in the future in the study of random translations and
multiple products. This article presents just one basic example of this phenomenon.

The following result was established in [RST]:

Proposition 1.1 The martingale ( f A
N ) defined by (1.1) has the property that, if m(A) <

1, then

(1.2) f A
N → 0, µ-a.e. on Z.

Another way of putting this is that the martingale ( f A
N ) determines a probability

measure νA on Z, and this measure and µ are mutually singular. In the course of
analyzing νA, the authors developed techniques that led to some results on the extent
to which ( f A

N ) determines the set A. In particular, the following result was proven in
[RST]:

Proposition 1.2 If A, B ⊂ G and f A
N ≡ f B

N for all N, then there exists y ∈ G such that

(1.3) B = Ay, modulo null sets.

In this paper we pursue further the question of to what extent the sequence of
functions f A

N given by (1.1) determines the set A. More specifically, if f A
N ≡ f B

N

for a certain fixed N , what can we say about the relation between A and B? As a
preliminary, note that, when N ≥ 2,

(1.4) f A
N (y, . . . , y) = m(A)−(N−1),

so m(A) is determined by f A
N for any N ≥ 2. We will show that in many cases an

analogue of the conclusion of Proposition 1.2 can be established when f A
3 ≡ f B

3 .
In Section 2 we consider the case where G is a compact abelian group. We show

in Proposition 2.1, necessarily using a method different from the one in [RST], that
f A
3 ≡ f B

3 yields the conclusion (1.3) provided the group Fourier transform χ̂A is
nowhere vanishing (χA denoting the indicator function of A). We also consider cases
when this hypothesis on χ̂A fails, and we provide a harmonic analysis proof of Propo-

sition 1.2 in this case.
In Section 3 we obtain an extension of Proposition 2.1 for G compact and non-

commutative, assuming the group Fourier transform χ̂A(π) is invertible for each irre-
ducible unitary representation π of G. It turns out that this result is not a completely

satisfactory generalization of the commutative case.
This point is brought home in Section 4. This section deals with G = SO(n), with

n ≥ 3, and A = p−1(A ′), with A ′ ⊂ Sn−1, the unit sphere in R
n, and p : SO(n) →

Sn−1 the natural projection. In such a case, χ̂A(π) is never invertible (except for the

trivial representation). Nevertheless we produce conditions on A ′ such that when
A ′, B ′ ⊂ Sn−1 then

(1.5) f A
3 ≡ f B

3 ⇒ A ′
= B ′ or A ′

= −B ′,

https://doi.org/10.4153/CJM-2004-020-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-020-2


Group Actions and Singular Martingales II 433

where −B ′ is the image of B ′ under the antipodal map. For example, (1.5) is shown
to hold whenever χA ′ has a nonzero projection onto each eigenspace of the Laplace

operator; this is an analogue (or better, a replacement) of the invertibility condition
mentioned above. We also obtain (1.5) in other situations, in particular in all cases
where A ′ is symmetric, i.e., A ′

= −A ′. We also show that such an implication always
holds when f3 is replaced by f4.

Results of Section 4 depend on an analysis of f̂N (Dk1
, . . . , DkN

), where Dk is the
representation of SO(n) on spherical harmonics of degree k. This analysis brings in

the second topic mentioned above, which is developed in Section 5 of this paper.
It concerns the decomposition of the representation Dk1

⊗ · · · ⊗ DkN
of SO(n), to-

gether with one extra piece of structure. Namely, we are interested in when the trivial
representation D0 is contained in this tensor product, and in addition,

(1.6) zk1
⊗ · · · ⊗ zkN

has a nontrivial component in W0,

where W0 is the space on which the tensor product representation acts trivially, and

zk denotes the zonal harmonic of degree k on Sn−1. We show that if kν are positive
integers satisfying k1 ≤ · · · ≤ kN , then (1.6) holds if and only if

(1.7) k1 + · · · + kN−1 ≥ kN , and k1 + · · · + kN is even.

A key point in demonstrating the equivalence of (1.6) and (1.7) is to show that each
one is equivalent to

(1.8)

∫

Sn−1

zk1
(x) · · · zkN

(x) dv(x) 6= 0.

This in turn is an integral of a product of Gegenbauer polynomials, analyzed in
slightly greater generality in Lemma 5.2.

As we have mentioned, the material of Section 5 can be appreciated independently
of the first topic. (One small exception: the proof of Proposition 5.5 makes use of
Proposition 4.2.) One could proceed directly from here to Section 5.

Acknowledgments Thanks to Ken McLaughlin and Ivan Cherednik for discussions
on material in Section 5. Thanks also to a referee who prodded us to strengthen

our original results on the material of Section 5. The authors’ research has been
supported by NSF grants, DMS-9705288 and DMS-9877077, respectively.

2 The Case of a Compact Abelian Group

In this section we assume G is a compact abelian group. Then its dual Ĝ is a discrete
abelian group. If we define the Fourier transform of ϕ ∈ L2(G):

(2.1) ϕ̂(ξ) =

∫

G

ϕ(y)ξ(y) dm(y),
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then

(2.2) ϕ(y) =

∑

ξ∈Ĝ

ϕ̂(ξ)ξ(y),

with convergence in norm in L2(G).

