
1

Introduction

In this book, we are concerned with the basic problem of solving a linear sys-
tem

Ax = b,

where A ∈ Rn×n is a given invertible matrix, b ∈ Rn is a given vector and x ∈ Rn

is the solution we seek. The solution is, of course, given by

x = A−1b,

but does this really help if we are interested in actually computing the solu-
tion vector x ∈ Rn? What are the problems we are facing? First of all, such
linear systems have a certain background. They are the results of other math-
ematical steps. Usually, they are at the end of a long processing chain which
starts with setting up a partial differential equation to model a real-world prob-
lem, continues with discretising this differential equation using an appropriate
approximation space and method, and results in such a linear system. This is
important because it often tells us something about the structure of the matrix.
The matrix might be symmetric or sparse. It is also important since it tells us
something about the size n of the matrix. With simulations becoming more
and more complex, this number nowadays becomes easily larger than a mil-
lion, even values of several hundreds of millions are not unusual. Hence, the
first obstacle that we encounter is the size of the matrix. Obviously, for larger
dimensions n it is not possible to solve a linear system by hand. This means
we need an algorithmic description of the solution process and a computer to
run our program.
Unfortunately, using a computer leads to our second obstacle. We cannot rep-
resent real numbers accurately on a computer because of the limited number
system used by a computer. Even worse, each calculation that we do might
lead to a number which is not representable in the computer’s number system.

3

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

4 Introduction

Hence, we have to address questions like: Is a matrix that is invertible in the
real numbers also invertible in the number system used by a computer? What
are the errors that we make when representing the matrix in the computer and
when using our algorithm to compute the solution. Further questions that easily
come up are as follows.

1. How expensive is the algorithm? How much time (and space) does it require
to solve the problem? What is the best way of measuring the cost of an
algorithm?

2. How stable is the algorithm? If we slightly change the input, i.e. the matrix
A and/or the right-hand side b, how does this affect the solution?

3. Can we exploit the structure of the matrix A, if it has a special structure?
4. What happens if we do not have a square system, i.e. a matrix A ∈ Rm×n

and a vector b ∈ Rm. If m > n then we have an over-determined system
and usually cannot find a (unique) solution but might still be interested in
something which comes close to a solution. If m < n we have an under-

determined system and we need to choose from several possible solutions.

Besides solving a linear system, we will also be interested in a related topic,
the computation of eigenvalues and eigenvectors of a matrix. This means we
are interested in finding numbers λ ∈ C and vectors x ∈ Cn \ {0} such that

Ax = λx.

Finding such eigenvectors and eigenvalues is again motivated by applications.
For example, in structural mechanics a vibrating system is represented by finite
elements and the eigenvectors of the corresponding discretisation matrix reflect
the shape modes and the roots of the eigenvalues reflect the frequencies with
which the system is vibrating. But eigenvalues will also be helpful in better
understanding some of the questions above. For example, they have a crucial
influence on the stability of an algorithm.
In this book, we are mainly interested in systems of real numbers, simply be-
cause they arise naturally in most applications. However, as the problem of
finding eigenvalues indicates, it is sometimes necessary to consider complex
valued systems, as well. Fortunately, most of our algorithms and findings will
carry over from the real to the complex case in a straightforward way.
We will look at direct and iterative methods to solve linear systems. Direct
methods compute the solution in a finite number of steps, iterative methods
construct a sequence of approximations to the solution.
We will look at how efficient and stable these methods are. The former means
that we are interested in how much time and computer memory they require.
Particular emphasis will be placed on the number of floating point operations

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.1 Examples Leading to Linear Systems 5

required with respect to the dimension of the linear system. The latter means
for example investigating whether these methods converge at all, under what
conditions they converge and how they respond to small changes in the input
data.

1.1 Examples Leading to Linear Systems

As mentioned above, linear systems arise naturally during the discretisation
process of mathematical models of real-world problems. Here, we want to col-
lect three examples leading to linear systems. These examples are our model
problems, which we will refer to frequently in the rest of this book. They com-
prise the problem of interpolating an unknown function only known at discrete
data sites, the solution of a one-dimensional boundary value problem with fi-
nite differences and the solution of a (one-dimensional) integral equation with
a Galerkin method. We have chosen these three examples because they are
simple and easily explained, yet they are significant enough and each of them
represents a specific class of problems. In particular, the second problem leads
to a linear system with a matrix A which has a very simple structure. This
matrix will serve us as a role model for testing and investigating most of our
methods since it is simple to analyse yet complicated enough to demonstrate
the advantages and drawbacks of the method under consideration.

1.1.1 Interpolation

Suppose we are given data sites X = {x1, . . . , xn} ⊆ Rd and observations
f1, . . . , fn ∈ R. Suppose further that the observations follow an unknown gen-
eration process, i.e. there is a function f such that f (xi) = fi, 1 ≤ i ≤ n.
One possibility to approximately reconstruct the unknown function f is to
choose basis functions φ1, . . . , φn ∈ C(Rd) and to approximate f by a function
s of the form

s(x) =
n∑

j=1

α jφ j(x), x ∈ Rd,

where the coefficients are determined by the interpolation conditions

fi = s(xi) =
n∑

j=1

α jφ j(xi), 1 ≤ i ≤ n.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

6 Introduction

This leads to a linear system, which can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)
...

... . . .
...

φ1(xn) φ2(xn) . . . φn(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α1

α2
...

αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f1

f2
...

fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.1)

From standard Numerical Analysis courses we know this topic usually in the
setting that the dimension is d = 1, that the points are ordered a ≤ x1 < x2 <

· · · < xn ≤ b and that the basis is given as a basis for the space of polynomials
of degree at most n−1. This basis could be the basis of monomials φi(x) = xi−1,
1 ≤ i ≤ n, in which case the matrix in (1.1) becomes the transpose of a so-
called Vandermonde matrix, i.e. a matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...
... . . .

...

1 xn x2
n . . . xn−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix is a full matrix, meaning that each entry is different from zero, so
that the determination of the interpolant requires the solution of a linear system
with a full matrix.
However, we also know, from basic Numerical Analysis, that we could alter-
natively choose the so-called Lagrange functions as a basis:

φ j(x) = Lj(x) =
n∏

i=1
i� j

x − xi

x j − xi

, 1 ≤ j ≤ n.

They obviously have the property Lj(x j) = 1 and Lj(xi) = 0 for j � i. Thus,
with this basis, the matrix in (1.1) simply becomes the identity matrix and the
interpolant can be derived without solving a linear system at all.

1

0 1−1−2

1

0 1−1−2

1

0 1−1−2
Figure 1.1 Typical radial basis functions: Gaussian, inverse multiquadric and a
compactly supported one (from left to right).

