
T. Ichinose
Nagoya Math. J .
Vol. 50 (1973), 185-198

OPERATORS ON TENSOR PRODUCTS
OF -2\, se2 AND &„ SPACES

Dedicated to Professor Yoneichiro Sakakion his 60th birthday, March 5, 1973

TAKASHI ICHINOSE*

Introduction

Let A and B be densely defined closed linear operators in complex
Banach spaces X, Γ, respectively, with nonempty resolvent sets. Then
for a class of polynomials P(ξ, η) the spectral mapping theorem has been
established by the author [9] (cf. [7], [8]):

P(σ(A), σ(B)) = σ(P(A ® /, / ® B)) = σ(P(A ® /, J ® J?)) ,
where P(A ® /, / ® B) is a maximal extension of P(A ® /, / ® B) in X (x)α Y,
the completion of X (g) Y with respect to a uniform reasonable norm a.
Another investigation has recently been made by M. Reed and B.
Simon [17].

The aim of this work is to extend the spectral mapping theorem to
a much larger class of polynomials P(ξ,τj)9 when both Z and Y are J2\,
«S?2 or <£„ spaces of J. Lindenstrauss and A. Peίczyήski [13] and one of
A and B is a scalar type spectral operator (see [2]). In contrast to the
results in [9], the set P(σ(A),σ(B)) may not always be closed (cf. [17]).

The theory applies to the operators of the form A ® / + I ® B, which
include not only the elliptic and parabolic differential operators but also
the hyperbolic differential operators. A new meaning is given thereby
to the method of separation of variables for partial differential equations
(cf. [3]).

Section 1 is concerned with some definitions and results on £fp spaces
and tensor products. Our main results are formulated in Section 2.
Section 3 is devoted, in particular, to the operators of the forms
A ® / + / ® B and A (x)α / + / (x)α B. In Section 4, we refer to some
applications of the results.

Received August 4, 1972.
* The author would like to express his hearty thanks to Professor T. Matsuzawa

for several valuable discussions.

185

https://doi.org/10.1017/S0027763000015634 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015634


186 TAKASHI ICHINOSE

For the basic facts on topological linear spaces and tensor products,
see [11], [4], [5] and [18].

l Preliminary Results

We shall start by summarizing some useful results on <£v spaces
and tensor products.

1.1. ££v spaces

J. Lindenstrauss and A. Pefczyήski [13] have introduced the S£p

spaces. We shall only concern with the cases p = 1, 2 and oo in this work.
Two Banach spaces E and F are isomorphic if there exists an in-

vertible bounded linear operator of E onto F. The distance d(E,F) of
two isomorphic Banach spaces is defined by inf (||Γ|| HΓ"1!!), where the
infimum is taken over all invertible bounded linear operators T of E
onto F.

By Lp(μ) = Lp(Ω,&,μ), 1 < p < oo, we denote the Banach space of
all equivalence classes of measurable functions on some measure space
(Ω,&,μ) whose p-th power is integrable (resp. essentially bounded if
p = oo). If (Γ,&,μ) is the discrete measure space on a set Γ with
μ({r}) = 1 for every γ e Γ, we denote Lp(μ) by ip(Γ). If Γ = {1,2, , %},
we denote £P(Γ) by £%. The subspace of £JΓ) of those / e £JJΓ) for
which the set {γ e Γ \f(γ)\ > ε} is finite for every e > 0 is denoted by
co(Γ). For a compact Hausdorff space K, we denote by C(K) the Banach
space of all continuous functions on K.

A Banach space E is said to be an &VtX space, l < : p < o o , l < Λ < o o ,
if for each finite-dimensional subspace FaE there exists a finite-dimen-
sional subspace G with F dGczE such that d(G, £%) < λ, where n = dim G,
the dimension of G,

A Banach space E is said to be an 3?v space, 1 < p < oo, if it is
an S£VΛ space for some λ > 1.

It is known [13] that the Banach spaces Lp(μ) (resp. C(K)) are &Ptλ

(resp. ifoo,ί) spaces for every λ>l, but for l < p < o o , p ψ% there exist
J^P spaces which are not isomorphic to the spaces Lp(μ). For p = 2,
the class of «̂ 2 spaces coincides with the class of spaces isomorphic to
Hubert spaces, so that an if2 space can be considered to be endowed
with an inner product.

