
Ergod. Th. & Dynam. Sys. (1989), 9, 191-205
Printed in Great Britain
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Abstract. M. Ratner's theorem on the rigidity of horocycle flows is extended to the
rigidity of horospherical foliations on bundles over finite-volume locally-symmetric
spaces of non-positive sectional curvature, and to other foliations of the same
algebraic form.

1. Introduction
The geodesic flow on the unit tangent bundle TlX of a connected, finite-volume
manifold X of constant negative curvature is Anosov; the associated strongly stable
foliation (or, if you prefer, the strongly unstable foliation) is called the horospherical
foliation on TXX. If X is a surface, which means TXX is 3-dimensional, then the
leaves of the horospherical foliation are 1-dimensional; the leaves can be para-
metrized by arc-length to become the orbits of a flow, called the horocycle flow, on
T'X. It was shown by M. Ratner [7] that if the horocycle flows on the unit tangent
bundles of two connected, finite-volume surfaces Xx and X2 of constant negative
curvature are measurably isomorphic, then Xt and X2 are isometric (up to the choice
of a normalizing constant). In short, Ratner's theorem can be described as saying
that horocycle flows are rigid: their measure-theoretic structure completely deter-
mines their geometric structure.

THEOREM 1.1. (Ratner Rigidity Theorem [7, Theorem 2]). Let X, and X2 be two
connected, finite-volume surfaces of constant negative curvature, and assume vol X,
= vol X2.Ifil/:T1Xi-*T1X2 is a measure-preserving, invertible Borel map that conju-
gates the horocycle flow H*il) on T'X, to the horocycle flow H<2) on TXX2 (i.e., if
«/»° H(,2) = H\l) O \JJ), then there is an isometry <j>:Xt -* X2, and some toeR, such that
ij/ is the differential of<f>, composed with the translation //(,2) (a.e.). •

If X is a higher-dimensional manifold of constant negative curvature, then the
leaves of the horospherical foliation are not 1-dimensional - they are higher-
dimensional (immersed) submanifolds of TlX - so the leaves are not the orbits of
a (smooth) flow; but each leaf inherits a Riemannian metric from the metric on
TlX, and the natural analogue in higher dimensions of a conjugacy of horocycle
flows is a map that takes each leaf of one horospherical foliation bijectively, via an
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isometry, onto a leaf of another horospherical foliation. Ratner's theorem extends
to this setting.

THEOREM 1.2. (Flaminio [2]). Let X, andX2 be two connected, finite-volume manifolds
of constant negative curvature; assume dim Xi>2 and vol X ^ v o l X2. If*l>: T'Xj-*
T'X2 is a measure-preserving, invertible Borel map that takes each leaf of the horo-
spherical foliation on T'X, isometrically onto a leaf of the horospherical foliation
on TlX2, then if/ is the differential of an isometry <£: X, -» X2 (a.e.). •

The setting of theorem 1.2 can be generalized by considering not the unit tangent
bundle, but other bundles over X. For example, the geodesic flow is a factor of the
frame flow F, on the principal bundle &X of positively-oriented orthonormal frames
over X; though F, is not generally Anosov, it has a strongly stable foliation, which
we call the horospherical foliation on 9X. (Under the factor map 9X-* T'X, each
leaf of the horospherical foliation on 2FX covers a leaf of the horospherical foliation
on T'X.) It was essentially shown by D. Witte (see Theorem 1.4) that the horo-
spherical foliation on SFX is rigid; L. Flaminio (in conversation) remarked that this
suggests the horospherical foliations on intermediate bundles - bundles between
8FX and T'X - should also be rigid. This paper proves the rigidity of the horo-
spherical foliations on these intermediate bundles, and of other similar foliations;
the proof is based on M. Ratner's fundamental insights.

Definition. Of course &X is a principal SO(n) -bundle, where n = dimX. For the
purpose of stating Theorem 1.3, we'll say that an SO(n)-bundle % over X is
intermediate between 3*X and T'X if there is a pair of surjective SO(«)-bundle
maps 9X-* % and %-* T'X whose composition is the natural quotient map 9X-*
TlX. (In other words, "S is intermediate between &X and T'X if there is some
closed subgroup E of SO(n- l ) such that % is the associated fiber bundle of 3FX
with fiber SO(n)/E.) The horospherical foliation on 3FX pushes to a foliation (called
the horospherical foliation) on any bundle intermediate between SFX and T'X.

THEOREM 1.3. Let Xx and X2 be two connected, finite-volume manifolds of constant
negative curvature; assume vol X, = vol X2. Let %t be a bundle over X, intermediate
between &Xt and T'X, (for i = 1,2). If there is a measure-preserving, invertible Borel
map i/*: £,-» %2 that takes each leaf of the horospherical foliation on g, isometrically
onto a leaf of the horospherical foliation on %2, then Xx andX2 are isometric manifolds.

a
The conclusion of Theorem 1.3 is weaker than that of Theorem 1.2: we do not

assert that ip is the differential of an isometry, but only that there is some isometry
from X, onto X2; the precise form of t/» (and other aspects of the main theorem)
is much easier to state in algebraic, rather than geometric, form: as motivation, we
present some highlights of the algebraic formulation of Flaminio's Theorem (1.2)
(details are in [2]). Let X be the universal cover of a connected, finite-volume
manifold X of constant negative curvature. The identity component G = SO(1, n)
of the isometry group of X is a simple Lie group; it acts simply transitively on
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(on the left, say) so, by choosing a basepoint in S'X, we may identify 3FX with G.
There is a (unipotent) subgroup U of G, a so-called horospherical subgroup, such
that the foliation of G into the orbits of the action of U by right translations is
precisely the horospherical foliation on &X. Now X is the quotient of X by a
discrete group F of isometries; so 3FX = Y\G, and the horospherical foliation on
&X is the foliation of F\G into orbits of the action of U by right translations.