In higher dimensions, i.e. d ≥ 2, polynomial interpolation can become quite
problematic and a more elegant way employs a basis of the form φi = Φ(·−xi),

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.1 Examples Leading to Linear Systems 7

where Φ : Rd → R is a fixed function. In most applications, this function is
chosen to be radial, i.e. it is of the form Φ(x) = φ(‖x‖2), where φ : [0,∞) → R
is a univariate function and ‖x‖2 =

√
x2

1 + · · · + x2
d

denotes the Euclidean norm.
Examples of possible univariate functions are

Gaussian: φ(r) = exp(−r2),

Multiquadric: φ(r) = (r2 + 1)1/2,

Inverse Multiquadric: φ(r) = (r2 + 1)−1/2,

Compactly Supported: φ(r) = (1 − r)4
+(4r + 1),

where (x)+ is defined to be x if x ≥ 0 and to be 0 if x < 0. The functions are
visualised in Figure 1.1.
In all these cases, except for the multiquadric basis function, it is known that
the resulting interpolation matrix is positive definite (with the restriction of
d ≤ 3 for the compactly supported function). Such functions are therefore
called positive definite. More generally, a good choice of a basis is given by
φ j(x) = K(x, x j) with a kernel K : Rd × Rd → R, which is positive definite

in the sense that for all possible, pairwise distinct points x1, . . . , xn ∈ Rd, the
matrix (K(xi, x j)) is symmetric and positive definite.
In the case of the multiquadric basis function, it is known that the interpolation
matrix is invertible and has only real, non-vanishing eigenvalues and that all
but one of these eigenvalues are negative.
Note that in the case of the inverse multiquadric and the Gaussian the matri-
ces are dense while in the case of the compactly supported basis function the
matrix can have a lot of zeros depending on the distribution of the data sites.
Details on this topic can be found in Wendland [133].

1.1.2 Boundary Value Problem

Another application is to compute a stationary solution to the heat equation. In
one dimension, we could imagine an infinitely thin rod of length one, which is
heated in the interior of (0, 1) with a heat source f and is kept at zero degrees
at the boundary points 0, 1. Mathematically, this means that we want to find a
function u : [0, 1] → R with

−u′′(x) = f (x), x ∈ (0, 1),

with boundary conditions u(0) = u(1) = 0. If the function f is too complicated
or even given only at discrete points then it is not possible to compute the
solution u analytically. In this case a numerical scheme has to be used and the

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

8 Introduction

simplest idea is to approximate the derivative by differences:

u′(x) ≈ u(x + h) − u(x)
h

, or u′(x) ≈ u(x) − u(x − h)
h

.

The first rule could be referred to as a forward rule while the second is a back-
ward rule. Using first a forward and then a backward rule for the second deriva-
tive leads to

u′′(x) ≈ u′(x + h) − u′(x)
h

≈ 1
h

(
u(x + h) − u(x)

h
− u(x) − u(x − h)

h

)

=
u(x + h) − 2u(x) + u(x − h)

h2
.

For finding a numerical approximation using such finite differences we may
divide the domain [0, 1] into n + 1 pieces of equal length h = 1/(n + 1) with
nodes

xi = ih =
i

n + 1
, 0 ≤ i ≤ n + 1,

and set ui := u(xi). We now define the finite difference approximation uh to u,
as follows: find uh such that uh

0 = uh
n+1 = 0 and

−
⎛⎜⎜⎜⎜⎝uh

i+1 − 2uh
i
+ uh

i−1

h2

⎞⎟⎟⎟⎟⎠ = fi, 1 ≤ i ≤ n.

Alternatively this linear system of n equations may be written in the form

1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uh
1

uh
2

uh
3
...

uh
n−1
uh

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

f3
...

fn−1

fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.2)

This system of equations is sparse, meaning that the number of non-zero en-
tries is much smaller than n2. This sparsity can be used to store the matrix and
to implement matrix–vector and matrix–matrix multiplications efficiently.
To obtain an accurate approximation to u, we may have to choose h very small,
thereby increasing the size of the linear system.
For a general boundary value problem in d-dimensions the size of the linear
system can grow rapidly. For example, three-dimensional problems grow over
eight times larger with each uniform refinement of the domain.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.1 Examples Leading to Linear Systems 9

1.1.3 Integral Equations

In the last section we have introduced a way of solving a differential equation.
A differential equation can also be recast as an integral equation but integral
equations often also come up naturally during the modelling process. Hence,
let us consider a typical integral equation as another example.
We now seek a function u : [0, 1] → R satisfying∫ 1

0
log(|x − y|)u(y)dy = f (x), x ∈ [0, 1],

where f : [0, 1] → R is given. Note that the integral on the left-hand side
contains the kernel K(x, y) := log(|x − y|), which is singular on the diagonal
x = y.
To solve this integral equation numerically we will use a Galerkin approxi-

mation. The idea here is to choose an approximate solution un from a fixed,
finite-dimensional subspace V = span{φ1, . . . , φn} and to test the approximate
solution via∫ 1

0

∫ 1

0
log(|x − y|)un(y)dy φi(x)dx =

∫ 1

0
f (x)φi(x)dx, 1 ≤ i ≤ n. (1.3)

Since we choose un ∈ V it must have a representation un =
∑n

j=1 c jφ j with
certain coefficients c j. Inserting this representation into (1.3) and changing the
order of summation and integration yields

n∑
j=1

c j

∫ 1

0

∫ 1

0
log(|x − y|)φ j(y)φi(x)dy dx =

∫ 1

0
f (x)φi(x)dx, 1 ≤ i ≤ n,

which we easily identify as a linear system Ac = f with the matrix A having
entries

ai j =

∫ 1

0

∫ 1

0
log(|x − y|)φ j(y)φi(x)dy dx, 1 ≤ i, j ≤ n.

A typical choice for the space V is the space of piece-wise constant functions.
To be more precise, we can choose

φi(x) =

⎧⎪⎪⎨⎪⎪⎩1 if i−1
n
≤ x < i

n
,

0 else,

but other basis functions and approximation spaces are possible. But we note
that particularly in this case the matrix A is once again a full matrix as its
entries are given by

ai j =

∫ i/n

(i−1)/n

∫ j/n

(j−1)/n
log(|x − y|)dy dx.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

10 Introduction

An obvious generalisation of this problem to arbitrary domains Ω ⊆ Rd leads
to matrix entries of the form

ai j =

∫
Ω

∫
Ω

K(x, y)φi(x)φ j(y)dy dx

with a given kernel K : Ω ×Ω→ R.

1.2 Notation

Now, it is time to set up the notation which we will use throughout this book.
However, we will specify only the most basic notation and definitions here and
introduce further concepts whenever required.