A closed subspace F of a Banach space E is said to be a comple-
mented subspace if there is a continuous projection of E onto F.
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A complemented subspace of an S£v space (1 < p < oo) which is not
isomorphic to a Hubert space is an ££v space [14]. Every S£v space
(1 < P < °°) is isomorphic to a subspace of a space Lp(μ) for some
measure μ[13]. Every Banach space E is an S£v space (1 < p < oo) if
and only if its dual X' is an S£v, space with 1/p + l/p' = 1 [14].

By a bounded Boolean algebra $ of projections in a Banach space
Z, we mean a Boolean algebra of commuting continuous projection E
in Z such that sup||£?|| < K for all S e ^ (see [2]).

We shall make use of a result of J. Lindenstrauss and A. Peίczyήski
on unconditional Schauder decompositions of £PX and J ^ spaces [13,
Corollary 8 to Theorem 6.1], stated in the following form we need.

THEOREM 1.1. Let Z be an ££x (resp. i f j space and let £ be a
bounded Boolean algebra of projections. Then there exists a positive
constant Mί (resp. MJ such that for every finite family {Ek}

s

k=1 of dis-
joint projections in £

ΣLiIIEkz | | < Mx|| ΣUEkz\\9 zeZ

(resp. | | Σ U Ekz\\ < Mm max^,, \\Euz\\, z e Z).

1.2. Tensor Products

Let X and Y be complex Banach spaces and X', Ύr their dual spaces.
Let X (x) Y be the algebraic tensor product of X and Y and X ®a Y its
completion with respect to a uniform reasonable norm a on X ® Y.

Suppose that A : D[A] d X-> X and # : Z>[£] c Γ -> Γ are densely
defined closed linear operators with nonempty resolvent sets /?(A), p(B)
and with spectra <r(A), σ(B). Assume further that B is a scalar type spec-
tral operator with the countably additive resolution E of the identity [2].
We may assume σ(B) nonempty. The identity operators in both X and
Y will be denoted by the same /.

To each polynomial of degrees m in ξ and n in η

(1.1) i)(f,7) = Σ ^ r f i 9*,

we assign two kinds of polynomial operators defined densely in X (x)α Y

(1.2) P(A (g) /, / (g) B) = Σ CjAj ® β*

with domain D[Am] (g) D[Bn] and

(1.3) Σ^*A'<§>βB*

with domain Γ)j>k;c.kΦ0D[Aj ®aB
k], where A3 ®aB

k denotes a maximal
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188 TAKASHI ICHINOSE

extension of Aj ® Bk in I (x)α Y. Maximal extensions of the operators
(1.2) and (1.3) are denoted by P(A01,1 (x) B), (ΣcJ*Aj ΘaB

k)~, respec-
tively (see [12], [7], [8] and [9]).

In order to establish our main results, we shall restrict the Banach
A

spaces X (x)α Y concerned to the following three cases:
(αrj) both X and Y are S£x spaces and a is the greatest reasonable

norm π;
(a2) both X and Y are ££2 spaces and a is the uniform crossnorm

aQ for which X (x)α Y is an J£?2 space
(cθ both X and Y are ££«> spaces and a is the smallest reasonable

norm ε.
In cases (<x2) and (aj, the norms a0 and ε are faithful. For case

(ofj), however, the author is unaware whether or not the norm π there
is faithful. This is certainly true if X or Y satisfies the condition of
approximation [4]. It is known [10] that a separable ££v space (1 < p < oo)
has a Schauder basis. Therefore we can assert in case (ax) that if X
and Y are besides separable, then the norm π there is faithful (e.g. [7]).

Thus, as is the case in all applications, we assume for simplicity
further that the norm π is faithful in case (aλ) whenever both X and Y
are <£x spaces.

For faithful a, Aj (x)α B
k is nothing but the closure of A* <g) Bk in

X ®a Y, and the same is true for P(A <g> /, / <g> B) and (Σ cjkA* (x)α B
k)~.

We remark (cf. [14], [6]) that under the condition (aj (resp. (α2),
(aj), Z(x)αΓ is also an SPX (resp. &2, SPJ space.

