T. Ichinose
Nagoya Math. J.
Vol. 50 (1973), 185-198

OPERATORS ON TENSOR PRODUCTS
OF 2, «, AND Z. SPACES

Dedicated to Professor Yoneichiro Sakaki on his 60th birthday, March 5, 1973

TAKASHI ICHINOSE*

Introduction

Let A and B be densely defined closed linear operators in complex
Banach spaces X, Y, respectively, with nonempty resolvent sets. Then
for a class of polynomials P(¢,7) the spectral mapping theorem has been
established by the author [9] (cf. [7],[8]):

P(s(A),s(B)) = s(PARIL,I® B)) = s(PAQL,IQ®B)),

where P(A® I, I ® B) is a maximal extension of PAR®I,IQB) in X ®a Y,
the completion of X ® Y with respect to a uniform reasonable norm e.
Another investigation has recently been made by M. Reed and B.
Simon [17].

The aim of this work is to extend the spectral mapping theorem to
a much larger class of polynomials P(¢,7), when both X and Y are %,
&, or &, spaces of J. Lindenstrauss and A. Pelczynhski [13] and one of
A and B is a scalar type spectral operator (see [2]). In contrast to the
results in [9], the set P(¢(4),s(B)) may not always be closed (cf. [17]).

The theory applies to the operators of the form A®I 4+ I® B, which
include not only the elliptic and parabolic differential operators but also
the hyperbolic differential operators. A new meaning is given thereby
to the method of separation of variables for partial differential equations
(cf. [3]).

Section 1 is concerned with some definitions and results on %, spaces
and tensor products. Our main results are formulated in Section 2.
Section 8 is devoted, in particular, to the operators of the forms
AQI +1®B and A®al +I®a B. In Section 4, we refer to some
applications of the results.
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For the basic facts on topological linear spaces and tensor products,
see [11], [4], [5] and [18].

1. Preliminary Results

We shall start by summarizing some useful results on %, spaces
and tensor products.

1.1. &, spaces

J. Lindenstrauss and A. Pelczyfiski [13] have introduced the %,
spaces. We shall only concern with the cases p =1, 2 and oo in this work.

Two Banach spaces F and F are isomorphic if there exists an in-
vertible bounded linear operator of F onto F. The distance d(¥,F) of
two isomorphic Banach spaces is defined by inf (|T| || T"'|), where the
infimum is taken over all invertible bounded linear operators T of E
onto F'.

By L,(¢) = L,(2,%,1), 1 <p < co, we denote the Banach space of
all equivalence classes of measurable functions on some measure space
(R2,%, ) whose p-th power is integrable (resp. essentially bounded if
p=o0). If (I'y%,p) is the discrete measure space on a set I’ with
pt{rPD =1 for every yeI', we denote L,(n) by ¢,(I"). If I'={1,2,...,n},
we denote £,(I") by ¢3. The subspace of 4.(I") of those fe/4.(I") for
which the set {yel';|f(y)] > ¢} is finite for every ¢ > 0 is denoted by
¢,(I). For a compact Hausdorff space K, we denote by C(K) the Banach
space of all continuous functions on K.

A Banach space F is said to be an %, space, 1 < p < 00,1 <1< oo,
if for each finite-dimensional subspace F' C E there exists a finite-dimen-
sional subspace G with F'C G C E such that d(G, ¢2) < 2, where n = dim G,
the dimension of G,

A Banach space F is said to be an %, space, 1 < p < oo, if it is
an %,,, space for some 2> 1.

It is known [13] that the Banach spaces L,(x) (resp. C(K)) are %, ,
(resp. Z..,,) spaces for every 2> 1, but for 1 <p <o, p # 2, there exist
&, spaces which are not isomorphic to the spaces L,(x). For p =2,
the class of %, spaces coincides with the class of spaces isomorphic to
Hilbert spaces, so that an %, space can be considered to be endowed
with an inner product.

A closed subspace F' of a Banach space E is said to be a comple-
mented subspace if there is a continuous projection of £ onto F.
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A complemented subspace of an #, space (1 <p < o0) which is not
isomorphic to a Hilbert space is an %, space [14]. Every %, space
(1 < p < o) is isomorphic to a subspace of a space L,(x) for some
measure p[13]. Every Banach space E is an %, space (1 < p < o) if
and only if its dual X’ is an %, space with 1/p + 1/p" =1 [14].