Definition. Recall that a matrix A is unipotent if it has no eigenvalue other than 1
(i.e., if A - Id is nilpotent). An element u of a Lie group G is unipotent if Adw is
a unipotent linear transformation on the Lie algebra of G; a subgroup U is unipotent
if every element of U is a unipotent element of G. Any connected, unipotent
subgroup of G is nilpotent (cf. Engel's Theorem [5, p. 2]).

There is a compact subgroup M of G that normalizes U and intersects U trivially,
such that TlX is the quotient of &X by M: T'X = T\G/M. If sC/ and ft/ are two
leaves of the horospherical foliation on T\G whose images sUM and tUM in
F\G/M intersect, then, because M normalizes U, these two images coincide; each
leaf in the horospherical foliation on TlX can be identified (but not in a canonical
way) with U. If a leaf in one horospherical foliation is identified with a unipotent
group C/,, and a leaf in another horospherical foliation is identified with a unipotent
group U2, then Proposition 2.15 shows the assumption that the restriction of i/> to
the leaf Ux be an isometry onto the leaf U2 implies the algebraic condition that the
restriction of if/ to Ux be an affine map, i.e., the composition of a group homomorph-
ism and a translation.

With these ideas in mind, let us proceed to the statement of the main Theorem
(1.5); we'll need some terminology.

Definition. A discrete subgroup F of a Lie group G is a lattice if there is a finite
G-invariant measure on the homogeneous space F\G; the lattice is faithful if F
contains no nontrivial normal subgroup of G. Any element x of G acts by translation
on F\G; namely Tx: Fs >-» Fix for se G.

Definition. Let F and A be closed subgroups of Lie groups G and H, and suppose
a: G -* H is a group homomorphism with I""7' <= A; for any he H, the map Tah: Y\G -»
A\H.rs<-+As'Th is said to be affine.

THEOREM 1.4. (Witte [14, theorem 2.1']). Let F and A be faithful lattices in connected
Lie groups G and H. Let Tu and Tv be ergodic, unipotent translations on F\G and
A\H respectively. Ifip: F\G -* A\H is a measure-preserving Borel map that conjugates
Tu to TD, then iff is an affine map (a.e.). •

Definition. A connected Lie group G is reductive if every connected, solvable, normal
subgroup of G is central or, equivalently, if G is locally isomorphic to a direct
product G, x • • • x Gn x A, where each G, is simple, and A is abelian [11, Theorem
3.16.3, p. 232].

Notation. When we write VxiM for a group, we mean to imply that the group is
the semidirect product of V and M, i.e., that V and M are closed subgroups of G,
that V< G, that VM = G, and that VnM = e.
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The following definition formalizes the notion that, when leaves of the horos-
pherical foliation are identified with a Lie group, the restriction of i/» to a leaf of
the horospherical foliation is an affine map.

Definition. Suppose Lie groups U and VxM act ergodically on standard Borel
spaces Sf and 3~ with finite invariant measures. Assume M is compact, so 5"/M is
a standard Borel space. A measure-preserving Borel map ty-.y^ST/M is V-affine
on each U-orbit if, for a.e. se£f, there is a point t e 3~, and a surjective, continuous
homomorphism <f>: U-* V, with suij/ = tu^M for all u e U.

MAIN THEOREM 1.5. Let F and A be faithful lattices in connected reductive Lie groups
G and H, and let U and V xi M be subgroups of G and H. Assume U and V are
unipotent, and are ergodic on F\G and A\H, respectively; assume M is compact and
contains no nontrivial normal subgroup of H; and assume that VxM is essentially
free on A\H. //"</>: F\G -» A\H/M is a measure-preserving Borel map that is V-affine
on each U-orbit, then iff lifts to an affine map i//':T\G-* A\H. I.e., there is a measure-
preserving affine map iff': F\G-* A\H with Tsi// = Asijj'M (a.e.).

There are two parts to the proof of the main Theorem. First, an abstract argument
(Theorem 3.1) shows M can be replaced by CM(V); this is a big gain because V
acts by translations on A\H/CM(V), so we now have a group action, instead of
a mere foliation. If it happens to be the case that no compact subgroup of H
centralizes V, then we have reduced to the case where M = e; Theorem 1.4 applies
and we are done. In general, however, we need to generalize Theorem 1.4; this is
the second part of the proof (Theorem 4.1).

Application 1. Let X = G/K be a finite-volume locally-symmetric space of non-
positive sectional curvature; assume, for simplicity, that no flat subspace is locally
a direct factor of X (so G is semisimple). The horospherical foliation on 2FX or
on T'X will often not be ergodic; almost every ergodic component of the horo-
spherical foliation is a sub-bundle of 2FX or TXX of the form F\G/M, for some
subgroup M of K. The main theorem implies that the restriction of the horospherical
foliation to these ergodic components is rigid.

Theorem 4.1 settles the isomorphism question for a natural class of actions of
semisimple Lie groups.

Application 2. Suppose G, Hi, H2 are connected, noncompact, semisimple Lie
groups with finite center, and let A, be a faithful lattice in Ht that projects density
into the maximal compact factor of Ht. Embed G in H, and H2, and assume G
acts ergodically on Ai\Ht. Let M, be a compact subgroup of H, that centralizes G,
and contains no nontrivial normal subgroup of H{; then any measure-theoretic
isomorphism from the action of G by translations on Ai\Hi/Mt to the action of
G by translations on A2\H2/M2 lifts to an affine map Ai\Ht-* A2\H2 (a.e.).

