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1. Introduction

A ring R is called a qc-ring if each cyclic /^-module is quasi-injective. For
various properties of these rings we refer to Ahsan (1) and Koehler (15). In
this paper we shall obtain some additional results related to qc-rings. The
scheme of the paper is as follows. Section 2 contains various preliminary
definitions and results. In Section 3, we shall prove that every commutative
hypercyclic ring is a qc-ring. In this section, we shall also show that a qc-ring
which satisfies the ascending chain condition on its annihilators has nilpotent
Jacobson-radical. Finally, in Section 4, we shall study rings all of whose proper
factor rings are qc. Such rings will be called " restricted qc ".

2. Preliminaries

Throughout this paper we shall assume that every ring has an identity and
that every module is unitary. If A1 is a subset of R, r(X) (l(X)) will denote the
right (left) annihilator of A'in R. /will denote the Jacobson-radical of a ring R.
A ring is said to be bound to its radical if l(J)nr(J)cJ. R is called local (semi-
local) if R/J is a division ring (semi-simple Artinian). It is known that in a semi-
local ring R, the right (left) socle of R is /(/) (r(J)) (see (18)). A ring R is called a
duo ring if every one-sided ideal of R is two sided. A ring R is semi-primary if
R/J is semi-simple Artinian and J nilpotent. We shall also use some properties
of uniserial and qF-rings. For different characterisations of these rings, we
refer to Bass (3), Faith (9, 10), Faith and Walker (10), Asano (2), Fuller (12)
and Byrd (5). If P is any property of rings then a ring R is restricted P if every
proper homomorphic image of R has property P. Restricted qF (uniserial)
rings have been studied by Levy (16), Faith (9), Pollinghar and Zaks (19) and
Zaks (21). A ring R is called a q-ring if each right ideal of R is quasi-injective.
The study of q-rings was initiated by Jain, Singh, and Mohamed (13). In (6);

Caldwell called a ring R hypercyclic if each cyclic right i?-module has a cyclic
injective hull. Caldwell proved that a perfect ring is hypercyclic if and only if
it is uniserial. He has also shown, by means of an example, that an arbitrary
hypercyclic ring need not satisfy any chain condition even in the commutative
case.
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3. Hypercyclic rings and quasi-injective modules

We prove the following theorem.

Theorem 3.1. Let R be a commutative ring. If R is hypercyclic then R is qc.

Proof. In order to prove that R is a qc-ring, we need to show that each
cyclic .R-module is quasi-injective. Let A be a cyclic /?-module with injective
envelope E. Since R is hypercyclic, E is cyclic. Let g be a generator of E, i.e.
E = gR. Let 6 e A = Homjj (E, E) and let Q{g) = gs. Then if a e A, we have
a = gr and d(a) = 0(g)r = gsr = grs = as. Therefore, 6(a)eA. Hence by
Johnson and Wong (14, Theorem 1.1) A is quasi-injective. Therefore R is qc.

We now give an example to show that arbitrary hypercyclic rings need not be
qc.

Example 3.2. Let R be the ring of integers mod 4 and R2 the ring of all
2x2 matrices over R. Since R is a uniserial ring, so also is R2. Hence by
Theorem 1.5 of Caldwell (6), R2 is hypercyclic. By Theorem 8 of (1), R2 is not
a qc-ring.

The above example can also be used to support the statement that it is not
necessary for a ring all of whose factor rings are self-injective to be a qc-ring.
A commutative ring is uniserial if and only if all its homomorphic images are
hypercyclic (see Caldwell (6, Theorem 2.5)). Since qc-rings are closed under
the taking of homomorphic images (1, Lemma 3) but need not be uniserial even
in the commutative case (1, Example 2), it follows that a qc-ring need not be
hypercyclic even if it is commutative.

We recall from (1) that a qc-ring is called strongly qc if its Jacobson-radical is
nilpotent. A qc-ring is strongly qc if and only if it is Noetherian (see (1,
Theorem 5)). In the next theorem, we show that for a qc-ring R to be strongly
qc, it is sufficient to assume that R satisfies the ascending chain condition on
right annihilators.