Let us set

(2.3)
gA

N+1(x1, . . . , xN ) = m(A)N+1 f A
N+1(x1, . . . , xN , 1)

= m(A ∩ x1A ∩ · · · ∩ xN A),

where 1 denotes the identity element of G. Then, for ξν ∈ Ĝ,
(2.4)

ĝA
N+1(ξ1, . . . , ξN) =

∫

GN

gA
N+1(x1, . . . , xN )ξ1(x1) · · · ξN(xN ) dm(x1) · · · dm(xN )

=

∫

GN+1

ξ1(x1) · · · ξN (xN )χA(x−1
1 y) · · ·χA(x−1

N y)χA(y)

dm(y) dm(x1) · · · dm(xN )

= χ̂A(ξ1 + · · · + ξN )χ̂A(−ξ1) · · · χ̂A(−ξN ),

where χA denotes the indicator function of A, and in our notation we are writing Ĝ

as an additive (abelian) group. In particular,

(2.5) ĝA
2 (ξ1) = χ̂A(ξ1)χ̂A(−ξ1) = |χ̂A(ξ1)|2.

By (1.4), given N ≥ 2, f A
N ≡ f B

N ⇒ gA
N ≡ gB

N . In particular, if f A
2 ≡ f B

2 , then

(2.6) |χ̂B(ξ)| = |χ̂A(ξ)|, ∀ξ ∈ Ĝ.

Thus

(2.7) χ̂B(ξ) = u(ξ)χ̂A(ξ), |u(ξ)| = 1,

with the factor u(ξ) uniquely determined for all ξ ∈ Ĝ such that χ̂A(ξ) 6= 0.

Suppose now that f A
N+1 ≡ f B

N+1, so ĝA
N+1 ≡ ĝB

N+1. If we use (2.4) for A and B, plug
in (2.7), and cancel when permitted, we see that if f A

N+1 ≡ f B
N+1 and if ξν ∈ Ĝ satisfy

(2.8) χ̂A(ξν) 6= 0, ν = 1, . . . , N, and χ̂A(ξ1 + · · · + ξN) 6= 0,

then

(2.9) u(ξ1 + · · · + ξN) = u(ξ1) · · · u(ξN ).

This allows us to prove the following uniqueness result:

Proposition 2.1 Assume A and B are measurable subsets of a compact abelian group G

and that f A
3 ≡ f B

3 . Also assume

(2.10) χ̂A(ξ) 6= 0, for each ξ ∈ Ĝ.

Then there exists y ∈ G such that B = yA, modulo sets of measure zero.
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Proof If (2.10) holds, then (2.9) holds (with N = 2) for all ξν ∈ Ĝ. Hence u is a
character on Ĝ, so, by Pontrjagin duality, there exists y ∈ G such that u(ξ) = ξ(y)

for all ξ ∈ Ĝ. Then

(2.11)

χ̂yA(ξ) =

∫

G

χA(y−1x1)ξ(x1) dm(x1)

=

∫

G

χA(x1)ξ(yx1) dm(x1)

= ξ(y)χ̂A(ξ) = χ̂B(ξ),

for all ξ ∈ Ĝ, so χyA = χB, m-a.e. on G.

Remark We make some comments on constructively producing the set A given the
data f A

3 , or equivalently gA
3 . As we have seen, χ̂A(0) = m(A) = f A

2 (y, y)−1, and for

ξ ∈ Ĝ,

(2.12) χ̂A(ξ) = v(ξ)|χ̂A(ξ)| = v(ξ)ĝA
2 (ξ)1/2,

where, for ξ ∈ ΣA = {ξ ∈ Ĝ : χ̂A(ξ) 6= 0}, v(ξ) is a complex number of absolute
value 1. Furthermore, v : ΣA → T

1 satisfies the following identities:

(2.13) v(ξ1 + · · · + ξN ) = ΦN (ξ1, . . . , ξN)v(ξ1) · · · v(ξN ),

whenever ξ1, . . . , ξN , ξ1 + · · · + ξN ∈ ΣA, with

(2.14) ΦN(ξ1, . . . , ξN) =
ĝA

N+1(ξ1, . . . , ξN)

[ĝA
2 (ξ1) · · · ĝA

2 (ξN )ĝA
2 (ξ1 + · · · + ξN)]1/2

.

It follows from the argument above that if ΣA = Ĝ then v is uniquely determined on

Ĝ by f A
3 , up to multiplication by a character u(ξ) = ξ(y) on Ĝ. We want to describe

a constructive determination of v(ξ). For simplicity we take G = T
1, so Ĝ = Z.

If |χ̂A(k)| 6= 0 for all k ∈ Z, then we can pick any α ∈ T
1, set v(1) = α, and define

v(k) inductively for k ∈ Z
+ by

(2.15)
v(2) = v(1)2

Φ2(1, 1), v(3) = v(1)v(2)Φ2(1, 2), . . .

v(k) = v(1)v(k − 1)Φ2(1, k − 1),

while v(−k) = v(k). Note that the construction uses only f A
2 and f A

3 , and of course
knowledge of f A

3 determines f A
2 .