By a bounded Boolean algebra & of projections in a Banach space
Z, we mean a Boolean algebra of commuting continuous projection E
in Z such that sup||E| < K for all Ec& (see [2]).

We shall make use of a result of J. Lindenstrauss and A. Pelczyhski
on unconditional Schauder decompositions of %, and #. spaces [13,
Corollary 8 to Theorem 6.1], stated in the following form we need.

THEOREM 1.1. Let Z be an %, (resp. Z.) space and let & be a
bounded Boolean algebra of projections. Then there exists a positive
constant M, (resp. M.) such that for every finite family {E.}i., of dis-
joint projections in &

wr Bzl < M| 250 B2 zeZ
(resp. || 20%-1 B2l < M., max, .., | 2, 2 € Z).

1.2. Tensor Products

Let X and Y be complex Banach spaces and X’, Y’ their dual spaces.
Let X® Y be the algebraic tensor product of X and Y and X ®,, Y its
completion with respect to a uniform reasonable norm « on X ® Y.
Suppose that A: D[A]C X —- X and B:D[B]C Y — Y are densely
defined closed linear operators with nonempty resolvent sets p(A), p(B)
and with spectra ¢(4), ¢(B). Assume further that B is a scalar type spec-
tral operator with the countably additive resolution E of the identity [2].
We may assume ¢(B) nonempty. The identity operators in both X and
Y will be denoted by the same I.
To each polynomial of degrees m in & and » in
(1.1 P&, ) = 2 cpll 9t ,
we assign two kinds of polynomial operators defined densely in X ®a Y
1.2) PAR®IIQB) =Y, c;;A’® B*
with domain D[A™] ® D[B"] and
(1.3) 3 epAl ®, Bt
with domain (M;,4;c;.0 DIA? ®, B, where A’&), B* denotes a maximal
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extension of A®@ B* in X ®, Y. Maximal extensions of the operators
(1.2) and (1.3) are denoted by PA®I,IR B), (OIS ® B*)~, respec-
tively (see [12], [7], [8] and [9]).

In order to establish our main results, we shall restrict the Banach
spaces X ®,, Y concerned to the following three cases:

(ay) both X and Y are £, spaces and o is the greatest reasonable
norm w;

(a,) both X and Y are 2, spaces and o 18 the uniform crossnorm
oy for which X ®,, Y is an &, space;

(x.) Dboth X and Y are &. spaces and o is the smallest reasonable
norm e.

In cases (@) and («.), the norms «, and ¢ are faithful. For case
(o), however, the author is unaware whether or not the norm r there
is faithful. This is certainly true if X or Y satisfies the condition of
approximation [4]. It is known [10] that a separable .#, space (1 <p < o)
has a Schauder basis. Therefore we can assert in case («) that if X
and Y are besides separable, then the norm = there is faithful (e.g. [7]).

Thus, as is the case in all applications, we assume for simplicity
further that the norm = is faithful in case (@) whenever both X and Y
are &, spaces.

For faithful «, A’ ®a B* is nothing but the closure of A/ ® B* in
X® Y, and the same is true for PA®I,I® B) and (5 ¢, A’ ®,, B®)~,

We remark (cf. [14], [6]) that under the condition (&) (resp. (a,),
(a.), X ®a Y is also an &, (resp. %,, Z.) space.

To prove Proposition 2.1, we shall need

LEMMA 1.2. Suppose the space X®, Y satisfies the condition (),
(o)) or (a.). If Y, is o complemented subspace of Y, then X ®, Y, isa
complemented subspace of X@a Y. Therefore, if Y=55..®Y, is a
topological direct sum, then XX, Y = @ X X, Y,).

Proof. It is trivial for case (). For cases (&) and («.), note that
the norms = and ¢ are ®-norms in the sense of A. Grothendieck [5], so
that they are defined for every pair of Banach spaces X and Y. Let P
be the continuous projection of Y onto Y,, and J the injection of Y,
into Y. Then, since « is a ®-norm, I ®,,P (resp. I ®,, J) is a continuous
linear operator of X ®“ Y (resp. X ®a Y) into X ®a Y, (resp. X ®,, Y). We
have IQ,Pu=(IQPu=u on X®Y, Since (@P)IQ®Jyu=u on
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X®Y, it follows by continuity that I &, P/I X, Ju=u on XX, Y,
which implies that the range of I ®aP is X ®,, Y,. Clearly (I @a Py} =
I ®a P. Thus I ®aP is a continuous projection of X @a Y onto X ®,, Y.,
so that X ®,, Y, is a complemented subspace of X ®a Y. Q.E.D.