Theorem 3.3. Let Rbe a ring. Then the following statements are equivalent:
(1) R is a qc-ring which satisfies the ascending chain condition on right

annihilators.
(2) R is strongly qc.
(3) R is a uniserial ring all of whose one-sided large ideals are two-sided.

Proof. (1)=>(2). Since R is a qc-ring, RR is injective. Hence by Corollary 5,
page 47 of Faith (8), the right singular ideal of R is equal to / . By our assump-
tion, R satisfies the ascending chain condition on right annihilators; hence by
Corollary 8 on page 312 of Shock (20), J is nilpotent. Therefore, R is strongly
qc.

(2)o(3) follows from (1, Theorem 7).
(2)=>(1) is clear from the remark above.
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4. Restricted qc-rings

A ring R will be called a restricted qc-ring if each proper factor ring of R is
a qc-ring. It is not necessary that a ring all of whose (proper) factor rings are
self-injective is restricted qc (e.g. see Example 4.8 below). Simple rings are,
trivially, restricted qc and thus a complete classification of restricted qc-rings
seems difficult to obtain. We shall, however, obtain some important properties
of these rings. We start with the following examples.

Example 4.4. The ring Z of integers is restricted qc. Since every proper
factor ring of Z is a (commutative) principal ideal Artinian ring and hence is
uniserial, and also since every commutative uniserial ring is a qc-ring by
Theorem 3.3, every proper factor ring of Z is qc. Therefore, Z is restricted qc.
Clearly, Z itself is not a qc-ring, as it is not self injective.

Example 4.5. Let F be a field and x an indeterminate over F. Let W be the
family of all well-ordered sets {/} of non-negative real numbers, the order
relation being the order of real numbers. Let R be the set of all formal power
series £a,-x,- with at e F and {/} e W. Then by (1, Example 2), R is a restricted
qc-ring which does not satisfy any chain condition.

We now prove the following theorem.

Theorem 4.6. Let R be any ring with non-zero Jacob son-radical. If R is
restricted qc then R is a direct sum of two rings i?i and R2, where Rt is semi-
simple Artinian and R2 is a semi-local ring bound to its radical.

Proof. Since R is restricted qc and J ^ 0, R/J is a qc-ring. Therefore, R/J
is Artinian by Theorem 1 of (1). This means that R is a semi-local ring. The
theorem now follows from Mohamed (18, Theorem 1.5).

The following Corollary may be deduced from the above theorem by using
the arguments in the proof of Theorem 2 of (1).

Corollary If J is non-nilpotent then for each positive integer n, J"/Jn+1

is a finite direct sum of simple R-modules.

Theorem 4.7. Let R be a Noetherian ring. If R is restricted qc then R is
restricted uniserial.

Proof. Let / be a non-zero ideal of R. Since R is restricted qc, R/I is a
qc-ring. This implies that R/I is, in particular, a self-injective ring. R/I is also
Noetherian since R is so. Therefore R/I is an Artinian ring (see Lemma 7 of
(1)). Hence J(R/I) is nilpotent. Thus R/I is a strongly qc-ring. Then it
follows from Theorem 3.3 that R/I is a uniserial ring. We have shown that
every proper factor ring of R is uniserial. Hence R is restricted uniserial.

The following example shows that restricted uniserial rings need not be
restricted qc.

Example 4.8. Let Zn be the ring of n x n matrices («> 1) with entries from Z,
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the ring of integers. Since Z is restricted uniserial, Zn is also restricted uniserial.
Zn is not restricted qc. This is possible if and only if every proper factor ring
of Z is semi-simple Artinian by Theorem 8 of (1).

Theorem 4.9. Let R be a restrictedqc-ring andJ =f= 0. IfJ is nilpotent then R
is restricted uniserial.

Proof. Since R is restricted qc, R/J is Artinian by Theorem 4.6. But J is
nilpotent. Hence R is a semi-primary ring. Let / be any non-zero ideal of R.
Then R/I is a qc-ring which is also semi-primary by a result of Bjork ((4),
Lemma 3.1). Thus R/I is a strongly qc-ring, whence it is uniserial by Theorem
3.3. Therefore, R is restricted uniserial.