1.2.1 Mathematics

We will denote the real, complex, natural and integer numbers as usual with
R, C, N and Z, respectively. The natural numbers will not include zero. We
will use the notation x ∈ Rn to denote vectors. The components of x will be
denoted by x j ∈ R, i.e. x = (x1, . . . , xn)T. Thus vectors will always be column
vectors. We will denote the unit standard basis of Rn by e1, . . . , en, where the
ith unit vector ei has only zero entries except for a one at position i. In general,
we will suppress the dimension n when it comes to this basis and we might use
the same notation to denote the ith unit vector for Rn and, say, Rm. It should
be clear from the context which one is meant. On Rn we will denote the inner
product between two vectors x and y by either xTy or 〈x, y〉2, i.e.

xTy = 〈x, y〉2 =
n∑

j=1

x jy j.

For a matrix A with m rows, n columns and real entries we will write A ∈ Rm×n

and A = (ai j), where the index i refers to the rows and the index j refers to the
columns:

A := (ai j) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For a non-square matrix A ∈ Rm×n, we can write ai j = eT
i

Ae j, where the first
unit vector is from Rm while the second unit vector is from Rn.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.2 Notation 11

We will use the Kronecker δ-symbol δi j, which is defined as

δi j =

⎧⎪⎪⎨⎪⎪⎩1 if i = j,

0 if i � j.

For the identity matrix in Rn we will use the symbol I ∈ Rn×n. We obviously
have I = (δi j)1≤i, j≤n. Again, as in the case of the unit vectors, we will usually
refrain from explicitly indicating the dimension n of the underlying space Rn.
We will also denote the columns of a matrix A ∈ Rm×n by a j := Ae j ∈ Rm,
1 ≤ j ≤ n. Hence, we have

A = (a1, a2, . . . , an).

For a matrix A ∈ Rm×n and a vector x ∈ Rn, we can write x =
∑

j x je j and
hence

Ax =

n∑
j=1

x ja j.

We will encounter specific forms of matrices and want to use the following,
well-known names.

Definition 1.1 A matrix A = (ai j) ∈ Rm×n is

• a square matrix, if m = n,
• a diagonal matrix, if ai j = 0 for i � j,
• an upper triangular matrix, if ai j = 0 for i > j,
• a lower triangular matrix, if ai j = 0 for i < j,
• a band-matrix, if there are k, � ∈ N0 such that ai j = 0 if j < i− k or j > i+ �,
• sparse, if more than half of the entries are zero,
• dense or full, if it is not sparse.

In the case of a diagonal matrix A with diagonal entries aii = λi, we will also
use the notation

A = diag(λ1, . . . , λn).

In particular, we have for the identity matrix I = diag(1, . . . , 1) ∈ Rn×n.

Most of these names are self-explanatory. In the case of a band matrix, we have
all entries zero outside a diagonally bordered band. Only those entries ai j with
indices i − k ≤ j ≤ i + � may be different from zero. This means we have at
most k sub-diagonals and � super-diagonals with non-zero entries. The most
prominent example is given by k = � = 1, which has one super-diagonal and
one sub-diagonal of non-zero entries and is hence called a tridiagonal matrix.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

12 Introduction

Schematically, upper triangular, lower triangular and tridiagonal matrices look
as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ · · · ∗
∗ ∗ ...

. . .
. . . ∗
∗ ∗

0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0
∗ ∗
∗ . . .

. . .

... ∗ ∗
∗ · · · ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 · · · 0

∗ ∗ ∗ ...

0
. . .

. . .
. . . 0

... ∗ ∗ ∗
0 · · · 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a ∗ marks a possible non-zero entry.
For a matrix A = (ai j) ∈ Rm×n we denote the transpose of A by AT. It is given by
exchanging columns and rows from A, i.e. AT = (a ji) ∈ Rn×m. A square matrix
A ∈ Rn×n is said to be symmetric if AT = A. If the matrix A is invertible, we
have (A−1)T = (AT)−1 which we will simply denote with A−T. If A is symmetric
and invertible then also the inverse A−1 is symmetric. Both the transpose and
the inverse satisfy the rules

(AB)T = BTAT, (AB)−1 = B−1A−1,

as long as these operations are well-defined.

1.2.2 Algorithms

We will not use a specific computing language to describe the algorithms in
this book. However, we will assume that the reader is familiar with basic pro-
gramming techniques. In particular, we expect the reader to know what a for

and a while loop are. We will use if, then and else in the usual way and, when
assigning a new value to a variable x, this variable might appear also on the
right-hand side of the assignment, i.e. such an assignment can, for example, be
of the form x := x+y, which means that x and y are first evaluated and the sum
of their values is then assigned to x. For each algorithm we will declare the es-
sential input data and the output data. There will, however, be no explicit return
statement. Each algorithm should also have a deterministic stopping criterion.
To demonstrate this, a first example of an algorithm is given in Algorithm 1,
which computes the inner product s := xTy of the two vectors x, y ∈ Rn.
At the beginning, we will formulate algorithms very close to actual programs
using only basic operations. An implementation within a modern computing
language should be straightforward. Later on, when it comes to more sophisti-
cated algorithms, we will use higher-level mathematical notation to compress
the representation of the algorithm. For example, an inner product will then
only appear as s := xTy.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.3 Landau Symbols and Computational Cost 13

Algorithm 1: Inner product
Input : x, y ∈ Rn.
Output: s = xTy.

1 s := 0
2 for j = 1 to n do

3 s := s + x jy j

In this book, we will not discuss low-level data structures, i.e. ways of storing a
vector or a matrix within a computer. We will assume that the reader is familiar
with the concepts of arrays, which are usually used to store (full) matrices, and
index lists, which can be used to store sparse matrices.

1.3 Landau Symbols and Computational Cost

Before developing algorithms to solve linear equations, we will introduce con-
cepts to analyse the cost of such algorithms and their stability. Though, of
course, it is possible to compare the actual run-times of two algorithms on a
computer, the actual run-time is not a particularly good measure. It is more
important to understand how the computational cost of an algorithm changes
with the number of unknowns.
The multiplication of a matrix A ∈ Rm×n with a vector x ∈ Rn results in a vector
b = Ax ∈ Rm with components

bi = (Ax)i =

n∑
j=1

ai jx j, 1 ≤ i ≤ m.

The multiplication of a matrix A ∈ Rm×n with a matrix B ∈ Rn×p gives a matrix
C = AB ∈ Rm×p, with entries

ci j =

n∑
k=1

aikbk j, 1 ≤ i ≤ m, 1 ≤ j ≤ p.