To prove Proposition 2.1, we shall need
A

LEMMA 1.2. Suppose the space X®aY satisfies the condition (aj,
A

(a2) or (aj). If Yx is a complemented subspace of Y, then X®aYt is a
A

complemented subspace of X (x)α Y. Therefore, if Y = Σ l = 1 Θ Yk is a

topologίcal direct sum, then X®a Y = ΣΆ=ι ® (^®« Yu)
Proof. It is trivial for case (a2). For cases (aj and (aj, note that

the norms π and ε are ®-norms in the sense of A. Grothendieck [5], so
that they are defined for every pair of Banach spaces X and Y. Let P
be the continuous projection of Y onto Yl9 and / the injection of Yγ

into Y. Then, since a is a (x)-norm, I®aP (resp. I®aJ) is a continuous
linear operator of X ®a Y (resp. X (x)α YJ into X ®a Yx (resp. X®aY). We
have I%)aPu^{I®P)u^u on X<g) Yx. Since (/<g>P)(I®J)u = u on
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X ® Yu it follows by continuity that (/ (x)α P)(/ (x)α J)u = u on X ®a Y19

which implies that the range of I®aP is Z(x)α Yx. Clearly (I®aP)2 =
7(x)αP. Thus /(x)αP is a continuous projection of X(x)α Y onto X(x)α Y1?

so that X®aY1 is a complemented subspace of X(x)αY. Q.E.D.

2. Spectral Mapping Theorem

For the spaces X (x)α Y and the operators A and i? described in Sec-
tion 1, we shall formulate the spectral mapping theorem for the poly-
nomial operators (1.2) and (1.3).

Throughout, the following convention will be used. Given two sub-
sets F1 and F2 Φ 0 of the complex plane C and a polynomial P(ξ, η) of
degrees m > 1 in ξ and n in η, we can define P(F19 F2) and its closure
P(Fl9 F2) in an obvious way if Fγ is not empty, and otherwise we set

PROPOSITION 2.1. Let a be a faithful uniform reasonable norm on
X® Y. Suppose that the space X®aY satisfies the condition (aj, (a2) or
(a,*,), and that A and B are those operators described in Section 1. Let
P(ξ, η) be a polynomial of degrees m > 1 in ξ and n in η such that if
σ(A) is nonempty, P(σ(A), σ(B)) does not cover the whole complex plane
C. Then for λ & P(σ(A), σ(B)), we have

λ e σ(P(A ®I,I®B)) = σ(P(A (g> /, / ® B)) ,

provided that P(A,η) — λI, with ηeσ(B), has an everywhere defined con-
tinuous inverse (P(A,η) — Λ/)"1 which is uniformly bounded on σ(B).

Proof. First note that the complement of σ(B) has £7-measure zero
so that E(σ(B)) = /. We shall show for λ £ P(σ(A), σ(B)) that
P(A ® /, / ® B) — λl (x)α / has an everywhere defined continuous inverse.
To do so, we must establish that the improper Riemann integral

(2.1) f [(P(A,η) - λl)-1 (g)E(dv)]v , veX®Y ,

exists a an element of X (x)α Y and defines a continuous linear operator
of I ® Γ c X ( x ) J into X (x)α Y, taking the condition for the spaces
X (x)α Y into consideration.

Let σ be an arbitrary Borel set and e = σ Π σ(B). Let {e19 , es} be
an arbitrary finite decomposition of σ into disjoint Borel sets. We may
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190 TAKASHI ICHINOSE

assume ek ΓΊ e Φ 0 for all fc, 1 < k < s. Set ek — ek Π e and ηk e ek for
fc = 1,2, , s. By assumption, (P(A, ηk) — λl)~ι is then uniformly bounded
for all k and for all the decompositions {efc}|=1 of σ into disjoint Borel
sets. Clearly E(e) = Σ*-i ^(βi) It follows in virtue of Lemma 1.2 that
the I$)aE(e'k) are mutually disjoint continuous projections in X®aY
and of σ into I&aE(e) = Σ|=1/(x)α£7(eQ.