We now drop the hypothesis (2.10). Let us set

(2.16) ΣA = {ξ ∈ Ĝ : χ̂A(ξ) 6= 0},

and let LA be the subgroup of Ĝ generated by ΣA. If LA 6= Ĝ, consider

(2.17) HA = {y ∈ G : ξ(y) = 1, ∀ξ ∈ LA},
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a closed subgroup of G. Note that, for y ∈ G, ξ ∈ Ĝ,

(2.18) χ̂yA(ξ) = ξ(y)χ̂A(ξ),

which equals χ̂A(ξ) if y ∈ HA, so

(2.19) y ∈ HA ⇒ yA = A (modulo sets of measure zero).

Thus A = p−1(A ′) where p : G → G/HA = G ′ is the natural projection and A ′
=

A/HA. Then the subgroup Ĝ ′ spanned by ΣA ′ is all of Ĝ ′. Hence we can work under
the hypothesis that

(2.20) LA = Ĝ.

Suppose now that f A
N+1 ≡ f B

N+1, with N + 1 ≥ 2. We have the following data to
work with: a map

(2.21) u : ΣA → T
1
= {z ∈ C : |z| = 1},

satisfying (2.7) and having the property

(2.22) ξ1, . . . , ξN , ξ1 + · · · + ξN ∈ ΣA ⇒ u(ξ1 + · · · + ξN) = u(ξ1) · · · u(ξN ).

Also we have u(0) = 1 and ξ ∈ ΣA ⇒ −ξ ∈ ΣA and u(−ξ) = u(ξ)−1. The following
is a key result.

Lemma 2.2 Assume f A
N ≡ f B

N for all N. Then the map u : ΣA → T
1 has a unique

extension to a character on LA.

Proof Any ζ ∈ LA can be written

(2.23) ζ = ξ1 + · · · + ξM , ξν ∈ ΣA.

It is natural to try to set

(2.24) u(ζ) = u(ξ1) · · · u(ξM).

We need to check that if also

(2.25) ζ = η1 + · · · + ηN , ηµ ∈ ΣA,

then

(2.26) u(ξ1) · · · u(ξM) = u(η1) · · · u(ηN ).

If ζ ∈ ΣA there is no problem, since (2.22) applies. In general, note that −ηµ ∈ ΣA

and

(2.27) ξ1 + · · · + ξM + (−η1) + · · · + (−ηN ) = 0 ∈ ΣA,
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so (2.22) implies

(2.28) u(ξ1) · · · u(ξM)u(−η1) · · · u(−ηN ) = u(0) = 1,

and we have (2.26). Thus (2.24) uniquely extends u to u : LA → T
1, and it is routine

to verify that this is a character on LA.

With this in hand, we can give a harmonic analysis proof of Proposition 1.2, for G

abelian, quite different from the ergodic theory proof given in [RST].

Proposition 2.3 Let A, B ⊂ G, a compact abelian group. If f A
N ≡ f B

N for all N then

there exists y ∈ G such that B = yA, modulo sets of measure zero.

Proof As mentioned, we can reduce to the case when (2.20) holds. We know that
(2.7) holds, for u : ΣA → T

1 satisfying the conditions of Lemma 2.2. Hence (2.7)
holds with u a character of Ĝ, i.e., u(ξ) = ξ(y) for some y ∈ G. This gives B = yA,

as desired.

3 Results for Nonabelian Groups

We now extend our considerations to the case where G is a compact, noncommu-
tative group. We still have (1.8), so m(A) is determined by f A

2 , and we continue to
define gA

N+1 by (2.3), where we denote the identity element of G by 1. The Fourier

analysis used in the abelian case is extended as follows.

Let π be a unitary representation of G; here and below we make the convention
that all unitary representations considered are finite dimensional, in order to shorten
our terminology. Given an integrable function g on G, we define

(3.1) ĝ(π) =

∫

G

g(x)π(x) dm(x).

Now if πk are unitary representations of G, we have
(3.2)

ĝA
N+1(πk1

, . . . , πkN
) =

∫

GN

gA
N+1(x1, . . . , xN )πk1

(x1) ⊗ · · · ⊗ πkN
(xN )

dm(x1) · · · dm(xN )

=

∫

GN+1

πk1
(x1) ⊗ · · · ⊗ πkN

(xN )χA(x−1
1 y) · · ·χA(x−1

N y)χA(y)

dm(y) dm(x1) · · · dm(xN )

= χ̂A(πk1
⊗ · · · ⊗ πkN

) · [χ̂A(πk1
)∗ ⊗ · · · ⊗ χ̂A(πkN

)∗].

In particular, for each unitary representation π of G,

(3.3) ĝA
2 (π) = χ̂A(π)χ̂A(π)∗.
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If one can say that χ̂A(π) is invertible, then the identity of gA
2 and gB

2 implies that

(3.4) χ̂B(π) = χ̂A(π)u(π),

for a uniquely determined unitary factor u(π). Using this we can prove the following

result, which extends Proposition 2.1.

Proposition 3.1 Assume χ̂A(π) is invertible for each irreducible unitary representation

π of G. If f A
3 ≡ f B

3 then there exists g ∈ G such that B = Ag.