Let G, Hf, A,, and M, be as in Application 1. As one step in an interesting
argument (in preparation) on cocycles of an action of a semisimple group, R. J.
Zimmer wanted to know that if Ht and H2 are entirely different groups, then the
G-action on A2\H2/M2 cannot be a factor of the G-action on A A ^ / M , , or even
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of a finite extension thereof. A technical version (Theorem 4.1') of Theorem 4.1
proves this.

Application 3. Suppose G, / / , , H2 are connected, noncompact, semisimple Lie
groups with finite center, and let A, be a faithful lattice in //, that projects densely
into the maximal compact factor of Ht. Embed G in Hx and H2, and assume G
acts ergodically on A,\//,. Let M, be a compact subgroup of Ht that centralizes G,
and contains no nontrivial normal subgroup of H,. If the G-action on A2\H2/M2

is a factor of some finite extension of the G-action on A,\W,/Mi, then H2 is locally
isomorphic to a factor group of H,.

Remark. From the geometric point of view, it is natural to ask whether horospherical
foliations on the unit tangent bundles of manifolds of nonconstant negative curvature
are rigid; even for surfaces, this is not known. (J. Feldman and D. Ornstein [1]
have proved a result of this type for surfaces, but they do not parametrize the leaves
of the horocycle foliation by arc-length.)

In the main theorem, the assumption on the restriction of ip to leaves of the
foliation is necessary. For example, M. Ratner [6, Theorem 3] showed that the
horocycle foliation on the unit tangent bundle of any connected, finite-volume
surface of constant negative curvature is measurably equivalent, via a map that is
a homeomorphism on leaves, to that on any other.

Acknowledgments. This work was largely supported by an NSF Postdoctoral Fellow-
ship at the University of California, Berkeley; the work was inspired by suggestions
of L. Flaminio, M. Ratner, and R. J. Zimmer. I owe thanks to M. Ratner for helpful
discussions on Flaminio's work, and to Scot Adams for pointing out a blunder in
my original proof of Lemma 2.8.

2. Preliminaries
Our terminology follows Zimmer [15].

2.1. Ergodic theory

Definition. Suppose a Lie group Y acts on a Borel space ST with quasi-invariant
measure. The action is free if, whenever ty — t with ( e J and yeY, then y = e; the
action is essentially free if there is a conull Y-invariant subset 3~' of ST such that
the restricted action of Y on ST' is free.

Definition. Suppose Lie groups U and V act on standard Borel spaces 9 and 2T,
respectively; let M be a compact group acting on ST. We say a Borel map t/f: 9-* ST/ M
is affine for U (via V) if, for each u e U, there is some u e Vn NH(M) such that
iff conjugates the action of « on 9 to the action of u on &'/' M, i.e., if sw}/ — st/» • u
for a.e. s e y .

Definition. If 9" is a conull subset of a Borel measure space {Sf, /A), then we say fi
is supported on 9" - even if 9" is not a closed set.

Definition. Given Borel spaces 9" and ST, and a Borel map i/»: 9-* ST, any probability
measure fi on 9pushes to a probability measure i|f^ on J given by \^fd((/»„.n) =
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Definition. Given probability measures fix and \x2 on Borel spaces ifx and if2

respectively, a probability measure fj, on if x 3~ is & joining of nx and /x2 if, under
the projection ifx x if2^*ifiy the measure ju. pushes to /t, (for i = 1,2).

Definition. Given a joining /x of (S^ , /A, ) and {if2,^2), there is (see [3, Theorem
5.8, p. 108]) an essentially unique family {/i t : j6^|} of measures on if2 such
that, for any measurable A<= ifx xif2, fi(A) = \^ ns(An({s}xSf2)) dfix(s); these
measures fis are the fibers of /J. over ifx. We say /x has finite fibers over ifx if the
support of a.e. fiber is a finite set.

Remark. If ifi: {ifx, AM) -* (5̂ 2> M2) is a measure-preserving Borel map, then the graph
of 4> supports a joining of {ifx, fxx) and (y2, fi2), of which each fiber over ifx is
supported on a single point.

Definition. Let Tx and T2 be measure-preserving maps on Borel probability spaces
(ifx,/j.x) and (if2,fi2)- A measure £i on ifxxif2 is a joining of {Tx,ifx,^x) and
(T2, y2 , )u.2) if (1) ju. is a joining of /u.i and fi2; and (2) /A is T, x T2-invariant.

More generally, suppose Lie groups Ux and U2 act, with invariant probability
measures fix and fi2, on Borel spaces 5^ and 5^2, respectively. Given a continuous
homomorphism </>: Ux-* U2, a probability measure /1 o n ^ x 5 ^ 2 is a joining of
(Ux, Zfx) and (Ui, ^2) under <j> if (1) /x is a joining of /*! and /i2; and (2) for each
usUi, the measure /1 is (w, M*)-invariant (where UxxU2 acts on yyxSf2 by
(s,, s2) • (ux, u2) = (sxux, s2u2)).

LEMMA 2.1. Suppose if and ST are standard probability spaces, and a compact group
M acts on ST, preserving the measure. Given a measure-preserving Borel map i^:5^-»
JIM, let GRAPH = {(s, t)eifxST\stii = tM). Then GRAPH is a Borel subset that
supports a (unique) M-invariant joining of the measures on if and ?T.

Proof. Since i/» is measure-preserving, its graph supports a joining \i' of the measures
on if and 3~/M. This joining has a natural M-invariant lift to a measure ju, on
ifxST; namely, J/d/t = J \Mf{sk) dkdp'(s). It is clear that this lift /1 is supported
on the inverse image, under the quotient map ifx2T-*ifxSTIM, of the graph of
iff. This inverse image - a Borel set - is GRAPH. •

LEMMA 2.2. Suppose Tx and T2 are ergodic measure-preserving maps on Borel probabil-
ity spaces {ifx,ixx) and {if2,n2), andixisajoiningof(Tx,ifx,tix) and (T2,y2,M2)-
Then almost every ergodic component of {TxxT2,ifxx if2) is a joining of(Tx, ifx, fix)
and (T2,if2,»2).