Theorem 4.10. Let R be a commutative ring. Then R is restricted qF {uni-
serial) if and only if R is restricted qc and Noetherian.

Proof. (1) Let us suppose that R is restricted uniserial. Then each proper
factor ring of R is uniserial. This implies that each proper factor ring of R is
qc by Theorem 3.3, i.e. R is restricted qc. Since R is restricted uniserial, it is
restricted Artinian. But a commutative restricted Artinian ring is always
Noetherian by Cohen (7).

(2) Conversely, if R is Noetherian and restricted qc, then it follows from
Theorem 4.7 that R is restricted uniserial. This completes the proof of the
theorem.

We have already given the definition of q-rings. Every self-injective duo
ring is a q-ring (see Jain, Singh and Mohamed (13)). It is not necessary that
each proper homomorphic image of a Noetherian q-ring is also a q-ring (see
the Example on page 209 of Faith (9)). In (17), Mohamed has given a partial
classification of Noetherian rings whose proper homomorphic images are q-rings.
Using the notion of restricted qc-rings, a complete classification of rings, among
Noetherian rings, whose proper homomorphic images are q-rings, can be ob-
tained as follows.

Theorem 4.11. Let R be Noetherian. Then each proper homomorphic image
of R is a right q-ring if and only if R is restricted qc.

Proof. (1) Let us suppose that each proper homomorphic image of R is a
q-ring. Let / be a non-zero ideal of R. Then R/I is a q-ring. Therefore R/I
is a self-injective ring. Since R is Noetherian so also is R/I. R/I is, therefore,
a qF-ring. Let K/I be any ideal of R/I where K ^ / . Then R/I/K/I ^ R/K.
Because K # (0), the fact that each proper homomorphic image of R is a
q-ring implies that R/K is a q-ring so that R/K is self-injective. However, R/K
is also Noetherian. Hence R/K is a qF-ring. This means that (R/I)/(K/I)
is a qF-ring so that every factor ring of R/I is also qF. Hence, by Fuller (11),
R/I is uniserial. By Theorem 11 of (1), every uniserial q-ring is also qc. Hence
R/I is a qc-ring. We have shown that R is restricted qc.
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(2) Conversely, let us suppose that R is restricted qc. Since R is Noetherian,
it is restricted uniserial by Theorem 4.8. But every uniserial qc-ring is also a
q-ring (1, Theorem 11). Hence R is a restricted q-ring. This completes the
proof of the theorem.

Theorem 4.12. Let R be a right Noetherian ring. Then each homomorphic
image of R is a q-ring if and only if R is uniserial and every large one sided ideal
of R is two sided.

Proof. (1) Let us suppose that R is a Noetherian ring all of whose homo-
morphic images are q-rings. If / is any ideal of R, then the factor ring R/I is a
q-ring and hence self-injective. R/I is also Noetherian. Therefore R/I is a
qF-ring. Since every homomorphic image of R is a qF-ring, it follows that R
is uniserial. Since R itself is a q-ring, it follows from Jain, Singh and Mohamed
(13) that every one-sided large ideal of R is two-sided.

(2) Let us now suppose that R is a uniserial ring all of whose one-sided large
ideals are two-sided. Then R is a qc-ring by Theorem 3.3. Now let /be any
ideal of R. Then R/I is also a qc-ring (see (1), Lemma 3). Since R is uniserial,
if follows easily that R/I is a uniserial ring. But again by (1, Theorem 11), every
uniserial ring which is qc is also a q-ring. Hence R/I is a q-ring. Thus every
homomorphic image of R is a q-ring and the theorem follows.

Corollary. Let Rbe a local Noetherian ring. Then each homomorphic image
ofR is a q-ring if and only if R is a uniserial ring which is also a duo ring.

Finally, we prove the following theorem.

Theorem 4.13. Let Rbe a local ring. Then each homomorphic image of R
is a q-ring if and only if R is a qc-ring.