Proof The hypotheses imply χ̂A(π) is invertible for each unitary representation of
G, irreducible or not. Also we have f B

2 ≡ f A
2 and gB

2 ≡ gA
2 , and (3.3) holds for each

unitary representation π. Thus, associated to each unitary representation π of G on

Vπ there is a uniquely determined unitary map u(π) on Vπ such that (3.4) holds.
It is routine to verify several properties of the correspondence π 7→ u(π). For

example,

(3.5) u(π1 ⊕ π2) = u(π1) ⊕ u(π2).

Also, given unitary T : Vπ → V ,

(3.6) u(TπT−1) = Tu(π)T−1.

Furthermore, if π is a unitary representation of G on C
n, with contragradient repre-

sentation π̄, whose matrix entries are the complex conjugates of those of π, then

(3.7) χ̂A(π̄) = χ̂A(π),

and hence

(3.8) u(π̄) = u(π).

Next, given gB
3 ≡ gA

3 , the N = 2 case of (3.2) yields, for any unitary representations
π1 and π2 of G,

(3.9) χ̂B(π1 ⊗ π2) · [χ̂B(π1)∗ ⊗ χ̂B(π2)∗] = χ̂A(π1 ⊗ π2) · [χ̂A(π1)∗ ⊗ χ̂A(π2)∗].

If we apply (3.4) with π = π1, π2, and π1 ⊗ π2, and use the invertibility hypothesis,
we obtain

(3.10) u(π1 ⊗ π2) = u(π1) ⊗ u(π2)

for all unitary representations π1 and π2 of G.
Since the map π 7→ u(π) satisfies (3.5), (3.6), (3.8), and (3.10), we can apply the

Tanaka duality theorem (cf. [C], p. 211) to conclude that there exists g ∈ G such that

(3.11) u(π) = π(g)

for all unitary representations π of G. Then (3.4) gives B = Ag, as desired.

The invertibility hypothesis on χ̂A(π) plays an important role in the proof of
Proposition 3.1. However, as we will see in the next section, this invertibility con-
dition is not satisfied in what is arguably the most important case.
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4 The Spherical Case

Let us consider G = SO(n), acting on the unit sphere Sn−1
= SO(n)/K, with

K = SO(n − 1), pictured as acting on the first n − 1 coordinates of a point in R
n.

Assume n ≥ 3. We have the projection p : SO(n) → Sn−1. Take A ′ ⊂ Sn−1 and

set A = p−1(A ′) ⊂ SO(n). We examine χ̂A(πk) when πk is an irreducible represen-
tation of SO(n) arising in the natural action of SO(n) on L2(Sn−1). We recall these
representations, on the eigenspaces of the Laplace operator ∆S on Sn−1. If we set

(4.1) ν =

(

−∆S +
( n − 2

2

) 2
) 1/2

,

then

(4.2) Spec ν =

{

νk =
n − 2

2
+ k : k = 0, 1, 2, . . .

}

,

and SO(n) acts irreducibly on Vk, the νk-eigenspace of ν; we denote this represen-
tation by Dk. As is well known, each space Vk has a one-dimensional subspace of

vectors fixed by the action of K, known as zonal harmonics. Pick a zonal harmonic
zk ∈ Vk, of unit norm.

Now if A = p−1(A ′), then χ̂A(π) is nonzero for an irreducible representation π of
SO(n) only if π is equivalent to some Dk. Furthermore, since χA is invariant under

the right action of K, we have χ̂A(Dk)X = 0 for the action X of any element of the
Lie algebra of K. Hence

(4.3) v ∈ Vk, v ⊥ zk ⇒ χ̂A(Dk)v = 0.

Hence, for v ∈ Vk, we have

(4.4) χ̂A(Dk)v = (v, zk)χ̂A(Dk)zk = zk(p0)(v, zk)PkχA ′ ,

where p0 = p(1) ∈ Sn−1 is the “north pole” and Pk is the orthogonal projection of
L2(Sn−1) onto Vk. For the second identity, see (3.13) on p. 121 of [T]. As shown in

(3.27) on p. 123 of [T], we have zk(p0) = d
1/2
k = (dimVk)1/2, if we pick zk(p0) > 0.

Using (4.4) we compute that, for v ∈ Vk,

(4.5) χ̂A(Dk)∗v = zk(p0)(v, χA ′)zk.

Hence, for v ∈ Vk,

(4.6) χ̂A(Dk)χ̂A(Dk)∗v = dk(v, χA ′)PkχA ′ .

Also note that

(4.7)

Tr χ̂A(Dk)χ̂A(Dk)∗ = Tr χ̂A(Dk)∗χ̂A(Dk)

= ‖χ̂A(Dk)zk‖
2

= d
1/2
k ‖PkχA ′‖2.
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We are ready to prove the following result.

Proposition 4.1 Suppose A = p−1(A ′) and B = p−1(B ′) are subsets of SO(n) satis-

fying f A
2 ≡ f B

2 . Assume PkχA ′ 6= 0. Then

(4.8) PkχB ′ = ukPkχA ′

for some uk = ±1. Furthermore,

(4.9) χ̂B(Dk) = ukχ̂A(Dk).