Proof. Because fi is the integral of its ergodic components, and p pushes to the
measure /x 1 on ifx, it follows that ^i is the integral of the measures obtained by
pushing the ergodic components of/u. to ifx; since /i, is ergodic, this implies almost
every ergodic component of /A pushes to the measure fix on ifx. Similarly, almost
every ergodic component of JU. pushes to the measure fi2 onif2. •

2.1. Lie theory

All Lie groups are assumed to be second countable.
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Notation. For subgroups X and Y of a Lie group G, we use CX(Y) and JVx(y)
to denote the centralizer and normalizer of Y in X, respectively; X° is the identity
component of X.

LEMMA 2.3. If G is reductive connected Lie group, then G = Z(G) • [G, G], and
Z(G)n[G,G] is discrete. •

LEMMA 2.4. (cf. [14, Proposition 2.6]). Let T be a faithful lattice in a connected,
reductive Lie group G, and assume there is an ergodic unipotent translation on F\G.
Then Z{G) is compact, and T projects densely into the maximal compact semisimple
factor of G. •

LEMMA 2.5. Let T be a lattice in a connected, reductive Lie group G, and assume
Z(G) is compact. Suppose t/j is a measurable function on V\G, and let

X = {geG\sgi// = sil/ for a.e. seT\G}.

Then there is a closed normal subgroup N of G, contained in X, such that X/ N is
compact.

Proof. Because G is reductive and Z(G) is compact, one can show the center of
any quotient group of G is compact. The Mautner phenomenon [4, Theorem 1.1]
implies there is a closed normal subgroup N of G, contained in X, such that X
projects to an Ad-precompact subgroup of G/N; since X is closed and Z(G/N)
is compact, this implies X/N is compact. •

LEMMA 2.6. Let G be a connected, reductive Lie group whose center is compact; let
U be the identity component of a maximal unipotent subgroup ofG, and let K be the
maximal compact semisimple factor ofG. IfM is a compact subgroup ofG normalized
by both U and K, then M<G.

Proof. Suppose first that Z(G) = e; so G is a real algebraic group. Since M is
compact, it is a reductive real algebraic subgroup of G, so there is a Cartan involution
(*) of G that normalizes M [5, §2.6, p. 11]; hence M is normalized by
(U,U*,K)=G.

Now, even if Z{G)^e, the preceding paragraph shows AdM<AdG, so
M- Z(G)<1G. Since M- Z(G) is compact, then Lemma 2.10 implies every unipotent
element of G centralizes M- Z(G); in particular, every unipotent element of G
normalizes M. These unipotent elements, together with Z(G) and the maximal
compact semisimple factor K, generate G, so M <! G as desired. •

LEMMA 2.7. Let C, M, and N be subgroups of an abstract group G, so that CM is a
subgroup of finite index in G. IfM c N, then (C n N) M is a subgroup of finite index
in N. In fact, \N: (Cn7V)M|<|G: CM\. U

LEMMA 2.8. IfM is a compact subgroup of a connected Lie group H, then CH(M) • M
is of finite index in NH(M).

Proof. The Ado-Iwasawa Theorem [5, § P.1.4, p. 3] asserts there is a locally faithful
finite-dimensional representation IT: //-> G = GLn(R). Let C = Ca{M"Y~' and
N = NG{M"Y'\ It suffices to show \N: CH(M)-M|<oo.
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Step 1. \C: CH(M)| < oo. Now M/M° is finite, so there is a finite subset {fc,,..., kn}
of M with M = (M°, fc,,..., kn). Let F be the unique maximal finite subgroup of
ker IT, namely, the intersection of ker IT with any maximal compact subgroup of H.
Then C centralizes MF/ F, so for any k e M, we have | fcc | =s | F| < oo. So a subgroup
of finite index in C centralizes k; so a subgroup Co of finite index centralizes all
of fc,,..., kn. But, being contained in C, the subgroup Co must also centralize M/F;
therefore, Co centralizes M°. Combining these two conclusions yields Co<= CH(M).

Step 2. \N: C- M|<oo. Since ker n<= C, it suffices to show |TV": Cn• Mn\<oo. For
this, it suffices to show \Na(M

7r): Ca(M
n) • M"\ <oo (see Lemma 2.7); so we may

assume H = G and tr is the identity map. Since M is compact, it is (the real points
of) a real algebraic subgroup of G [15, p. 40]. So Na(M) is also an algebraic
subgroup; therefore, |TVO(M): TVG(M)°| <oo [5, § P.2.4, p. 10]. Let Jf, % and M be
the Lie algebras of NG(M), CG(M) and M. Now any representation of a compact
group is completely reducible, so there is a M-invariant complement V to M in M.
But M centralizes MjM, so it follows that V c « ; therefore, M= c€ + M; therefore,
N G ( M ) ° c C c ( M ) ° - M 0 . •

LEMMA 2.9. Suppose M, is a unipotent element of a Lie group G{, and M{ is a compact,
normal subgroup ofCt = CG ((M,)0 (for i = 1, 2), and suppose cr: Cx/Mx -> C2/M2 is an
isomorphism. If v is a unipotent element ofCi/Mx, then there is a unipotent element
v' of G2, contained in C2, with v" = v'M2.