In case fe) where Z(x)α F in an J£\ space, we obtain by Theorem 1.1
for veX®Y

= IIΣi-i
®E(e'k)]v\\π

A

In case (α2), since X<S>a Y is considered as a Hubert space, we obtain
for v,weX®Y

E(e'k)]v\l

i (I/ ® E(e'k)]w,

In case {«„) where X0eY is an =5?̂  space, by Theorem 1.1 we obtain
f or v e X ® Y

-1 ® E(e'k)]v\\,

= IIΣί-i [7® W K Σ ί - i [(^(A,?,) - W 1 ® E(e'j)]v)\\t

M. max ||[(P(A, Vk) - ^Z)"1 ® E(e'k)]v\\t

k) - λΓ)-ι\\ II[/® E(e'k)]v\\,

<C\\[I®E(e)]v\\e.

Here we have used the same symbol C to express different constants
independent of the decompositions.

This assures that the integral (2.1) defines a continuous linear operator
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of X ® Y c X (x)α Y into X (x)α Γ. We denote its continuous extension to

X&a Y by ^ ( A ® 7, 7 ® B) (with Pλ^P - λ).

Recalling the definition of the integral with respect to the measure
E, we can show easily that for u e D[Am] ® D[Bn]

P^(A ® 7, / ® B)[P(A ® 7, 7 ® B) - tf <&β 7]w

) - Λ7)"1 ® 7][P(A ® 7, 7 ® B) - λl ® 7][7 ®J .
σ{B)

= f [I®E(dη)]u
J σ(B)

It follows by the continuity of 'PϊKA ® 7, 7 ® 5) that

P^(A ® 7, / ® B)[P(A ® 7, 7 ® B) - λl &a I

for all w in the domain of P(A ® 7, 7 ® B).
Just in the same way, using the closedness of P(A®7, 7®B), we

can show that

for all v e X ®a Y.

Thus, Pχ~\A ® 7, 7 ® B) is the everywhere defined continuous inverse

of P ( A ® 7 , 7 ® B ) - λl&J. Q.E.D.

In order to state the spectral mapping theorem for the operator (1.2)
and its closure, we introduce a class of polynomials, larger than the one
in [9], which will turn out to satisfy the assumptions of Proposition 2.1.

Let &f(A,E) be the class of polynomials P(ξ,ή) of degrees m > 1 in
ξ and n in η satisfying the following condition: for any open neigh-
bourhood W in C of the closure of P(σ{A), σ(B)) (when σ(A) is empty,
take W = C K(0 72) for any 72 > 0, where K(0 72) is the closed disc
{ζ;|ζ|<72}), there exists a nonempty open set U whose complement G U
is contained in p(A) (resp. p(B)) such that

(i)' P(C7,σ(B))C W, and
(iiy the resolvent 72(ζ A) is uniformly bounded in C U.

We note that the set P(σ(A),σ(B)) is not necessarily closed in C (cf.
[9] and [17]).
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Then we have

THEOREM 2.2. Let a be a faithful uniform reasonable norm on

X®Y. Suppose the space X®aY satisfies the condition (aj, (a2) or (aj.

Let A : D[A] C X —> X be a densely defined closed linear operator with

p(A) Φ 0 and let B: D[B] c Y —> Y be a densely defined, closed, scalar

type spectral operator with p(B) Φ 0 and σ(B) Φ 0. Then for P e &'(A, B)

it holds

(2.2) P(σ(A), σ(B)) = σ(P(A ® /, / ® B)) = σ(P(A ® J, / ® B)) .

T/zis means that (2.2) feoίds ^αίΐd ΐ/ σ(A) is noί empty, and that the

spectra of P(A ® /, 7 ® B) and its closure P(A ® 7, I ® B) are empty if

and only if σ(A) is empty.

Proof. Let Pe0>'(A,B) be of the form

(2.3) P(ξ,η) = Cm(^)fw + C,,.!^)?^-1 + - . . + φ) ,

where cm(^) ^ 0. When σ(A) and σ(β) are nonempty, the inclusion

P(σ(A), σ(B)) C σ(P(A ® 7, 7 ® B)) = σ(^(A ® 7, 7 ® B))

is already shown ([8], [9]).