So, how much does the computation of it cost? Usually, the cost is measured
in flops, which stands for floating point operations. A floating point operation
consists of one addition plus one multiplication. Sometimes, it is helpful to
distinguish between additions and multiplications and count them separately.
This was particularly true when a multiplication on a computer was substan-
tially more expensive than an addition. However, as this is no longer the case

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

14 Introduction

on modern computers, where multiplications are realised as efficiently as addi-
tions, we will stick to the above definition of flops. It is nonetheless important
to note that while subtractions are as efficient as additions and multiplications,
this is not true for divisions, which are significantly slower.
Most of the time, we will not be interested in the actual number of floating
point operations but rather in the asymptotic behaviour with respect to the di-
mension.
For example, if we look at a matrix–vector multiplication b = Ax, then we
must for every index i compute the sum

n∑
j=1

ai jx j,

which means we have n multiplications and n−1 additions, i.e. n floating point
operations. Hence, if we double the size of the matrix, we would require twice
as many flops for each component. This, however, would also be true if the
actual computing cost would be cn with a positive constant c > 0. The total
cost of the matrix–vector multiplication becomes mn since we have m entries
to compute.
If we are not interested in the constant c > 0 then we will use the following
notation.

Definition 1.2 (Landau notation) For two functions f , g : Nd → R, we will
write

f (n) = O(g(n))

if there is a constant c > 0 such that

| f (n)| ≤ c|g(n)|, n ∈ Nd.

It is important to see that the constant has to be independent of the argument
n ∈ Nd. Moreover, though in most cases we will ignore the constant c in our
considerations, a huge c > 0 can mean that we will never or only for very large
n see the actual asymptotic behaviour.
With this definition, we can say that matrix–vector multiplication of a matrix
A ∈ Rm×n with a vector x ∈ Rn costs

time(Ax) = O(mn).

In the case of a square matrix m = n, the cost is therefore O(n2), which means
that doubling the input size of the matrix and the vector, i.e. replacing n by 2n,
will require four times the time of the original matrix–vector multiplication.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.3 Landau Symbols and Computational Cost 15

We can also use this notation to analyse the space required to store the infor-
mation on a computer. We will have to store each matrix entry ai j and each
entry of x as well as the result Ax. This requires

O(mn + n + m) = O(mn)

space. When developing algorithms it is important to consider both resources,
time and space, and it might sometimes be necessary to sacrifice something of
one resource to gain in the other.
It is now easy to see that for the matrix–matrix multiplication C = AB, we
would require O(mnp) operations. Hence, for square systems with m = n = p

the time is O(n3) and doubling the input size results in computations that are
eight times longer.
Let us summarise our findings so far, with some obvious additions.

Lemma 1.3 Let A ∈ Rm×n, B ∈ Rn×p, x ∈ Rn and α ∈ R.

• It costs O(n) space to store the vector x ∈ Rn and O(mn) space to store the

matrix A.

• It costs O(n) time to compute the product αx.

• It costs O(mn) time to compute the product Ax.

• It costs O(mnp) time to compute the product AB.

The cost is called linear if it is O(n), quadratic if it is O(n2) and cubic if it is
O(n3).
More sophisticated matrix–matrix products have been developed with the goal
of reducing the computational cost by reducing the number of multiplications
at the cost of a mild increase in the number of additions. The most famous
one is a recursive algorithm by Strassen (see [120]) which can compute the
product of two n × n matrices using at most 4.7 · nlog2 7 = O(n2.807355) flops.
Since then, other such algorithms have been introduced, most notably one by
Coppersmith and Winograd in [37] which reduces the cost to O(n2.375477). The
latter algorithm is, however, more complicated and the constant hidden in the
O-notation substantially larger so that the algorithm is not used in practice.
Though superior in this context, even the Strassen algorithm is not seriously
used in practical applications, which is due to the fact that it is not as stable as
the conventional scheme, see Higham [84].
Finally, let us see how additional information can be used to reduce the cost.
If, for example, we have a tridiagonal matrix, i.e. a matrix which has only non-
zero entries on the diagonal and the sub- and super-diagonal, i.e. which is of

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

16 Introduction

the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 0 · · · 0

a21 a22 a23
...

0
. . .

. . .
. . . 0

... an−1,n−2 an−1,n−1 an−1,n

0 · · · 0 an,n−1 ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then a matrix–vector multiplication reduces to

(Ax)i =

n∑
j=1

ai jx j = ai,i−1xi−1 + aiixi + ai,i+1xi+1.

Hence, the time for the full matrix–vector product is now only O(n) instead
of O(n2). Also the matrix can be stored by exploiting its special form in O(n)
space instead of O(n2).
We will sometimes encounter algorithms which have a recursive structure. This
means, for example, that solving a problem with problem size n is reduced to
solving problems with problem size n/b, where b > 1. The Strassen algorithm
mentioned above is one such example. To analyse the cost of such an algorithm
it is often helpful to assume that n = bk with some k ∈ N. The following result
will be helpful.

Lemma 1.4 The recursion T (1) = c and T (n) = aT (n/b)+cnα with c, a, α > 0
and b > 1 satisfies

T (n) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c bα

bα−a
nα if a < bα,

cnα(logb n + 1) if a = bα,

c a
a−bα

nlogb a if a > bα.

Proof As mentioned above, we will prove this only for n = bk. Though the
results remain true for general n, the proof is more tedious in the general case.
Using induction, it is easy to see that

T (bk) = c

k∑
i=0

ai(bα)k−i.

Hence, if a < bα, we have

T (bk) = cbkα

k∑
i=0

(
a

bα

)i

= cnα
1 −

(
a
bα

)k+1

1 − a
bα

< cnα
bα

bα − a
.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.4 Facts from Linear Algebra 17

For a = bα we have

T (bk) = cnα(k + 1) = cnα(logb n + 1)

and for a > bα we finally use

T (bk) = cak

k∑
i=0

(
bα

a

)i

= cak
1 −

(
bα

a

)k+1

1 − bα

a

≤ cak a

a − bα
= c

a

a − bα
nlogb a,

where we have used

ak = ek log a = exp
[
log a

log b
log bk

]
= (bk)

log a

log b = nlogb a. �

Finally, let us mention that the definition of the Landau symbol O can even be
further generalised in the following sense.

Definition 1.5 For two functions f , g : Rn → R and x0 ∈ Rn, we will write

f (x) = O(g(x)), x → x0,

if there is a constant c > 0 and a surrounding U = U(x0) ⊆ Rn of x0 such that

| f (x)| ≤ c|g(x)|, x ∈ U.

1.4 Facts from Linear Algebra

In this section, we want to collect further material on matrices and vectors,
which should be known from classical, basic linear algebra courses. The char-
acter of this section is more to remind the reader of the material and to intro-
duce the notation. However, we will also prove some results which are less
familiar.
In Rn we have the canonical inner product defined by 〈x, y〉2 := xTy for all
x, y ∈ Rn. It particularly satisfies 〈x, x〉2 = x2

1 + · · · + x2
n > 0 for all x � 0.