Proof. (1) Let us suppose that each homomorphic image of R is a q-ring.
In particular, R is a q-ring. It is easy to show that every local q-ring is a duo
ring. To show that R is a qc-ring, let us consider a cyclic right .R-module M.
Then M ^ R/I, where / is a right ideal of R. Since R is a duo ring, / is two-
sided. Then R/I is in fact a factor ring of R. This implies that R/I is a self-
injective ring. In other words, R/I is iJ//-quasi-injective. Then it follows from
(1, Lemma 2) that R/I is .R-quasi-injective. Therefore R is a qc-ring.

(2) Conversely, suppose R is a qc-ring. Then each homomorphic image of
R is a qc-ring. Since every qc-ring is also a q-ring (see Koehler (15)), each
homomorphic image of R is also a q-ring. This proves the theorem.

Acknowledgement
The author is grateful to his supervisor, Dr A. D. Sands, for his help in the

preparation of this paper. A part of the work on this paper was done at the
University of Dundee and the author is thankful to the University for giving a
grant which financed this research.

https://doi.org/10.1017/S0013091500010269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010269


144 J. AHSAN

REFERENCES

(1) J. AHSAN, Rings all of whose cyclic modules are quasi-injective, Proc. London
Math. Soc. (3) 27 (1973), 425-439.

(2) K. ASANO, Uber Hauptideal Ringe mit Kettensatz, Osaka J. Math. 1 (1949),
52-61.

(3) H. BASS, Finitistic dimension and a homomological generalization of semi-
primary rings, Trans. Amer. Math. Soc. 95 (I960), 466-488.

(4) J.-E. BJORK, Conditions which imply that subrings of semi-primary rings are
semi-primary, / . Algebra, 19 (1971), 384-395.

(5) K. A. BYRD, Some characterizations of uniserial rings, Math. Ann. 186 (1970),
163-170.

(6) W. H. CALDWELL, Hypercyclic Rings, Pacific J. Math. 24 (1968), 29-44.

(7) I. S. COHEN, Commutative rings with restricted minimum Condition, Duke
Math. J. 17 (1950), 27-42.

(8) C. FAITH, Lectures on infective modules and quotient rings (Springer-Verlag,
New York, 1967).

(9) C. FAITH, On Kdthe rings, Math. Ann. 164 (1964), 207-212.

(10) C. FAITH and E. A. WALKER, Direct sum representations of injective modules,
/ . Algebra 5 (1967), 203-221.

(11) K. R. FULLER, Generalized uniserial rings and their Kupisch series, Math. Z.
106 (1968), 248-260.

(12) K. R. FULLER, On direct representations of quasi-injectives and quasi-
projectives, Arch. Math. 20 (1969), 495-502.

(13) S. K. JAIN, S. SINGH and S. H. MOHAMED, Rings in which every right ideal is
quasi-injective, Pacific J. Math. 31 (1969), 73-79.

(14) R. E. JOHNSON and E. T. WONG, Quasi-injective modules and irreducible
rings, / . London Math. Soc. 36 (1961), 260-268.

(15) ANNE B. KOEHXER, Rings with quasi-injective cyclic modules, Quart. J. Math
Oxford (2) 25 (1974), 51-55.

(16) L. S. LEVY, Commutative rings whose homomorphic images are self-injective,
Pacific J. Math. 18 (1966), 149-153.

(17) S. MOHAMED, Rings whose homomorphic images are #-rings, Pacific J. Math.
35 (1970), 725-735.

(18) S. MOHAMMED, Semi-local <?-rings, Indian J. Pure Appl. Math. 1 (1969-1970),
419-424.

(19) A. POLLINGHAR and A. ZAKS, Some remarks on quasi-Frobenious Rings,
/ . Algebra 10 (1968), 231-239.

(20) R. C. SHOCK, The rings of endomorphisms of a finite dimensional module,
IsraelJ. Math. 11 (1972), 309-314.

https://doi.org/10.1017/S0013091500010269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010269


ON RINGS WITH QUASI-INJECTIVE CYCLIC MODULES 145

(21) A. ZAKS, Injective dimensions of semi-primary rings, J. Algebra 13 (1969),
73-86.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ISLAMABAD
ISLAMABAD
PAKISTAN

https://doi.org/10.1017/S0013091500010269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010269