The proof of the rest of Theorem 2.2 will be reduced to Proposition

2.1. Since the resolvent set p(A) is not empty, for η fixed

is a densely defined closed linear operator in X with domain D[Am{v)],

where m{η) is the greatest integer, 0 < m(η) < m, for which cm{η){rj) Φ 0.

When σ(A) is not empty, we may assume P(σ(A), σ(B)) Φ C. Then for

λ g P(σ{A), σ(B)) (when σ(A) is empty, λ shall be an arbitrary complex

number), we have only to show that (P(A,η) — λl)~ι is a continuous linear

operator defined on the whole X for each ηβσ(B) and is uniformly

bounded on σ(B).

Since Pe0>'(A,B), there exists by assumption a nonempty open set

U such that \P(ξ,η) — ^| is bounded away from zero on U X σ(B), and

such that R(ξ A) is uniformly bounded in C U.

Choose a sufficiently large R > 0 such that the polynomial cm(η) in

(2.3) has no zero on σ(B) Π C K(0 R - 1). Then we have cm = inf | cjη) | > 0

for η e σ(B) Π C K(0 R). Since P(A, η) — λl is a closed operator, we have by
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the usual spectral mapping theorem σ(P(A,η)) = P(σ(A),yj) for each
ηeσ(B). It follows that P{A,rj) — λl has an everywhere defined contin-
uous inverse in X for each ηeσ(B). It is clear that (P(A,η) — λl)~ι is
uniformly bounded on the compact set σ(B) Π K(0;R).

Further for η e σ(B) Π C K(0 R) we have

P(ξ,v) - χ = cm(v) γ\?=i(ξ - ξj(y)) >

where none of the ξj(η) lie in U. Since R(ξ A) is uniformly bounded
in C U, we obtain for η e σ(B) Π C K(0 R) and for x e D[Am]

\\(P(A, rj) - λl)x\\ = \\cjq) n?-i (A -

with a positive constant C independent of η. Since D[Am] is the domain
of P(A,η) for these η, (P(A,η) — λl)~x is also uniformly bounded on
σ(B) Π G K(Q #). This proves uniform boundedness of (P(A, η) - Λ/)-1 on
σ(β). Q.E.D.

To establish the spectral mapping theorem for the operator (1.3) and
its closure, we shall show

THEOREM 2.3. Let X®aY and A, B be as in Theorem 2.2. For a
polynomial P(ξ, rj) of degrees m > 1 in ξ and n in η, if there is a com-
plex number λ such that the closed operator P(A,η) — λl has an every-
where defined continuous inverse for each η e σ(B) which is uniformly
bounded on σ(B), then the closures of the polynomial operators (1.2) and
(1.3) coincide.

In particular, for P eέP'(AyB) the above assertion is valid, provided
that P(a(A), σ(B)) Φ C.

Proof. We must show the closed operator Qj cjkA
j ®aB

k)~ — λI(S)aI
is one-to-one. Since the norm a considered is always faithful, it suffices
to prove that P(A' ® Γ,Γ® B') - λΓ®a,Γ has a dense range in X'&Λ.Y'
(cf. [9]).

Let us note the following facts. The (Banach-space-) adjoint B! of
B is also a scalar type spectral operator in the dual space Ύf with the
resolution Ef (=the adjoint of E) of the identity. The spectrum of a
densely defined operator coincides with that of its adjoint, and

P(A', η) - IV = (P(A, η) - λlY for η e σ(B) - σ(B0 .
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In case Ox) (resp. (a2)), X'(x)α, Y' is an &„ (resp. Sf2) space, because

πf = ε (resp. a'o = α0). Then we can show just in the same way as in

the proof of Proposition 2.1 that P(Af®Γ, Γ ® Bf) -λΓ®a,Γ has the

range X' (x)α, Y\ In case (αJ, X' (g)π Y
f is an ^ space. Similarly,

P(A' ® 7', /' ® BO - # ' <&, 7' is seen to have the range X' (x), Y', so that

P(A' ® /', /' ® 50 - IV ® 7; maps £[(A')m] ® £>[(£')π] onto a dense subspace

of X' ® Y' in the norm π\ Since we have e' < TΓ, it follows that

P(A'®Γ, Γ <g) B') - λΓ ®s-Γ has a dense range in X'(x)e, Y'. Thus in all

the three cases, P(A; ® 7', /' ® BO - Λ7' (x)α, J
7 is shown to have a dense

range in X'®a, Y'. Q.E.D.