Proof. Lemma 2.8 implies C2= CCl{M2) • M2, so there is some v'e CC2(M2) with
v" = v'M2; we claim v' is unipotent. Since v is a unipotent element of Ci/Af, and
cr is an isomorphism, v' is unipotent on C2/M2; since v' centralizes M2, this implies
v' is a unipotent element of C2. It is an elementary fact from linear algebra that if
T and N are commuting endomorphisms of a finite-dimensional vector space, such
that both TV and the restriction of T to ker( TV - Id) are unipotent, then T is unipotent;
applying this with T = Adv' and TV = Ad«2, we conclude that v' is a unipotent
element of G2. •

LEMMA 2.10. Let u be a unipotent element, and M be a compact subgroup, of a
connected, reductive Lie group G.Ifu normalizes M, then u centralizes M.

Proof. Being a unipotent element of the centerless, semisimple real algebraic group
AdG, the element u = Ad« belongs to a one-parameter unipotent subgroup vr of
AdG (cf. [5, § 2.4, p. 10]); lift vr to a one-parameter subgroup vr of G. For any
ke M, the fact that u normalizes M implies that the image of the map R -» AdG: r>-*
Adk"' is contained in AdM; this means the map is bounded. But, because u is
unipotent, the map is a polynomial; a bounded polynomial is constant, so Adk"' =
Adk, for all reR. Hence ke'= k (mod Z(G)), for all reR. Since Z (G)n [G , G] is
discrete, and R is connected, this implies v centralizes k; since ke M was arbitrary,
this means v centralizes M; it follows that u centralizes M, as desired. •

L E M M A 2.11. Let u be an ad-nilpotent element of a (real or complex) reductive Lie

algebra <S. If, for some ge% the commutator [w, g ] is ad-semisimple and centralizes

u, then [M, g] =0.
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Proof. Let k = [u, g]. Then

0 = [*, k] = [k, [u, g]] = [[k, u], g] + [u, [k, g]] = [0, g] + [u,[k, g]],
s o [k, 8]€ C<s(u)• Since k is ad-semisimple, then geC<g(u) + C<g(k), so we may
assume g e C«(fe) = <£; hence, both g and u are in c€, so fc = [u, g] e ['if, <#]. But <#
is reductive, which implies [% ^ ] n Z ( ^ ) = 0, so this implies fc = 0. D

THEOREM 2.12. ('the Ratner Property', cf. [13, Theorem 6.1]). Let u be a unipotent
element of a Lie group G, and let M be a compact subgroup of G that centralizes u.
Given any neighborhood Q of e in Co(u), there is a compact subset dQofQ, disjoint
from M, such that, for any e > 0 and M>0, there are a, 8 > 0 such that,

ifs,teT\G with d(s, t) < 8, then either:
(a) s = tc for some ceCG(u) with d(e, c) < 8, or
(b) there are N>0 and qedQ such that d(su", tu"q)<e whenever 7 V < M <

7V + max(M, aN).

Proof. This is precisely the statement of the Ratner property as it appears in [13,
Theorem 6.1], except that we need dQ to be disjoint from M, rather than just e £ dQ;
only minor changes in the proof are needed. The key observation is that, in [13,
Lemma 6.2], v need not be a projection onto the kernel of T; namely, tr may be
any projection onto the intersection of the kernel of T with the image of T. Therefore,
in [13, Proposition 6.3], q may be chosen in the intersection of ker T with the image
of T; this shows that the subset dQ in the Ratner property may be chosen to be the
exponential of a small set (not containing 0) in $f = [% y] n C<g{u), where exp (M) =
w. But Lemma 2.11 implies that M does not intersect 5if, so dQn M = as desired.

•
COROLLARY 2.13. ('The Relativized Ratner Property')- Let u be a unipotent element
of a Lie group G, and let M be a compact, normal subgroup of CG(M)°. Given any
neighborhood Q of e in Cc{u)/M, there is a compact subset dQ of Q - e such that,
for any e > 0 and M > 0, there are a, 8 > 0 such that,

ifs,te F\G/M with d(s,t)<8, then either:
(a) s = tc for some c e Ca(u) with d(e, c) < 8, or
(b) there are N>0 and qedQ such that d(su", tu"q)<e whenever 7V<n<
N + max (M,aN). •

2.3. Isometries and affine maps

In the geometric formulation of Flaminio's Theorem (1.2), it is assumed that the
restriction of i/» to each leaf of the horospherical foliation is an isometry; Proposition
2.15 shows that the natural algebraic formulation would assume that the restriction
is an affine map.

LEMMA 2.14. Let U and V be Lie groups, and if/: U-+ V be any map. Then tf> is an
affine map iff it conjugates the group of (left) translations on U into the group of (left)
translations on V, i.e., iff, for each ue U, there is some ve V, such that Tu ° i// = t/» ° Tv

(where Tu or Tv is the (left) translation by u on U or by v on V). •
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PROPOSITION 2.15. (E. N. Wilson). Let U and V be connected nilpotent Lie groups;
make U and V Riemannian manifolds by supplying each of them with a left-invariant
metric; then every isometry a of U onto V is an affine map.

Proof. Obviously, the nilpotent group U acts simply transitively on itself by left
translations, and these translations are isometries; so a conjugates this nilpotent
group of left translations on U to a nilpotent group of isometries of V acting simply
transitively on V. A theorem of E. N. Wilson [12, Theorem 2(4)] asserts that the
group of left translations on V is the unique nilpotent group of isometries of V
acting simply transitively on V, so we conclude that a conjugates the left translations
on U to the left translations on V. Hence Lemma 2.14 asserts that o- is an affine map.