As mentioned above, we will use both notations 〈x, y〉2 and xTy equally. The
canonical inner product defines a canonical norm or length ‖x‖2 :=

√〈x, x〉2,
the Euclidean norm. This norm has the usual properties of a norm, which can
more generally be defined for an arbitrary linear space. Of course, we assume
the reader to be familiar with the concept of linear spaces, linear sub-spaces,
linear independent vectors and the dimension of a linear space.

Definition 1.6 Let V be a real (or complex) linear space. A mapping ‖ · ‖ :
V → [0,∞) is called a norm on V if it satisfies

1. homogeneity: ‖λx‖ = |λ|‖x‖ for all x ∈ V and λ ∈ R (or λ ∈ C),

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

18 Introduction

2. definiteness: ‖x‖ = 0 if and only if x = 0,
3. triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

The space V with norm ‖ · ‖ is called a normed space.

In the case of V = Rn and ‖·‖ = ‖·‖2, the first two properties follow immediately
from the definition, while the triangle inequality follows from the Cauchy–

Schwarz inequality

|〈x, y〉2| ≤ ‖x‖2‖y‖2

which holds for all x, y ∈ Rn and where equality occurs if and only if y is a
scalar multiple of x. This all remains true, in the more general situation when
the norm is defined by an inner product.

Definition 1.7 Let V be a real linear space. A mapping 〈·, ·〉 : V × V → R is
called an inner product if it is

1. symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,
2. linear: 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈ V and α, β ∈ R,
3. definite: 〈x, x〉 > 0 for all x ∈ V \ {0}.
A space V with an inner product 〈·, ·〉 : V × V → R is called a pre-Hilbert

space.

The second property together with the first property indeed guarantees that
the mapping 〈·, ·〉 is bilinear, i.e. it is also linear in the second argument. Each
pre-Hilbert space becomes a normed space upon defining the canonical norm
‖x‖ :=

√〈x, x〉.
If V is a complex linear space then an inner product on V is again a mapping
〈·, ·〉 : V × V → C but the first two conditions above have to be modified
appropriately. For example, the first condition becomes 〈x, y〉 = 〈y, x〉 for all
x, y ∈ V , where α is the complex conjugate of α ∈ C. The second property
must now hold for all α, β ∈ C, which means that the inner product is linear
in its first and anti-linear in its second component. The canonical norm is then
defined as before.
Throughout this book, we will mainly be concerned with the space V = Rn and
hence introduce most concepts only for this space. But it is worth noting that
some of them immediately carry over to more general spaces.
As usual, for given x1, . . . , xn ∈ V , we use the notation span{x1, . . . , xn} to
denote the linear sub-space of V spanned by these elements, i.e.

span{x1, . . . , xn} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
j=1

α jx j : α1, . . . , αn ∈ R
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.4 Facts from Linear Algebra 19

Definition 1.8 Let V be a finite-dimensional pre-Hilbert space with basis
x1, . . . , xn. A basis is called an orthonormal basis if all basis vectors have unit
length, i.e. ‖xi‖ = 〈xi, xi〉1/2 = 1 and two different vectors are orthogonal, i.e
〈xi, x j〉 = 0 for i � j.

It is always possible to transform a given basis into an orthonormal basis.

Lemma 1.9 (Gram–Schmidt) Let x1, . . . , xn be linearly independent vectors

of a pre-Hilbert space V. Define u1 = x1/‖x1‖ and then for k = 1, 2, . . . , n,

ũ j+1 := u j+1 −
k∑

j=1

〈u j+1,u j〉u j,

u j+1 := ũ j+1/‖ũ j+1‖.
Then, the set {u1, . . . ,uk} forms an orthonormal basis of span{x1, . . . , xk} for

1 ≤ k ≤ n.

The Gram–Schmidt orthonormalisation process should be well-known and we
leave a proof of the above lemma to the reader. Though the Gram–Schmidt
procedure is obviously easily implemented, it is numerically often problematic.
We will later discuss better methods of finding orthonormal bases.

Definition 1.10 Let A ∈ Rm×n be given. Its null space is defined to be the set

ker(A) = {x ∈ Rn : Ax = 0} ⊆ Rn

and its range to be

range(A) = {Ax : x ∈ Rn} ⊆ Rm.

The rank of A ∈ Rm×n is defined as

rank(A) = dim{Ax : x ∈ Rn} = dim range(A).

It is easy to see that the null space of a matrix A ∈ Rm×n is a subspace of Rn,
while the range of A is a subspace of Rm.

Definition 1.11 Let A ∈ Rn×n be a square matrix.

1. The matrix is called positive semi-definite if, for all x ∈ Rn, we have

xTAx =

n∑
i=1

n∑
j=1

xix jai j ≥ 0.

It is called positive definite if the above expression is positive for all x � 0.
2. The matrix is called orthogonal if ATA = I.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

20 Introduction

3. The matrix is called diagonalisable if there exist an invertible matrix S ∈
R

n×n (or more generally S ∈ Cn×n) and a diagonal matrix D ∈ Rn×n (∈ Cn×n)
such that A = S DS −1.

If a matrix A ∈ Rn×n is symmetric then there is an orthonormal basis of Rn con-
sisting of eigenvectors of A. This means that there are real values λ1, . . . , λn ∈
R and vectors w1, . . . ,wn ∈ Rn \ {0}, which satisfy

Aw j = λ jw j, 〈w j,wk〉2 = δ jk.

The eigenvectors form an orthogonal matrix Q = (w1, . . . ,wn) ∈ Rn×n and
hence we have the following result.

Proposition 1.12 If A ∈ Rn×n is symmetric then there is an orthogonal matrix

Q ∈ Rn×n such that QTAQ = D is a diagonal matrix with the eigenvalues of A

as diagonal entries.

A symmetric matrix is positive definite (positive semi-definite) if and only if all

its eigenvalues are positive (non-negative).

As a consequence, a symmetric and positive definite matrix possesses a square

root.

Corollary 1.13 If A ∈ Rn×n is symmetric and positive (semi-)definite then

there is a symmetric and positive (semi-)definite matrix A1/2 ∈ Rn×n such that

A = A1/2A1/2. The matrix A1/2 is called a square root of A.