Since the spectrum is unchanged under the closure operation, the

following theorem is a direct consequence of Theorems 2.2 and 2.3.

THEOREM 2.4. Under the same assumption as in Theorem 2.2, we

have for Pe&>'(A,B)

P(σ(A), σ{B)) - P(σ(A (g)a I), σ(I (x)α B))

= σ(P(A ® 7, 7 ® B)) = σ(P(A ® 7, 7 ® J5))

3. Operators A®I + Kg)B and A®aI + I®aB

In this section, we consider in particular the operators of the forms
A A

A ® 7 + 7 ® B and A (x)β 7 + 7 (x)α JB, which are of especial importance in

applications.

As a direct consequence of Theorem 2.4 for P(f, rj) = £ + 97, the results

of Ju. M. Berezanskiϊ [1] and L. and K. Maurin [15] for selfadjoint op-

erators are generalized as follows (cf. [9]).

THEOREM 3.1. Let a, X®a Y and A, B be those described in Section

1. Suppose further that if σ(A) is not empty, we have ||72(ζ;A)|| < Cδ

outside C73 = {ζ dist(ζ,<τ(A)) <5} for any δ>0 and that if σ(A) is empty,

for any R > 0 there exists a nonempty open set U for which U + σ(B) c

C7£(O;72) and \\R(ζ; A)\\ < CR in ZU. Here, Cδ and CR are constants

depending only on δ, R, respectively. Then the spectra of A®I + I®B,

A ®a 7 + 7 (x)α B and their closures are empty if and only if σ(A) is empty.

If σ(A) is not empty, it holds

σ(A) + σ{B) = σ(A ®a I) + σ(I ®a B)

= σ(A ® 7 + 7 ® B) = σ((A ® 7 + 7 ® B)~)

= σ(A ®aI + I®aB) - σ((A (x)α7 + I&a
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Proof. For σ(A) empty, the assertion of Theorem 3.1 is clear from

Theorems 2.2 and 2.4 for P(ξ, rj) = ξ + η. If σ(A) is not empty, we may

assume MA) + σ(β) 9̂  C. Let Λ £ σ(A) + σ(B), so that d = dist Q, <τ(A) +

σ(B)) > 0. Choose U = Z75/2 = {£ dist (£, σ(A)) < 3/2}. Then |£ + 37 - Jl| is

bounded away from zero on U x σ(B), and by assumption #(? A) is

uniformly bounded in C U. Thus the same argument as in the proof of

Theorem 2.2 yields the desired assertion. Q.E.D.

We consider now when the closure of A®I + I®B coincides with

A (x)α / + / ®a B. They coincide if and only if A (x)α J + /(x)α B is closed

in X®aY.

The following theorem is an extension of the part (1) of Theorem 4.6

in [9]. The sector {ζ; | a rgζ | < θ) is denoted by S(θ).

THEOREM 3.2. Let a, Z(x)α Γ and A, B be those described in Section

1. Suppose, for some ΘA and ΘB with 0 < ΘΛ, ΘB < π and 0 < ΘA + ΘB < π,

that p(A) contains the complement of the sector S(ΘA) and \\ζR(ζ;A)\\ < Mθ

outside S(θ) for each θ with ΘA < θ < π, where Mθ is a constant depend-

ing only on θ, and that p(B) contains the complement of the sector S(ΘB).

Then the closure of A® I + I®B coincides with A (x)α I + / (x)α B. The

spectra of A ® / + I <g) B and A ® α / + / (x)α B are empty if and only if

σ(A) is empty.

If σ(A) is not empty, it holds

MA) + σ(B) = σ(A (x)α /) + σ(I ®a B)

)aI + I(g)aB) .

Therefore, for any λ <Z σ(A) + σ(B) (when σ(A) is empty, λ shall be

an arbitrary complex number) and for any f e X (x)α Y there exists a

unique u e D[A (x)α /] Π D[I ® α B] which satisfies

Moreover the following inequality holds:

\\u\\a + \\A®Ju\\a + \\I®aBu\\a <C\\f\\a ,

with a constant C independent of u and f.