•

3. From a foliation to an action
THEOREM 3.1. Let Lie groups U and VxM act on standard Borelprobability spaces
{if, cr) and (3~, r), respectively. Assume the actions of U and Vare measure-preserving
and ergodic, that M is compact, and that V x M is essentially free on ST. If a measure-
preserving Borel map ip: if -> ST/ M is V-affine on each U-orbit, then \p lifts to a map
£f^3-/CM(V) that is affine for U via V.

Proof. Let GRAPH = {(5, t) e if x ST\ sty = tM}; lemma 2.1 asserts GRAPH is a Borel
set that supports a (unique) M-invariant joining /J. of {if, cr) and {ST, T).

Step 1. There is a conull U-invariant subset if' of if such that, for all seif' and all
t&ST with sip = tM, there is a homomorphism <f> = <j>s<l :U-*V with suty = tu*Mfor all
we U. Because ty is V-affine on each [/-orbit, there is a conull Borel subset A of if
such that, for any seA, there is some t e 5" and a surjective homomorphism tj>: U -* V
with suty = fw*M for all u e U. Just because A is conull, there is a conull subset B
of A such that the conull {/-invariant subset BU of if is Borel [15, Lemma B.8(i),
pp. 199-200].

We can verify as follows that if'= BU is as described. Given s = buoe BU = if'',
there is some t0 e ST, and a surjective homomorphism <f>0: U -* V, such that buty =
fo«*°M for all u e U. For any / e 5" with sip = tM, we have tou$°M = buoip = sip = tM,
so there is some fee M with tout°k — t. The surjective homomorphism <f>: [/-» V: «>->
fc-'u^fc satisfies

suip = buouip = toiuoU^M = {tout°k)k~lu*°M = tu^M,

as desired.

Remark. There is, of course, no loss in assuming if' = if. We may also assume VxM
acts freely on ?T, by removing a null set from 5", and removing the inverse image
of this null set from if.

Definition. Let Horn (U, V) be the set of all continuous homomorphisms U-* V,
and give Horn (U, V) the countably-generated Borel structure generated by the basic
sets 38uA = {<f> e Horn (U, V)|M* € A}, where u ranges over a countable dense subset
of U, and A ranges over a countable collection of Borel sets generating the Borel
structure on V.
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Step 2. There is a Borel map <f>: GRAPH -» Horn (U, V): (s, t)i-> <j>sy, such that, for all
(s, t) € GRAPH and all ueU, we have stuff = tu^'M. For any (s, t) e GRAPH, Step
1 (amplified by the subsequent remark) asserts there is a homomorphism <f>SJ. Since
VxM acts freely on 3~, this homomorphism is uniquely determined by (s, t). So
there is a map GRAPH -> Horn (U, V), but perhaps it is not obvious that the map
is measurable.

To show the measurability of <f>, let u be any element of U, and let A be any
Borel subset of V; consider the Borel set

GRAPH,, A = {(s, t, v)eSfxSTxA\silf = tM and sui(> = tvM}.

Notice that, for any (s, t) e GRAPH, we have

4>v e ®U,AOM**' € A*>3veA(s, t, v) e GRAPHuA;

thus (BuA)<f>~1 is the image of the natural projection IT: GRAPHu/t -* GRAPH. Since
•n is injective (each fiber is, at most, the single point (s, t, ti**'))» the image of ir is
Borel [15, Theorem A.4, p. 195]; thus the inverse image, under <f>, of each basic
Borel set in Horn (U, V) is a Borel subset of GRAPH, so <£ is Borel measurable.

Definition. Let U act on GRAPH by (s, t) • u = (su, tu4"'1); it is easy to see this action
is measure-preserving, because it commutes with the action of M. Let (ft, w) be
(almost) any ergodic component of ((/, GRAPH, fi).

Step 3. The measure a> pushes to the measure er on 91; <f>s, = </> e Horn (U, V) is
(essentially) constant on (ft, &>); and each fiber of 10 over if is supported on a single
CM(V)-orbit in ST (a. e.). (1) The proof of Lemma 2.2 shows that almost every ergodic
component, such as <o, of (X, GRAPH, fi) pushes to a on S. (2) A routine calculation
shows (s, t)>-+4>s_, is (/-invariant, so it is essentially constant on almost any ergodic
component: there is an o>-conull subset ft' of ft on which <j>s, is constant. (3) For
almost every s e &, the fiber <os of w over s is supported on ft'n ({s} x 2T), because
<t>(ft') = 1. For (s, t) e GRAPH, ke M, and u € U, a routine calculation shows «*••"• =
k~xu*'-'k; so, if <t>s,lk = <t>s,,, then keCM(V); so, for s 6 <f and t, I ' e J , if both (s,t)
and (s, f') belong to ft', then t and f' belong to the same CM( V)-orbit on V; i.e.,
ft'n ({s} x ST) is a subset of a single CM( V)-orbit on ST.

Step 4. a> is a joining of (U, y, a) and (V, 2F, T) via tj>. By definition, any ergodic
component, such as <o, of the t/-action on GRAPH must be (M, w*)-invariant, and
Step 3 showed a> pushes to a on y, so we need only show to pushes to T on ST.
(This is not quite trivial, because V does not act on (but only foliates) ST/M.)
Because u> is (u, «*)-invariant for all ue U, and (7* = V, the measure r' to which
co pushes on 3~ must be V-invariant; and, since M normalizes V, any M-translate
of T' is also V-invariant. The M-action on GRAPH commutes with the 17-action,
so every Af-translate of a> is (/-invariant; because fi is M-invariant, this implies
every M-translate of w is an ergodic component of fi; because the support of each
fiber of (i over if is a single M-orbit, this implies fi is the average of all the
M-translates of to. Pushing to 5", we conclude that T is the average of all the
M-translates of T'; since T is ergodic for V, and each of these M-translates is
V-invariant, this implies T' = T.
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Step 5. </> lifts to a map fa:if -» &/CM(V) that is affinefor Uvia V. Let M'=CM(V).
It follows from Step 4 that, under the quotient map if x "̂-> y x &IM', the ergodic
component w pushes to a joining w' of (£/, Ŝ , a) and (V, ST/M', T) via 0. Since (by
Step 3) each fiber of o> over if is supported on a single M'-orbit, each fiber of ia'
over 5̂  is supported on a single point; so co' is the joining associated to some
measure-preserving Borel map i]/0:if-* 3~/ M'. Because to' is a joining of (U, if) and
(V, ST/M), the map t/r0 is affine for U via V. Because <o is supported on GRAPH,
the map t/»0 is a lift of i/>. D