2. Spectral Mapping Theorem

For the spaces X ®a Y and the operators A and B described in Sec-
tion 1, we shall formulate the spectral mapping theorem for the poly-
nomial operators (1.2) and (1.3).

Throughout, the following convention will be used. Given two sub-
sets F, and F, + 0 of the complex plane C and a polynomial P(§,7) of
degrees m > 1 in & and » in 7, we can define P(F,, F,) and its closure
P(F,F, in an obvious way if F, is not empty, and otherwise we set
P(F,,F,) = P(F,,F, = 0.

PROPOSITION 2.1. Let a be a faithful uniform reasonable norm on
X®Y. Suppose that the space X ®a Y satisfies the condition (a,), (a,) or
(o), and that A and B are those operators described in Section 1. Let
P,y be a polynomial of degrees m >1 in & and n in 5 such that if
a(4) is nonempty, P(a(A), a(B)) does not cover the whole complex plane
C. Then for 2¢ P(s(A), o(B)), we have

120(P(ARI,I®B) =dP(ARI, IR B)),

provided that P(A,n) — Al, with nea(B), has an everywhere defined con-
tinuous inverse (P(A,n) — A~ which is uniformly bounded on o(B).

Proof. First note that the complement of ¢(B) has E-measure zero
so that E@@B) =1I1. We shall show for 21¢P((4),qs(B) that
PARQRLI®B) — il ®,, I has an everywhere defined continuous inverse.
To do so, we must establish that the improper Riemann integral

2.1) I (B>[(P(A,77) — AT QEdplv, veX®Y,

exists a an element of X ®a Y and defines a continuous linear operator
of X®YCX ®, Y into X ®a Y, taking the condition for the spaces
X ®a Y into consideration.

Let ¢ be an arbitrary Borel set and e = o Na(B). Let {e, ---, e} be
an arbitrary finite decomposition of ¢ into disjoint Borel sets. We may
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assume e, N e+ 0 for all k, 1 <k <s. Set e, =e;, N e and y,ce; for
k=1,2,...,s. By assumption, (P(4,7,;) — AI)~" is then uniformly bounded
for all k and for all the decompositions {e;};-, of ¢ into disjoint Borel
sets. Clearly E(e) = > 5., E(er). It follows in virtue of Lemma 1.2 that
the 1 ®a E(e}) are mutually disjoint continuous projections in X ®a Y
and of ¢ into 1 Q, E(e) = S, I R, E(e)).

In case () where X ®a Y in an %, space, we obtain by Theorem 1.1
for veX®Y

12750 [(P(A, 7)) — 2D @ E(epv]l,
= |35, [(P(4, 70) — AD™' @ I @ B,
< S IPA, ) — 2D I @ E(epIv |,
< C 2 Il Elepv],
< CM, |25 U ® E(eplv|,
= C|I® E@W]|, .

In case (@), since X ®a Y is considered as a Hilbert space, we obtain
for v, weX®Y

[Char [(P(A, ) — 2D @ Ee)]v, w)]|
= |24 (P4, 9) — 2D Q@ INII @ E(eplv, [I ® E(e)lw)|
< o PA, ) — DT @ E(ed o, - I I ® E(e)w].,
< C{Zi-1 (U ® E(edlv, v} {3551 (I ® E(en)w, w)}
= C||I&®E@)Iv|,-|wl,, -

In case (a.) where X ®,Y is an Z. space, by Theorem 1.1 we obtain
for veX®Y

[ 2551 [(P(A, 9i) — 2D @ Ee)]v].
= || 241 I @ E(el(305-, [(P(A, ny) — 2D @ E(e)]v)|.
< M. max [ [(P(A,7¢) — 2D Q E(ep]v|,

< M. max ||(P(4, 70) — D |I ® E(e)lo].
< Cimax ||[I ® E(ep)lv|l.

1<k<s
< ClI® E@| .

Here we have used the same symbol C to express different constants
independent of the decompositions.
This assures that the integral (2.1) defines a continuous linear operator
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of X®YCX ®a Y into X ®a Y. We denote its continuous extension to
X®.Y by P,AYARI I® B) (with P, =P — 2).