Proof. First note the condition of Theorem 3.1 is satisfied. Since

σ(A) + σ(B) is closed and does not cover the whole complex plane, it fol-

lows by Theorem 2.3 that (A (g) / + / (x) BY = (A (x)α / + / (x)α By. So, to

https://doi.org/10.1017/S0027763000015634 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015634


196 TAKASHI ICHINOSE

prove Theorem 3.2, it suffices to establish the inequality

(3.1) \\A®Ju\\a < C[\\(A0aI + I®aB)u\\ + \\u\\J

for u e D[A ® 7 + 7 ® B] = 7)[A] ® Z?[B].
Clearly, - 1 β σ(A) + σ(J5). Then in virtue of Theorem 3.1, (A ® 7 +

7 ® BY + 7 (x)α 7 has an everywhere defined continuous inverse.
Since A{A + {l+η)iYι = 7 - (1 + τj)(A + (1 + η)iγι is uniformly bounded

on σ(B), the same argument as in the proof of Proposition 2.1 shows
that the integral

ί [A(A + (1 + η)iYι ® E(dη)]f
(3.2) J ' w

= (AC

defines a continuous linear operator of X ( g ) Γ c Z ® J into X(x)αΓ. It
follows by the definition of the integral and by the closedness of A (x)α I
that feX®Y implies

(3.3) [(A ® I + / ® BY + I ®α /Γ 1/ e D[A (x)α 7]

and the integral (3.2) equals

(A (x)a I)[(A ® / + / ® BY + I ®a I]~xf .

Then we see that, for all feX(x)α Γ, (3.3) holds valid and

||(A(x)α/)[(A ® / + 7(8) S Γ + 7(x)α7]-1/||α < C||/| |α ,

whence follows immediately the inequality (3.1). Q.E.D.

Remark. In case (<x2), since an JS?2 space is considered as a
Hubert space and a normal operator is a scalar type spectral operator,
it is possible to state the same assertion as in Theorem 3.2 for B being
a normal operator in Y. It should be emphasized that A need not be
m-accretive, in contrast to Theorem 4.6 (1) in [9] this fact suggests that
Theorem 3.2 is of wider application.

4. Applications

Theorem 3.2 is well applied to the first boundary value problem of
a class of quasi-elliptic differential equations which includes especially
the Laplace and heat equations (cf. [16], [9]).
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However, our theory is true in a far wider application; it includes

the hyperbolic differential equations.

For an application of Theorem 3.1, we consider the initial value

problem of the wave equation

(4.1) [d2jdt2 - 32/dx2 - X\u(t, x) = f(t, x)

in the strip S = {(t, x) e R2 0 < t < T) = / x R, I = (0, Γ), with the initial

condition

(4.2) u(Q,x) = ut(0,x) = 0 .

Then for any λeC and for any / e L2(S) = L2(I) (x)αo L2(R) there exists

a unique solution u in L2(S) of the initial value problem (4.1) and (4.2);

moreover we have ||%|| < C| |/ | | , with a constant C.

To show this, let A = d2/dt2 in L2(/) with domain

D[A] = {φe L2(I) d2/dt2φ e L2(/), ^(0) - ?/(0) - 0}

and let B = —d2/dx2 in L2(R) with domain

D[B] = {ψe L2(R) -d2/dx2ψ e L2(R)} .

Then B is a selfadjoint operator in L2(R) with the spectrum σ(B) being

the nonnegative real line. A is a densely defined closed linear operator

in L2(/) with empty spectrum σ(A). For R > 0, let U = {ζ |Im ζ| > R or

Rom ζ > R}.

Then we can show easily that U + σ(B) = U c C JK(O #) and that

l|β(ζ; A) || < CR on C £Λ with a constant C^ depending only on R. We

denote by L the operator A (x) / + / ® B with domain D[A] (x) Z)[β]. Apply-

ing Theorem 3.1 yields the emptiness of the spectrum of the closure of

L = 32/3ί2 — d2jdx2, whence follows the desired assertion. Here, we see

that the solution u lies in the domain of the closure of L.
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