Proof Recall that f A
2 ≡ f B

2 ⇒ gA
2 ≡ gB

2 . Using (3.3), (4.6) and (4.7), we see that

gA
2 = gB

2 implies that PkχA ′ and PkχB ′ span the same linear subspace of Vk and
have the same norms. This gives (4.8), with |uk| = 1, but also these are real-valued
functions, so uk = ±1. Finally, (4.9) follows from (4.8), via (4.4).

Looking at gA
N+1 for larger N , we see that, if vk ∈ Vk,

(4.10)
ĝA

N+1(Dk1
, . . . , DkN

)vk1
⊗ · · · ⊗ vkN

= (dk1
· · · dkN

)1/2(vk1
, χA ′) · · · (vkN

, χA ′)

χ̂A(Dk1
⊗ · · · ⊗ DkN

)zk1
⊗ · · · ⊗ zkN

.

If we assume A = p−1(A ′), B = p−1(B ′) and that (4.8) holds for all k = kν , we have

(4.11)

ĝB
N+1(Dk1

, . . . , DkN
)vk1

⊗ · · · ⊗ vkN

= (dk1
· · · dkN

)1/2uk1
· · · ukN

(vk1
, χA ′) · · · (vkn

, χA ′)

χ̂B(Dk1
⊗ · · · ⊗ DkN

)zk1
⊗ · · · ⊗ zkN

.

Let us assume

(4.12) Pkν
χA ′ 6= 0, ∀kν = k1, . . . , kN .

Then we can pick vkν
= Pkν

χA ′ and deduce that, if (4.10) and (4.11) are equal, then

(4.13)
χ̂B(Dk1

⊗ · · · ⊗DkN
)zk1

⊗ · · · ⊗ zkN

= uk1
· · · ukN

χ̂A(Dk1
⊗ · · · ⊗ DkN

)zk1
⊗ · · · ⊗ zkN

.

The representation Dk1
⊗· · ·⊗DkN

splits into irreducibles, and we obtain the following
result.

Proposition 4.2 In the setting of Proposition 4.1, assume (4.12) holds, and assume

(4.14) f A
N+1 ≡ f B

N+1.

If D` occurs in the representation Dk1
⊗ · · · ⊗ DkN

, and if zk1
⊗ · · · ⊗ zkN

has a nonzero

component in W`, the subspace where SO(n) acts like (copies of) D`, then

(4.15) u` = uk1
· · · ukN

,

provided we also have P`χA ′ 6= 0.
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It is useful to have a variant of Proposition 4.2, which we obtain via the following
calculation:

(4.16)

f̂ A
N (πk1

, . . . , πkN
) =

∫

GN+1

πk1
(x1) ⊗ · · · ⊗ πkN

(xN )χA(x−1
1 y) · · ·χA(x−1

N y)

dm(y) dm(x1) · · · dm(xN )

= χ̂G(πk1
⊗ · · · ⊗ πkN

) · [χ̂A(πk1
)∗ ⊗ · · · ⊗ χ̂A(πkN

)∗].

Here χG ≡ 1, so χ̂G(π) is given by (4.16), i.e., χ̂G(πk1
⊗ · · · ⊗ πkN

) is the orthogonal
projection of Vk1

⊗· · ·⊗VkN
onto W0. The arguments leading to Proposition 4.2 also

yield the following result.

Proposition 4.3 In the setting of Proposition 4.1, assume

(4.17) f A
N ≡ f B

N , Pkν
χA ′ 6= 0, 1 ≤ ν ≤ N.

Assume the following holds:

(4.18)

D0 occurs in Dk1
⊗ · · · ⊗ DkN

, and zk1
⊗ · · · ⊗ zkN

has a nonzero component in W0,

Then

(4.19) 1 = uk1
· · · ukN

.

In Section 5 we will show that if kν are positive integers satisfying k1 ≤ · · · ≤ kN ,
then (4.18) holds if and only if

(4.20) k1 + · · · + kN−1 ≥ kN , and k1 + · · · + kN is even.

Here we will use various special cases of this result to derive specific uniqueness re-
sults from Proposition 4.3. One special case is when

(4.21) k1 + · · · + kN−1 = kN .

Using this we can establish the following analogue of Proposition 2.1; note that this

result does not follow from Proposition 3.1.

Proposition 4.4 Suppose we have A ′, B ′ ⊂ Sn−1, with inverse images A, B ⊂ SO(n),

n ≥ 3. Assume f A
3 ≡ f B

3 , and assume

(4.22) PkχA ′ 6= 0, ∀k ∈ Z
+.

Then either B ′
= A ′ or B ′

= −A ′, the image of A ′ under the antipodal map.
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Proof We apply Proposition 4.3 with k1 = 1, k2 = k, k3 = k + 1, to obtain PkχB ′ =

ukPkχA ′ for each k ∈ Z
+, with uk = ±1 and

(4.23) 1 = u1ukuk+1, ∀k ∈ Z
+.