Proof According to Proposition 1.12, we can write A = QDQT with a di-
agonal matrix D = diag(λ1, . . . , λn) and an orthogonal matrix Q. The diago-
nal entries of D are non-negative. Hence, we can define the diagonal matrix
D1/2 := diag(

√
λ1, . . . ,

√
λn) and then A1/2 := QD1/2QT. This matrix is obvi-

ously symmetric and because of

xTA1/2x = xTQD1/2QTx = yTD1/2y =

n∑
j=1

y2
j

√
λ j ≥ 0

also positive (semi-)definite, where we have set y := QTx. Finally, we have

A1/2A1/2 = (QD1/2QT)(QD1/2QT) = QD1/2D1/2QT = QDQT = A. �

We also remark that for a matrix A ∈ Rm×n, the matrix ATA ∈ Rn×n is obviously
symmetric and positive semi-definite, simply because of

xT(ATA)x = (Ax)T(Ax) = ‖Ax‖2
2 ≥ 0.

As a matter of fact, each symmetric and positive definite matrix can be written

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.4 Facts from Linear Algebra 21

in this form, see Exercise 1.5. An orthogonal matrix is always invertible and
its rows and columns, respectively, form an orthonormal basis of Rn.
Sometimes it is necessary to consider a generalised eigenvalue problem. This
occurs, for example, when discussing discretised systems coming from elastic-
ity theory. Later on, it will also be important when we look at preconditioning.

Definition 1.14 Let A, B ∈ Rn×n be matrices. Then, λ ∈ C is a generalised

eigenvalue with respect to A, B if there is a non-zero vector x ∈ Cn such that

Ax = λBx.

The vector x is called generalised eigenvector.

If the matrix B is invertible, finding a generalised eigenvalue and eigenvector is
equivalent to finding a classical eigenvalue and eigenvector of the matrix B−1A.
However, even if A and B are symmetric, i.e. both have only real eigenvalues
and a complete set of eigenvectors, then the matrix B−1A is in general not
symmetric. Nonetheless, we have the following result.

Theorem 1.15 Let A, B ∈ Rn×n be symmetric and positive definite. Then,

all eigenvalues of B−1A are real and positive. Moreover, there exist n pairs of

generalised eigenvalues λ j and eigenvectors v j, 1 ≤ j ≤ n, satisfying Av j =

λ jBv j and

vT
i Bv j = vT

i Av j = 0, i � j.

The matrix V = (v1, . . . , vn) diagonalises the matrices A and B simultaneously.

If the eigenvectors are normalised such that vT
i

Bvi = 1, 1 ≤ i ≤ n, then

VTBV = I, VTAV = diag(λ1, . . . , λn).

Proof As mentioned above, a generalised eigenvalue is simply an eigenvalue
of B−1A. Since B is symmetric and positive definite, it has a symmetric and pos-
itive definite root B1/2 with inverse denoted by B−1/2. The matrix B−1/2AB−1/2

is symmetric and positive definite since we have on the one hand

(B−1/2AB−1/2)T = (B−1/2)TAT(B−1/2)T = B−1/2AB−1/2

and on the other hand for x ∈ Rn:

xTB−1/2AB−1/2x = (B−1/2x)TA(B−1/2x) > 0,

unless B−1/2x = 0 which is equivalent to x = 0. Thus, all eigenvalues of

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

22 Introduction

B−1/2AB−1/2 are positive. Next, for λ ∈ C we have

det(B−1/2AB−1/2 − λI) = det(B−1/2A − λB1/2) det(B−1/2)

= det(B−1/2) det(B−1/2A − λB1/2)

= det(B−1A − λI),

meaning that B−1/2AB−1/2 and B−1A have exactly the same eigenvalues.
Finally, let λ1, . . . , λn be the eigenvalues of B−1/2AB−1/2 with corresponding,
orthonormal eigenvectors w1, . . . ,wn. If we set v j := B−1/2w j then we have

B−1/2Av j = B−1/2AB−1/2w j = λ jw j = λ jB
1/2v j,

or Av j = λ jBv j. Moreover, we have

vT
j Bvk = wT

j B−1/2BB−1/2wk = wT
j wk = δ jk

and

vT
j Avk = wT

j B−1/2AB−1/2wk = λkδ jk. �

In several places we will require the notion of orthogonal projection. Again,
we define things immediately in a more general setting though we will mainly
be interested in the case of Rn.

Definition 1.16 Let V be a pre-Hilbert space. A linear mapping P : V → V

is called a projection if P2 = P. A linear mapping P : V → U ⊆ V is called
orthogonal projection onto U, if

〈x − Px,u〉 = 0, x ∈ V, u ∈ U. (1.4)

It is easy to see that a linear mapping P : V → V is a projection if and only
if Pu = u for all u ∈ range(P) = {Px : x ∈ V}. Moreover, an orthogonal
projection is indeed a projection since we have for x ∈ U also x − Px ∈ U and
hence by the orthogonality condition ‖x − Px‖2 = 〈x − Px, x − Px〉 = 0, i.e.
Px = x for all x ∈ U.
If u1, . . . ,uk ∈ U form an orthonormal basis of the finite-dimensional subspace
U ⊆ V , then the orthogonal projection onto U is given by

Px =

k∑
j=1

〈x,u j〉u j. (1.5)

Obviously, this so-defined P is linear and maps onto U. To see that it is also
the orthogonal projection, let us assume that V is also finite-dimensional, as
we are only concerned with finite-dimensional spaces in this book, though the
result is also true for infinite-dimensional spaces. If V is finite-dimensional, we

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.4 Facts from Linear Algebra 23

can extend u1, . . . ,uk to an orthonormal basis u1, . . . ,uk, . . . ,un of V . Then, we
have, for any x ∈ V ,

x =

n∑
j=1

〈x,u j〉u j, x − Px =

n∑
j=k+1

〈x,u j〉u j,

so that the orthogonal condition (1.4) yields for P defined by (1.5) that

〈x − Px,ui〉 =
〈 n∑

j=k+1

〈x,u j〉u j,ui

〉
=

n∑
j=k+1

〈x,u j〉〈u j,ui〉 = 0

for all 1 ≤ i ≤ k.
The orthogonal projection Px also describes the best approximation to x from
U.

Proposition 1.17 Let V be a pre-Hilbert space and let U ⊆ V be a finite-

dimensional subspace. Then, for x ∈ V and u∗ ∈ U are equivalent:

1. u∗ is the best approximation to x from U, i.e.

‖x − u∗‖ = min
u∈U

‖x − u‖.

2. u∗ is the orthogonal projection of x onto U, i.e.

〈x − u∗,u〉 = 0, u ∈ U.