4. Rigidity of translations
THEOREM 4.1. Let Y and A be faithful lattices in connected, reductive Lie groups G
and H, and let M be a compact subgroup of H that contains no nontrivial normal
subgroup ofH. Suppose u and u are ergodic, unipotent translations on T\G and A\H,
and assume ue NH(M). If>fi:r\G->A\H/Misa measure-preserving Borel map that
conjugates the translation by u on F\G to the translation by u on A\H/M, then i/»
lifts to an affine map if/': T\G-*A\H (a.e.).

We prove Theorem 4.1 by reducing to a known special case: Theorem 1.4 settles
the case where M = e. Several of the arguments to be used in the reduction were
used in proving the special case; where practical, we refer the reader to the relevant
parts of [13] instead of repeating the arguments here. The work is based on
fundamental ideas developed by M. Ratner [7,8,9]; a short exposition of some of
these ideas appears in [14, § 2]; a survey of Ratner's work appears in [10].

For technical reasons (discussed after Step 4 of the proof), measure-preserving
maps are not general enough: ^ should be allowed to be a joining with finite fibers
over r\G, so we will prove Theorem 4.1' instead of Theorem 4.1. For our purposes,
a technique developed by M. Ratner (see [8, Lemmas 4.2 and 4.4] and [9]) allows
us to treat finite-fiber joinings in essentially the same way as maps, but at the cost
of severe notational complications; I will usually pretend that if/ is a map, and leave
it to the reader to transfer the proof to finite-fiber joinings.

THEOREM 4.1'. Let F and A be faithful lattices in connected, reductive Lie groups G
and H, and let M be a compact subgroup of H that contains no nontrivial normal
subgroup ofH. Suppose u and u are ergodic, unipotent translations on T\G and A\H,
and assume u e NH(M). If iff is an ergodic joining of the translation by uon T\G and
the translation by u on A\H/M, and if ^i has finite fibers over T\G, then i/r is an
affine joining; i.e., there is a finite cover G' of G, a lattice T' in G', and a measure-
preserving affine map 4> • T'\G' -* A\Hsuch that, under the natural map F'\G' x A\H -*
r \ G x A\H/M, the joining on T'\G'x A\H associated to <f> pushes to ifi.

The proof of Theorem 4.1' reduces it not quite to Theorem 1.4, but to the following
more general version that allows finite-fiber joinings.

THEOREM 1.4'. [14, Theorem 2.1]. Let F and A be faithful lattices in connected Lie
groups G and H. Let u and u be ergodic, unipotent translations on T\G and A\H. If
if/ is an ergodic joining of the translation by u on Y\G and the translation by u on
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A\H, and if i// has finite fibers over T\G, then t/» is an affine joining; i.e., there is a
finite cover G' ofG, a lattice F in G', and a measure-preserving affine map <)>:Y'\G'->
A\H such that, under the natural map T'\G'x A\H -* r \Gx A\H, the joining on
r\G' x A\H associated to <f> pushes to tj/. •

Proof (of Theorem 4.1/4.1')- By the descending chain condition on compact sub-
groups of H, we may assume there is no closed, proper subgroup M' of M, normalized
by u, such that </r lifts to a measure-preserving Borel map T\G-*A\H/M' that
conjugates the translation by u on T\C to the translation by u on A\H/M'. Let

GRAPH = {(s, t) e T\Gx A\H|s^ = tM};
as explained Lemma 2.1, GRAPH supports a unique M-invariant joining fi of the
invariant measures on T\G and A\H; it's not hard to see that fi is (u, u)-invariant,
i.e., (i is a joining of the translation by u on T\G and the translation by u on A\H.
Let (ft, io) be (almost) any ergodic component of the translation by (u, «) on
(GRAPH, fi); Lemma 2.2 asserts w is a joining of the invariant measures on T\G
and A\H.

Where convenient (and relatively harmless) we ignore null sets. For example,
there is a conull u-invariant subset if of Y\G such that, for all 5 e if and all teA\H
with sip = tM, one has suip = tMu; we pretend if = T\G.

Step 1. u centralizes M. This is a direct consequence of Lemma 2.10.

Step 2. We may assume there is no proper subgroup M' of M such that each fiber of
o> over T\G is supported on a single M'-orbit (a.e.). If there is such a subgroup, then
by the descending chain condition on compact subgroups of H, there is a minimal
such subgroup, say Mo; under the natural quotient map F\GxA\H->
T\G x A\H/Mo, the measure co pushes to a joining &>', and (almost) every fiber of
o)' over T\G is supported on a single point: this means w' is the joining associated
to a map i//': I\G-* A\H/M0; this map conjugates the translation by u on T\G to
the translation by u on A\H/M0. We can replace t/f with $', and M with Mo; the
minimality of Mo implies it has no proper subgroup M' of the specified type.