Thus

(4.24) u1 = 1 ⇒ uk = 1, u1 = −1 ⇒ uk = (−1)k,

for all k ∈ Z
+. Hence one of the following holds for all k ∈ Z

+: either

(4.25) PkχB ′ = PkχA ′ or PkχB ′ = (−1)kPkχA ′ .

In the first case B ′
= A ′ and in the second case B ′

= −A ′.

The hypothesis (4.22) holds for “generic” A ′ ⊂ Sn−1. Just to give one family of

examples, we mention the following. Given r ∈ (−1, 1), let A ′

r = {x ∈ Sn−1 : r <
xn ≤ 1}. Then the inner product (χA ′

r
, zk) is real-analytic in r for each k and not

identically zero for any k. It follows that, for all but countably many r ∈ (−1, 1),
(χA ′

r
, zk) 6= 0 for all k, so (4.22) holds for such A = A ′

r .

Our next goal is to extend the scope of Proposition 4.4 to various classes of subsets
of Sn−1 for which the hypothesis (4.22) does not hold. In analogy with (2.16), given
a measurable set A ′ ⊂ Sn−1, we set

(4.26) ΣA = {k ∈ Z
+ : PkχA ′ 6= 0}.

We want to treat sets for which ΣA is not all of Z
+.

For example, suppose A ′ ⊂ Sn−1 is symmetric, i.e., A ′
= −A ′ (modulo null

sets); equivalently, χA ′ is an even function. Clearly A ′ is symmetric if and only if ΣA

consists only of even integers. We will obtain a completely satisfactory extension of
Proposition 4.4 to the symmetric setting, making use of the following special case of
the equivalence of (4.18) and (4.20), namely (4.20) holds with N = 3, k1 ≤ k2 ≤ k3,
and

(4.27) k1 + k2 ≥ k3, k1 + k2 + k3 even.

Hence, given f A
3 ≡ f B

3 , we can apply Proposition 4.3 and conclude that

(4.28) k1, k2, k3 ∈ ΣA, satisfying (4.28) ⇒ uk1
uk2

uk3
= 1.

In particular, we have

(4.29) k ∈ ΣA, k even ⇒ uk = 1, if f A
3 ≡ f B

3 .

This immediately implies the following.

Proposition 4.5 Let A ′, B ′ ⊂ Sn−1 be measurable and assume A ′ is symmetric. Then

(4.30) f A
3 ≡ f B

3 ⇒ B ′
= A ′.
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The result (4.29) holds whether or not A ′ is symmetric, but it is not always effec-
tive. For example, we say A ′ ⊂ Sn−1 is anti-symmetric provided −A ′

= Sn−1 \ A ′

(modulo null sets); equivalently, χA ′ − 1/2 is an odd function. Thus A ′ is anti-
symmetric if and only if all the nonzero elements of ΣA are odd integers. Clearly the
results (4.28)–(4.29) are not effective when A ′ is anti-symmetric.

Next we use the special case of (4.18) ⇔ (4.20) that arises when N = 4 and

(4.31) k1 ≤ k2 = k3 = k4, k1 + k2 even.

Using this, we can establish the following.

Proposition 4.6 If A ′, B ′ ⊂ Sn−1 are measurable and f A
4 ≡ f B

4 , then either B ′
= A ′

or B ′
= −A ′.

Proof As in Proposition 4.5, we have uk = 1 for all even k. Meanwhile, since Propo-
sition 4.3 is applicable when N = 4 and (4.31) holds, we have

(4.32) k1, k2 ∈ ΣA, k1 = k2 mod 2 ⇒ uk1
= u3

k2
= uk2

.

In particular,

(4.33) k1, k2 ∈ ΣA, both odd ⇒ uk1
= uk2

.

Hence either uk = 1 for all odd k or uk = −1 for all odd k ∈ ΣA, and in these
respective cases we have B ′

= A ′ or B ′
= −A ′.

5 Decomposition of Products of Zonal Harmonics

As before, Dk denotes the representation of SO(n) on Vk, the k-th eigenspace of

the Laplace-Beltrami operator on Sn−1, obtained by restricting the natural action
of SO(n) on L2(Sn−1), and zk ∈ Vk the zonal harmonic (of unit L2-norm). We prove
the following.

Proposition 5.1 Let kν be positive integers, satisfying k1 ≤ · · · ≤ kN . The following

conditions are equivalent.

(5.1) k1 + · · · + kN−1 ≥ kN , and k1 + · · · + kN is even,

(5.2) Dk1
⊗ · · · ⊗ DkN

contains D0 and zk1
⊗ · · · ⊗ zkN

has a nontrivial

component in W0 (the subspace of Vk1
⊗ · · · ⊗ VkN

on which SO(n)

acts trivially),

(5.3)
Zk1···kN

(x1, . . . , xN ) =

∫

SO(n)

zk1
(g−1x1) · · · zkN

(g−1xN ) dm(g)

is not identically zero,
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(5.4)

∫

Sn−1

zk1
(x) · · · zkN

(x) dv(x) 6= 0.

The equivalence of (5.1) with (5.2) is what was used in Section 4, but the other
two conditions arise naturally in establishing this equivalence.