Recalling the definition of the integral with respect to the measure
E, we can show easily that for ¢ D[A™] ® D[B"]

PAARLIQBIFARILI®B) — AR, Nu
= [ P9 — D @ NIPABLI® B) — I @ Il ® Edphs

= [ (P, — D" ® NP, 1) — 21) ® 1 @ Bl

= f [ ® E(dyplu
a(B)
=Uu.
It follows by the continuity of f}?f/‘(A ® 1,1 ® B) that
PrAQLIQBIPARLI®B) — AR, Iu=u

for all % in the domain of P(A®I,1Q® B).
Just in the same way, using the closedness of P ®I,IQ B), we
can show that

[PARLI®B) — AR, IPARLIQBw =

for all ve X ®, Y.
Thus, fﬁ;'i(A ®I,I ® B) is the everywhere defined continuous inverse
of PARILI®B) —AX,I. QE.D.

In order to state the spectral mapping theorem for the operator (1.2)
and its closure, we introduce a class of polynomials, larger than the one
in [9], which will turn out to satisfy the assumptions of Proposition 2.1.

Let #/(A, B) be the class of polynomials P(§,7) of degrees m >1 in
& and n in y satisfying the following condition: for any open neigh-
bourhood W in C of the closure of P(c(4), ¢(B)) (when ¢(4) is empty,
take W = [ K(;R) for any R >0, where K(0; R) is the closed disc
{¢;1¢] < R}), there exists a nonempty open set U whose complement ( U
is contained in p(A) (resp. p(B)) such that

(i)Y P(U,¢(B)) c W, and

(ii)’ the resolvent R(¢; A) is uniformly bounded in { U.

We note that the set P(s(A), ¢(B)) is not necessarily closed in C (cf.
[9] and [17]).
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Then we have

THEOREM 2.2, Let « be a faithful uniform reasonable morm on
X®Y. Suppose the space X ®,, Y satisfies the condition (a)), (a,) or (a..).
Let A:DIA]C X — X be a densely defined closed linear operator with
o(A) =0 and let B:D[BICY —Y be a densely defined, closed, scalar
type spectral operator with o(B) + 0 and ¢(B) #+ 0. Then for Pec #'(4,B)
it holds

2.2) P(e(A), sB) = o(PARLI®B) =a(PARIL, IR B)) .

This means that (2.2) holds wvalid tf ¢(A) is not empty, and that the
spectra of P(ARI, I® B) and its closure P(A® I, I ® B) are empty if
and only if o(A) is empty.

Proof. Let Pe 2'(A,B) be of the form
2.3) P, p) = cuE™ + Cp_(E™T 4 -+ (),
where ¢,(p) 2 0. When ¢(4) and ¢(B) are nonempty, the inclusion
P(o(A),s(B)) C o(PARIL IQB)) = s(P(ARI,I® B))

is already shown ({81, [9]).
The proof of the rest of Theorem 2.2 will be reduced to Proposition
2.1. Since the resolvent set p(4) is not empty, for 5 fixed

P(A,n) = 2.5 ¢s(A

is a densely defined closed linear operator in X with domain D[A™%],
where m(y) is the greatest integer, 0 < m(y) < m, for which e, # 0.
When ¢(A) is not empty, we may assume P(¢(4), ¢(B)) #+ C. Then for
1e P((4), a(B)) (when o(A) is empty, 1 shall be an arbitrary complex
number), we have only to show that (P(4,7) — 2! is a continuous linear
operator defined on the whole X for each pe¢(B) and is uniformly
bounded on a(B).

Since Pec #'(A, B), there exists by assumption a nonempty open set
U such that |P(¢,7) — 2| is bounded away from zero on U X o¢(B), and
such that R(£; A) is uniformly bounded in [ U.

Choose a sufficiently large R > 0 such that the polynomial ¢,(3) in
(2.3) has no zero on ¢(B) N[ K(0; R —1). Then we have ¢, = inf|¢,(p)|>0
for peo(B) N[ K(0; R). Since P(4,7) — I is a closed operator, we have by
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the usual spectral mapping theorem o(P(4,7) = P(¢(4),7) for each
neo(B). It follows that P(A,7») — Al has an everywhere defined contin-
uous inverse in X for each pea(B). It is clear that (P(4,7) — AD™ is
uniformly bounded on the compact set o(B) N K(0; R).