Proof Let u1, . . . ,uk be an orthonormal basis of U. Then, using the orthonor-
mality we have with Px from (1.5) for arbitrary α1, . . . , αk ∈ R,

‖x − Px‖2 =

∥∥∥∥∥∥∥∥x −
k∑

j=1

〈x,u j〉u j

∥∥∥∥∥∥∥∥
2

=

〈
x −

k∑
i=1

〈x,ui〉ui, x −
k∑

j=1

〈x,u j〉u j

〉

= ‖x‖2 − 2
k∑

j=1

|〈x,u j〉|2 +
k∑

i, j=1

〈x,u j〉〈x,ui〉2〈ui,u j〉

= ‖x‖2 −
k∑

j=1

|〈x,u j〉|2 ≤ ‖x‖2 −
k∑

j=1

|〈x,u j〉|2 +
k∑

j=1

(〈x,u j〉 − α j)2

= ‖x‖2 − 2
k∑

j=1

α j〈x,u j〉 +
k∑

j=1

α2
j〈u j,u j〉

=

∥∥∥∥∥∥∥∥x −
k∑

j=1

α ju j

∥∥∥∥∥∥∥∥
2

.

This shows that Px from (1.5) is the unique best approximation to x from U.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

24 Introduction

As we already know that Px is also the orthogonal projection of x onto U, the
proof is finished. �

1.5 Singular Value Decomposition

The geometric interpretation of Proposition 1.12 is simple. The linear mapping
A : Rn → R

n, which is given by the matrix A in the standard basis, has a
much simpler representation when going over to the basis consisting of the
eigenvectors of A. If this basis is used in both the domain and the range of
the mapping then it can be represented by the diagonal matrix D. While the
simplicity of this representation is indeed appealing, it is not possible to find
such a simple representation for all matrices A ∈ Rn×n let alone for non-square
matrices A ∈ Rm×n. However, if we relax the requirement of using the same
orthogonal basis in the domain and the range, i.e. in Rn and Rm, to represent the
mapping, we can find a similarly simple representation. This is the so-called
singular value decomposition, which we want to discuss now.
To understand it, we need to recall a few more facts from linear algebra. We al-
ready introduced the rank and null space of a matrix. We also need the intrinsic,
well-known relations

n = dim ker(A) + rank(A), rank(A) = rank(AT). (1.6)

Note that an element x ∈ ker(A) satisfies Ax = 0 and hence also ATAx = 0, i.e.
it belongs to ker(ATA). If, on the other hand x ∈ ker(ATA) then ATAx = 0, thus
0 = xT(ATAx) = ‖Ax‖2

2 and hence x ∈ ker(A). This means

ker(A) = ker(ATA).

Similarly, we can easily see that ker(AT) = ker(AAT). Hence, the dimension
formula above immediately gives

rank(A) = rank(AT) = rank(ATA) = rank(AAT).

This means that the symmetric and positive semi-definite matrices ATA ∈ Rn×n

and AAT ∈ Rm×m have the same rank.
As before, we choose for ATA a system of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥
0 and associated eigenvectors v1, . . . , vn ∈ Rn satisfying ATAv j = λ jv j and
vT

j
vk = δ jk. Exactly the first r = rank(A) eigenvalues are positive and the

remaining ones are zero.
According to the considerations we just made, also the matrix AAT must have
exactly r positive eigenvalues. We will now see that, interestingly, the positive
eigenvalues of AAT are exactly the positive eigenvalues of ATA and that there

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.5 Singular Value Decomposition 25

is a very simple connection between the corresponding eigenvectors. To see
this, let us define

σ j :=
√
λ j, 1 ≤ j ≤ n,

u j :=
1
σ j

Av j, 1 ≤ j ≤ r.

Then, we have on the one hand that

AATu j =
1
σ j

AATAv j =
1
σ j

λ jAv j = λ ju j, 1 ≤ j ≤ r.

On the other hand, we have that

uT
j uk =

1
σ jσk

vT
j ATAvk =

λk

σ jσk

vT
j vk = δ jk, 1 ≤ j, k ≤ r.

Thus, u1, . . . ,ur ∈ Rm form an orthonormal system of eigenvectors corre-
sponding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 of AAT. Since this matrix
also has rank r and is positive semi-definite, all other eigenvalues have to be
zero. It is now possible to complete the system {u1, . . . ,ur} to an orthonor-
mal basis {u1, . . . ,um} consisting of eigenvectors. If we define the matrices
U := (u1, . . . ,um) ∈ Rm×m and V = (v1, . . . , vn) ∈ Rn×n then we have

Av j = σ ju j, 1 ≤ j ≤ r,

Av j = 0, r + 1 ≤ j ≤ n,

by definition and by the fact that ker(A) = ker(ATA). This can alternatively be
written as

AV = UΣ,

where Σ = (σ jδi j) ∈ Rm×n is a non-square diagonal matrix. This altogether
proves the following result.

Theorem 1.18 (Singular Value Decomposition (SVD)) A matrix A ∈ Rm×n

has a singular value decomposition A = UΣVT with orthogonal matrices U ∈
R

m×m and V ∈ Rn×n and a diagonal matrix Σ = (σ jδi j) ∈ Rm×n.

Note that some of the σ j may be zero, depending on the rank of the matrix A.
If r is the rank of A, then there are exactly r non-zero and hence positive σ j.
Furthermore, the singular value decomposition is not unique. To be more pre-
cise, the matrices U and V are not unique, since we can, for example, change
the sign of the columns. Moreover, if some of the σ j have the same value, then
we can choose different bases for the corresponding eigenspaces. However, the
values σ j are uniquely determined by A and thus, if we order the σ j, then the
matrix Σ is unique.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

26 Introduction

Definition 1.19 Those σ j in the singular value decomposition which are pos-
itive are called the singular values of the matrix A.

Taking r = rank(A) into account, we can also rewrite the representation A =

UΣVT from Theorem 1.18 in the form

A =

n∑
j=1

σ ju jv
T
j =

r∑
j=1

σ ju jv
T
j .

Hence, if we define the matrices Û := (u1, . . . ,ur) ∈ Rm×r, V̂ := (v1, . . . , vr) ∈
R

n×r and Σ̂ := diag(σ1, . . . , σr) ∈ Rr×r then we have the alternative representa-
tion

A = ÛΣ̂V̂T,

which is also called reduced singular value decomposition of the matrix A.
Since we can also write the reduced form as A = Û(V̂Σ̂)T, we have the follow-
ing result.

Corollary 1.20 Every matrix A ∈ Rm×n of rank(A) = r can be written in the

form A = BCT with B ∈ Rm×r and C ∈ Rn×r.

In particular, we see that every rank 1 matrix is necessarily of the form bcT

with b ∈ Rm and c ∈ Rn.
There are efficient methods available to compute the singular value decompo-
sition and we will discuss some of them in Section 5.7.

1.6 Pseudo-inverse

We can use the singular value decomposition to define a kind of inverse to a
singular and even non-square matrix.