To begin this chain of equivalences, we note that generally, if π is a unitary repre-
sentation of a compact group G on Vπ , the orthogonal projection of z ∈ Vπ onto the

subspace where G acts trivially is given by

(5.5) P0z =

∫

G

π(g)z dm(g).

Identifying the tensor product space Vk1
⊗ · · · ⊗ VkN

with a space of functions on
(Sn−1)N , we are looking at the function given in (5.3), so we see that (5.2) ⇔ (5.3).
Furthermore, if we evaluate Zk1···kN

(x1, . . . , xN ) on the diagonal and integrate we ob-
tain the integral in (5.4), so clearly (5.4) ⇒ (5.3).

To analyze the integrals in (5.3)–(5.4) further, we recall that, if x = (x1, . . . , xn) ∈
Sn−1 ⊂ R

n, then

(5.6) zk(x) = bnkC
(n−1)/2
k (xn),

where bnk are nonzero constants and Cα
k (t) are Gegenbauer polynomials, given by

(5.7) (1 − 2tr + r2)−α
=

∞
∑

k=0

Cα
k (t)rk.

See, e.g., Chapter 4 of [T]. The Gegenbauer polynomials have the following properties
for each α > 0. The function Cα

k (t) is a polynomial of degree k in t , even if k is even
and odd if k is odd. The set {Cα

j (t) : 0 ≤ j ≤ k} spans the linear space Pk of
polynomials of degree k in t , and it is an orthogonal basis with respect to the inner

product

(5.8) 〈p, q〉α =

∫ 1

−1

p(t)q(t)(1 − t2)α−1/2 dt.

In particular, the equivalence of (5.1) and (5.4) is a consequence of the following

result.

Lemma 5.2 Given α > 0 and positive integers k1 ≤ · · · ≤ kN , then

(5.9)

∫ 1

−1

Cα
k1

(t) · · ·Cα
kN

(t)(1 − t2)α−1/2 dt 6= 0

if and only if (5.1) holds.
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Proof The necessity of (5.1) for (5.9) is straightforward. In fact the integrand in
(5.9) has the parity of k1 + · · · + kN , so the integral surely vanishes if this sum is odd.

Furthermore the integral is equal to

(5.10) 〈Cα
k1
· · ·Cα

kN−1
,Cα

kN
〉α,

the inner product given by (5.8). But Cα
k1

(t) · · ·Cα
kN−1

(t) is a polynomial of degree

k1 + · · · + kN−1 while Cα
kN

(t) is orthogonal to all polynomials of degree < kN .
To establish the reverse implication in Lemma 5.2, we begin with the following

identity, which holds whenever α > 0 and k1 ≤ k2 ≤ k3 are positive integers satisfy-
ing

(5.11) k1 + k2 ≥ k3, and k1 + k2 + k3 even.

Namely, as shown in [Vil], pp. 490–491,
(5.12)

∫ 1

−1

Cα
k1

(t)Cα
k2

(t)Cα
k3

(t)(1 − t2)α−1/2 dt

=
21−2απ

Γ(α)4

Γ(` + 2α)Γ(` − k1 + α)Γ(` − k2 + α)Γ(` − k3 + α)

Γ(` + α + 1)Γ(` − k1 + 1)Γ(` − k2 + 1)Γ(` − k3 + 1)
.

Note that under these hypotheses all nine arguments of the gamma function are pos-
itive numbers, so all the numbers in (5.12) are positive. Equivalently, we have

(5.13) Cα
k1

(t)Cα
k2

(t) =

∑

`∈S(k1 ,k2)

σα
k1,k2

(`)Cα
` (t),

where

(5.14) S(k1, k2) = {` ∈ Z : |k1 − k2| ≤ ` ≤ k1 + k2 and ` = k1 + k2 mod 2},

and σα
k1,k2

(`) > 0 whenever ` ∈ S(k1, k2) and α > 0. (A formula for these coefficients
is written down in [Vil], p. 491.) It follows inductively that

(5.15) Cα
k1

(t) · · ·Cα
kN−1

(t) =

∑

`∈S(k1,...,kN−1)

σα
k1,...,kN−1

(`)Cα
` (t),

where

(5.16)
S(k1, . . . , kN−1) = {` ∈ Z : µ(k1, . . . , kN−1) ≤ ` ≤ ν(k1, . . . , kN−1) and

` = k1 + · · · + kN−1 mod 2},

for certain integers µ(k1, . . . , kN−1) and ν(k1, . . . , kN−1), which will be discussed be-
low, and σα

k1,...,kN−1
(`) > 0 whenever ` ∈ S(k1, . . . , kN−1). To prove the lemma, it

remains to show that, when k1 ≤ · · · ≤ kN and (5.1) holds,

(5.17) kN ∈ S(k1, . . . , kN−1).
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To proceed, it is clear from (5.13)–(5.14) that, when N − 1 ≥ 2,

(5.18) ν(k1, . . . , kN−1) = ν(k1 + · · · + kN−2) + kN−1,

and hence

(5.19) ν(k1, . . . , kN−1) = k1 + · · · + kN−1.

Furthermore, we have

(5.20) µ(k1, . . . , kN−1) = min{|kN−1 − λ| : λ ∈ S(k1, . . . , kN−2)} ≤ kN−1.