Step 3 (cf. [13, Lemma 3.1]). t/r is affine for Ca{uf via CH(u)°. Let c be any small
element of CG(u). The polynomial divergence of M-orbits on H/M can be used,
in the style of M. Ratner [7, Lemma 3.2] (see also [13, Lemma 3.1] and [2]), to
show, for a.e. seY\G, that for any teA\H with (s,t)eGRAPH, there is some
small cSi, e CH(u) with (sc, scst) e GRAPH. (Note that cs, is unique (mod M) because
CH(u) is essentially free on A\H [13, Lemma 2.8].)

We wish to find some ceNH(M) such that cs,ecM for (almost) all (s, t)&
GRAPH. For (s, t) e GRAPH, it follows from the fact that GRAPH is invariant
under translation by (u, u), that both (sue, tucsu,a) and (scu, tcs,u) are in GRAPH.
Since scu = sue and tcs,u = tucsl, then the uniqueness of cSUy,a implies cSUy,aecs,M;
it immediately follows that c = cs, is (essentially) constant (mod M) on almost any
ergodic component, such as (ft, a>), of /A. A simple calculation shows, for ke M,
that cslke k~lcs,M; if both (s, t) and (5, tk) are in the support of the fiber of a> over
5, this implies ckc'^eM; and hence ke Mn(cMc~l). Then Step 2 implies
M n c~xMc is not a proper subgroup of M; hence ce NH(M).
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For (almost) any (s, t) € GRAPH, there is some k e M such that (s, tk) is in the
support of the fiber of at overs; hence cslk e cM. Therefore cs, e k~1cslkM = k~1cM =
cM, as desired.

Definition. Let StabG (i/0 = {ge G\sgifi = sili for a.e. seT\G} and AffG(i/r) =
{ge G|t^ is affine for g}. Note that StabG (t/>)<3AffG (t/»), because the kernel of a
homomorphism is always a normal subgroup.

Step 4. We may assume StabG (t/>) is compact, and that the fibers of
$: r \G/StabG (i/>)-» A\H/M are finite (a.e.). The Mautner phenomenon implies
there is a normal subgroup N of G, contained in StabG {<!>), such that StabG {if>)l N
is compact (see Lemma 2.5); replacing G with G/N, we may assume N = e, so
StabG (i/f) is compact. Now, following an idea of M. Ratner [9, Theorem 3, and 8,
Lemma 3.1], much as in the proofs of Lemmas 7.4 and 7.5 of [13], we can use the
shearing nature of unipotent flows (Corollary 2.13) to show that the fibers of <£ are
finite (a.e.), i.e., that there is a conull subset Sf of F\G/StabG («/>) such that, for all
teA\H/M, the inverse image (tij/~l)r\Sf is finite.

Remark If each fiber of (̂  is a single point, then i£ is one-to-one, i.e., invertible;
its inverse induces a map i£~': A\H -* r \G/StabG (I/J) that conjugates the translation
by u on A\H to the translation by u on r \G/Stab o (i/»); anything we've proved
about t/» must also be true for tj/'1 (after allowing for the interchange of G and H,
and so forth). This observation will be crucial in Steps 5, 6, and 7 of the proof; to
salvage this observation for the case where the fibers of i/> are not assumed to be
single points, we need to allow t̂ "1 to be a joining with finite fibers over A\H; it
is for this reason that we need the more general hypotheses of Theorem 4.1'. But,
for simplicity, I will pretend iji is invertible and ignore the need for finite-fiber
joinings.

Step 5. For any unipotent element v of CG(u)°, there is a unipotent element v of
NH(M), with svt// = silf vfor a.e. seT\G. For convenience, let Mo= MnCH(u)°.
Step 3 provides us with a map ~ : CG(u)°-»(CH(w)n NH(M))/M. Step 4 (or the
subsequent remark) asserts that tj/ is invertible, and there is a corresponding map
>jf~l: A\H-»r\G/StabG (t/0; applying Step 3 to i^"1 provides us with a map
CH(u)0/Mo-* CG(u)/Staba (i//); this map is an inverse to ~ ; we conclude that
M0<CH(u)° and that

CG(u)° ^ _ CH(u)°
•StabG((A)nCG(M)u"> Mo

is an isomorphism. Now Lemma 2.9 asserts that, for any unipotent element v of G
belonging to CG(w)°, we can choose v to be unipotent, as desired.

Step 6 [13, Lemma 7.3]. StabG (i/>)<G, so we may assume StabG (t/f) = e. Let U be
the identity component of any maximal unipotent subgroup of G that contains u.
Using the Moore Ergodicity Theorem (cf. [13, Theorem 2.14]), it is easy to find an
element v in the center of U such that v is ergodic on T\G. Step 3 implies ip is
affine for v, and Step 5 asserts that we can choose v to be unipotent; then the
hypotheses of Theorem 4.1 are satisfied if we put t; in the place of u and v in the
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place of w; in this situation, Step 3 implies i/» is affine for CG(Z{U))°; in particular,
tff is affine for U and for the maximal compact factor K of G. Since StabG (</>)<!
AffG O) , this implies StabG (i/») is normalized by U and K. Because StabG (i/f) is
compact (Step 4), it follows that StabG (t/f) is a normal subgroup of G (see Lemma
2.6), and as there is no loss in modding it out, we may assume StabG (iff) = e.
Step 7. M = e, so Theorem 1.4 asserts iff is affine (a.e.), as desired. Step 4 (or the
subsequent remark), together with Step 6, implies that t// is invertible. Then
i/T1: A\H/M->V\G induces a map i£~': A\H-> T\G that is affine for u via M; now
StabH (<£"') = M, so, with tjl~l in the role of t/», Step 6 asserts M<H - but M contains
no nontrivial normal subgroup of H, so this implies M = e. Hence \}f.T\G^\\H
satisfies the hypotheses of Theorem 1.4, which implies that i/» is affine. •
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