Definition 1.21 Let A ∈ Rm×n have rank r = rank(A). Let A = UΣVT be
the singular value decomposition of A with orthogonal matrices U ∈ Rm×m,
V ∈ Rn×n and with Σ ∈ Rm×n being a diagonal matrix with non-zero diagonal
entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Let Σ+ ∈ Rn×m be the matrix

Σ+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/σ1 0 . . . 0
. . .

...
...

1/σr 0 0
0 . . . 0 0 . . . 0
...

...
...

...

0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

1.6 Pseudo-inverse 27

Then, the pseudo-inverse of A is defined as

A+ := VΣ+UT ∈ Rn×m. (1.7)

We know that the singular values of a matrix A ∈ Rm×n are uniquely deter-
mined. However, the orthogonal matrices U and V are not unique and hence
we have to make sure that the pseudo-inverse is well-defined before we inves-
tigate its properties.

Theorem 1.22 Let A ∈ Rm×n with r = rank(A).

1. Each pseudo-inverse A+ ∈ Rn×m of A satisfies

AA+ = (AA+)T, A+A = (A+A)T, AA+A = A, A+AA+ = A+. (1.8)

2. The properties

AB = (AB)T, BA = (BA)T, ABA = A, BAB = B (1.9)

determine a matrix B ∈ Rn×m uniquely. This means in particular that the

pseudo-inverse is well-defined.

Proof 1. By definition of a pseudo-inverse, we have

AA+ = (UΣVT)(VΣ+UT) = UΣΣ+UT.

Since ΣΣ+ ∈ Rm×m is a diagonal matrix with r diagonal entries equal to 1
and m − r diagonal entries equal to 0 it is obviously symmetric and hence
AA+ = (AA+)T. The equality A+A = (A+A)T is shown in the same way.
Moreover, we have

AA+A = (UΣVT)(VΣ+UT)(UΣVT) = UΣΣ+ΣVT = UΣVT = A

and A+AA+ = A+ follows in the same way.
2. Now assume that both B and C satisfy the stated equalities (1.9). Then, we

can conclude that

B = BAB = B(AB)T = (BBT)AT = BBTATCTAT = B(AB)T(AC)T

= (BAB)AC = BAC = (BA)TC = (BA)T(CAC) = (BA)T(CA)TC

= ATBTATCTC = ATCTC = (CA)TC = CAC = C. �

From this we have the uniqueness of the pseudo-inverse. Moreover, we see
that the pseudo-inverse is uniquely determined by the so-called Penrose condi-

tions (1.9), i.e. we could have also used these conditions to define the pseudo-
inverse.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

28 Introduction

Moreover, if A ∈ Rn×n is invertible then B = A−1 obviously satisfies the condi-
tions (1.9). This means that for an invertible matrix the pseudo-inverse and the
classical inverse are the same.
Finally, if m ≥ n and rank(A) = n, the following representation of the pseudo-
inverse will become important later on.

Lemma 1.23 Let A ∈ Rm×n satisfy rank(A) = n. Then, the pseudo-inverse of

A is given by

A+ = (ATA)−1AT. (1.10)

Proof Since A ∈ Rm×n with rank(A) = n, we find that ATA ∈ Rn×n has also
rank n and is hence invertible. Thus, the expression B := (ATA)−1AT is well-
defined. Moreover, B satisfies (1.9), since, using the symmetry of ATA, we
have

(AB)T = (A(ATA)−1AT)T = A(ATA)−1AT = AB,

(BA)T = ((ATA)−1ATA)T = IT = I = (ATA)−1ATA = BA,

ABA = A(ATA)−1ATA = A,

BAB = ((ATA)−1AT)A(ATA)−1AT = (ATA)−1AT = B. �

The pseudo-inverse will play an important role when it comes to solving and
analysing least-squares problems. The next result relates the pseudo-inverse to
the orthogonal projections onto the ranges of A and AT.

Lemma 1.24 Let A ∈ Rm×n with pseudo-inverse A+ ∈ Rn×m. Then,

1. P := AA+ : Rm → Rm is the orthogonal projection onto range(A),

2. P := A+A : Rn → Rn is the orthogonal projection onto range(AT).

Proof We will only prove the first statement since the proof of the second
statement is very similar, as range(A+) = range(AT).
By definition Px = A(A+x) ∈ range(A). Moreover, using the properties (1.8)
we find for each x ∈ Rm and u = Av ∈ range(A) that

〈x − Px,u〉2 = 〈x − Px, Av〉2 = vTAT(x − AA+x)

= vT[ATx − AT(AA+)Tx] = vT[ATx − (AA+A)Tx]

= vT[ATx − ATx] = 0,

which shows that Px = AA+x is indeed the orthogonal projection of x onto
range(A). �

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

Exercises 29

Exercises

1.1 Let V be a pre-Hilbert space. Use 0 ≤ 〈αx + βy, αx + βy〉 for α, β ∈ R
and x, y ∈ V to prove the Cauchy–Schwarz inequality.

1.2 Let V be a normed space with norm ‖ · ‖ : V → R. Show that V is a
pre-Hilbert space and that the norm comes from an inner product 〈·, ·〉 :
V × V → R if and only if the parallelogram equality

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ V

holds and that in this case the inner product satisfies

〈x, y〉 = 1
4

[
‖x + y‖2 − ‖x − y‖2

]
, x, y ∈ V.

1.3 Let V be a pre-Hilbert space. Show that the norm induced by the inner
product satisfies ‖x + y‖ < 2 for all x � y ∈ V with ‖x‖ = ‖y‖ = 1.

1.4 Let A ∈ Rn×n be symmetric and positive definite and let C ∈ Rn×m. Show:

1. the matrix CTAC is positive semi-definite,
2. rank(CTAC) = rank(C),
3. the matrix CTAC is positive definite if and only if rank(C) = m.

1.5 Show that a matrix A ∈ Rn×n is symmetric and positive definite if and
only if it is of the form A = BBT with an invertible matrix B ∈ Rn×n.

1.6 Let A, B,C ∈ R2×2 with C = AB. Let

p = (a11 + a22)(b11 + b22), q = (a21 + a22)b11,

r = a11(b12 − b22), s = a22(b21 − b11),

t = (a11 + a12)b22, u = (a21 − a11)(b11 + b12),

v = (a12 − a22)(b21 + b22).

Show that the elements of C can then be computed via

c11 = p + s − t + v, c12 = r + t,

c21 = q + s, c22 = p + r − q + u.

Compare the number of multiplications and additions for this method
with the number of multiplications and additions for the standard method
of multiplying two 2 × 2 matrices.
Finally, show that if the above method is recursively applied to matrices
A, B ∈ Rn×n with n = 2k then the method requires 7k multiplications and
6 · 7k − 6 · 22k additions and subtractions.

https://doi.org/10.1017/9781316544938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316544938.002