The results (5.19)–(5.20) readily yield (5.17) when k1 ≤ · · · ≤ kN and (5.1) holds, so
Lemma 5.2 is proven.

At this point we have (5.1) ⇔ (5.4) ⇒ (5.3) ⇔ (5.2), hence (5.1) ⇒ (5.2), which
is enough to prove the results of Section 4, but we push on with the rest of the proof
of Proposition 5.1.

Since the representations Dk all have real-valued characters, it follows from the
orthogonality relations that Dk1

⊗ · · · ⊗ DkN
contains D0 if and only if Dk1

⊗ · · · ⊗
DkN−1

contains DkN
. Hence part of the implication (5.2) ⇒ (5.1) is contained in the

following.

Lemma 5.3 Let kν be positive integers. If k1 + · · ·+ kN−1 < kN , then Dk1
⊗· · ·⊗DkN−1

does not contain DkN
.

Proof We can identify the representation space Vk of Dk with the space of harmonic

polynomials on R
n, homogeneous of degree k. Let X ∈ so(n) be such that exp θX is

rotation through angle θ in the x1x2-plane. Then Dk(exp tX) = exp tXk, and (1/i)Xk

has spectrum in [−k, k] and contains these endpoints. It follows that Dk1
(exp tX) ⊗

· · ·⊗DkN−1
(exp tX) = exp tY , where (1/i)Y has spectrum contained in [−(k1 + · · ·+

kN−1), k1 + · · · + kN−1]. Now if DkN
is contained in this tensor product, kN must be

contained in this spectrum, so Lemma 5.3 is proven.

The following result suffices to complete the proof of Proposition 5.1.

Lemma 5.4 Let k1, . . . , kN be positive integers. If k1 + · · ·+ kN is odd, then the function

Zk1···kN
defined by (5.3) is identically zero.

Proof Define τ ∈ SO(n) by τ (x1, x2, x3, . . . , xn) = (−x1, x2, x3, . . . , xn−1,−xn).
Then

(5.21)
Zk1···kN

(x1, . . . , xN) =

∫

SO(n)

zk1
(τg−1x1) · · · zkN

(τg−1xN ) dm(g)

= (−1)k1+···+kN Zk1···kN
(x1, . . . , xN),
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the first identity by right-invariance of Haar measure on SO(n) and the second by

(5.22) zk(τx) = (−1)k
zk(x),

which follows from (5.6) and the observation about the parity of Cα
k (t).

Proposition 5.1 bears directly on Proposition 4.3. On the other hand, Proposi-
tion 4.2 dealt with cases where D` is contained in Dk1

⊗ · · · ⊗ DkN
and

(5.23) zk1
⊗ · · · ⊗ zkN

has a nonzero component in W`,

the space where Dk1
⊗ · · · ⊗ DkN

acts like copies of D`. The following result implies
that the scope of Proposition 4.2 is not larger than that of Proposition 4.3.

Proposition 5.5 If (5.23) holds, then z` ⊗ zk1
⊗ · · · ⊗ zkN

has a nonzero component in

W0, the space where D` ⊗ Dk1
⊗ · · · ⊗ DkN

acts trivially.

Note that the hypothesis (5.23) is equivalent to the statement that

(5.24)

∫

SO(n)

χ`(g)zk1
(g−1x1) · · · zkN

(g−1xN ) dm(g) = Y`k1···kN
(x1, . . . , xN )

is not identically zero, where χ`(g) = Tr D`(g). Note also that we can apply Lemma
5.3 to show that if (5.23) holds then the largest number in {`, k1, . . . , kN} is not

greater than the sum of the rest of these numbers. To prove Proposition 5.5, it re-
mains to show that if (5.23) holds then ` + k1 + · · · + kN must be even.

This is straightforward if n is even. Then −I belongs to SO(n), and we have

(5.25)
Y`k1···kN

(x1, . . . , kN) =

∫

SO(n)

χ`(−g)zk1
(−g−1x1) · · · zkN

(−g−1xN ) dm(g)

= (−1)`+k1+···+kN Y`k1···kN
(x1, . . . , xN ),

the first identity holding since g 7→ −g is measure-preserving on SO(n) for n even
and the second since

(5.26) χ`(−g) = (−1)`χ`(g), zk(−x) = (−1)k
zk(x).

If n is odd the argument involving (5.25) does not work, but the following argu-

ment works for all n ≥ 3. This argument makes essential use of Proposition 4.2, and
it is the one place in this section where we depend on results from Section 4.

To proceed, pick a measurable set A ′ ⊂ Sn−1 satisfying hypothesis (4.22). As
noted in Section 4, such sets exist in great profusion. Set B ′

= −A ′, so f A
N ≡ f B

N for

all N . We see that the numbers uk are well defined by (4.8) for all k ∈ Z
+, and in fact

uk = +1 for k even and −1 for k odd, i.e., uk = (−1)k. Now suppose (5.23) holds. By
Proposition 4.2 we can deduce that u` = uk1

· · · ukN
, i.e., (−1)`

= (−1)k1+···+kN . This
forces ` + k1 + · · · + kN to be even and completes the proof of Proposition 5.5.
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