Further for yeo(B) N [ K(0; R) we have

PE,p) — 2= ¢ []72 (€ — &),

where none of the £;(») lie in U. Since R(£; A) is uniformly bounded
in { U, we obtain for yeo(B) N [ K(0; R) and for x e D[A™]

I(P(A, ) — aDx| = |lex(p) [17- (A — &, Dx||
> Cn |l 17y (A — &E;Gp D
> Clz|,

with a positive constant C independent of 7. Since D[A™] is the domain
of P(A,7 for these 73, (P(4,y — A)* is also uniformly bounded on
o(B) N[ K(; R). This proves uniform boundedness of (P(4,%) — A)~! on
o(B). Q.E.D.

To establish the spectral mapping theorem for the operator (1.3) and
its closure, we shall show

THEOREM 2.3. Let X®aY and A, B be as in Theorem 2.2. For a
polynomial P(&,7) of degrees m > 1 in & and n in y, if there is a com-
plex number 2 such that the closed operator P(A,7) — Al has an every-
where defined continuous inverse for each ped(B) which is uniformly
bounded on a(B), then the closures of the polynomial operators (1.2) and
(1.8) coincide.

In particular, for Pe P (A, B) the above assertion is wvalid, provided
that P(a(4), o(B)) + C.

A

Proof. We must show the closed operator (3 ¢;,A? X, B*)™ — Al ®a1
is one-to-one. Since the norm « considered is always faithful, it suffices
to prove that PA'QI, I'QB’) — i’ ®a, I’ has a dense range in X’ ®a, Y’
(cf. [9D).

Let us note the following facts. The (Banach-space-) adjoint B’ of
B is also a scalar type spectral operator in the dual space Y’ with the
resolution E’ (=the adjoint of E) of the identity. The spectrum of a
densely defined operator coincides with that of its adjoint, and

PA,p) — ' = (PA,n — Iy for pea(B) = a(B’) .
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In case (@) (resp. (@), X’ .Y is an 2., (resp. &,) space, because
n’ = ¢ (resp. a; = o). Then we can show just in the same way as in
the proof of Proposition 2.1 that P(A’®I, I'® B)) — Al ®,,, I’ has the
range X’ ®a, Y. In case (a.), X’ ®,, Y’ is an %, space. Similarly,
PA'QI,I'®B) — I ®,, I’ is seen to have the range X’ ®,, Y’, so that
PA'®I', ' ®B) — I’ ® I maps DI[(A)™] ® DI(B")*] onto a dense subspace
of X’®Y in the norm n. Since we have ¢ < m, it follows that
PUA'QI,I'QB) —aI' ® I’ has a dense range in X’ ®s, Y’. Thus in all
the three cases, P(A’QI',I' ® B’) — i’ @,,, I’ is shown to have a dense
range in X’ ®a, Y. Q.E.D.

Since the spectrum is unchanged under the closure operation, the
following theorem is a direct consequence of Theorems 2.2 and 2.3.

THEOREM 2.4. Under the same assumption as in Theorem 2.2, we
have for Pec P'(A, B)
PG(4), o(B) = P(e(A ®, ), o ®, B))
=o(PARLI®B) =aoPARI, IR B))
= o(}] ¢nd! ®, BY = o((3] €47 &, B .

3. Operators AQI +IQB and AR, 1+ IX, B

In this section, we consider in particular the operators of the forms
AQRI+I®B and A ®a1 +1 ®a B, which are of especial importance in
applications.

As a direct consequence of Theorem 2.4 for P(£,5) = & + 7, the results
of Ju. M. Berezanskii [1] and L. and K. Maurin [15] for selfadjoint op-
erators are generalized as follows (cf. [9]).

THEOREM 3.1. Let a, X ®,, Y and A, B be those described in Section
1. Suppose further that if o(A) is not empty, we have |R(E; A)| < C;
outside U,={(; dist (£, a(A)) <&} for any 6 >0 and that if a(A) is empty,
for any R >0 there exists a nonempty open set U for which U +o(B) C
(KO;R) and |RC;A)| < Cr in [U. Here, C; and C, are constants
depending only on &, R, respectively. Then the spectra of AQI +1QB,
A ®,, I+1 ®,, B and their closures are empty if and only if a(4) is empty.
If o(4) is not empty, it holds
o) + oB) = oA ®, D + s, B)
=0cAQRI+IQB)=c((ARI + 1R B))
= AR I +I1®,B) =c(AR, I +IR,B)) .
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Proof. For ¢(A) empty, the assertion of Theorem 3.1 is clear from
Theorems 2.2 and 2.4 for P(&,7)=§&+7. If o(A) is not empty, we may
assume o(4) + o(B) = C. Let 1¢0(A) + ¢(B), so that § = dist (1, ¢(4) +
o(B)) > 0. Choose U= U,, = {¢;dist (¢§,0(4)) < 5/2}. Then [§+ 9y — 2| is
bounded away from zero on U X ¢(B), and by assumption R(§;A) is
uniformly bounded in [ U. Thus the same argument as in the proof of
Theorem 2.2 yields the desired assertion. Q.E.D.

We consider now when the closure of A® I + I® B coincides with
A®.I +I1&.B. They coincide if and only if AK,I +I®,B is closed
in X®.7.

The following theorem is an extension of the part (1) of Theorem 4.6
in [9]. The sector {¢;|arg{| < 6} is denoted by S(6).

THEOREM 3.2. Let o, X ®,, Y ond A, B be those described in Section
1. Suppose, for some 0, and 6 with 0 < 0,, 0, <z and 0 <0, + 05 < =,
that p(A) contains the complement of the sector S(6,) and |CR(E; A)| < M,
outside S(0) for each 6 with 6, < 0 <=z, where M, is a constant depend-
ing only on 0, and that p(B) contains the complement of the sector S(@0z).
Then the closure of ARXI +1Q B coincides with A ®,,I +1 ®,, B. The
spectra of AQI +1®B and AR, I +1R,B are empty if and only if
o(4) is empty.

If o(A) is not empty, it holds

o(A) + o(B) = (AR, D + oI &, B)
=0 AQI+I®B) =aA®. 1 +1K.B).

Therefore, for any A¢d(A) + o(B) (when o(4) is empty, 2 shall be
an arbitrary complex number) and for any feX ®,, Y there exists a
unique uc D[A ®,, I1 N DI ®,, Bl which satisfies

AQRI+I®.B— A, Du=7.
Moreover the following inequality holds:
ol + 14 @, Tull, + |11 &, Bul. < C| 1l ,
with o constant C independent of w and f.

Proof. First note the condition of Theorem 3.1 is satisfied. Since
d(A) + ¢(B) is closed and does not cover the whole complex plane, it fol-
lows by Theorem 2.3 that (AQRI +I®B)" = (A (>f<),,l +IX,.B)”. So, to
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prove Theorem 3.2, it suffices to establish the inequality
3.1 1A ®, Tu|, < CIIAR,I + IR, Bul + ||ul,]

for ue DI[AQ®I + I ® B] = D[A] ® DI[B].

Clearly, —1¢o(A) + o(B). Then in virtue of Theorem 8.1, (A ®I +
I®B) +1 @RI has an everywhere defined continuous inverse.

Since AA+A+pDt'=1— QA+ pA + A+ ) is uniformly bounded
on ¢(B), the same argument as in the proof of Proposition 2.1 shows
that the integral

j [AA + (A + D' @ EdplSf
3.2 o
=ij®mm+a+mw®mwv

defines a continuous linear operator of X®@ Y C X ®,,, Y into X @a Y. It
follows by the definition of the integral and by the closedness of A®al
that fe X ® Y implies

(3.3) (ARI+IQB) +I®,1"fe DA,
and the integral (3.2) equals
AR.DIARI+I®B) +I1Q, 177 .
Then we see that, for all feX ®a Y, (3.3) holds valid and
AR DA +IQB)™ + I&, 7l < C| .,
whence follows immediately the inequality (3.1). Q.E.D.

Remark. In case («,), since an ¥, space is considered as a
Hilbert space and a normal operator is a scalar type spectral operator,
it is possible to state the same assertion as in Theorem 3.2 for B being
a normal operator in Y. It should be emphasized that A need not be
m-aceretive, in contrast to Theorem 4.6 (1) in [9]; this fact suggests that
Theorem 3.2 is of wider application.

4. Applications

Theorem 3.2 is well applied to the first boundary value problem of
a class of quasi-elliptic differential equations which includes especially
the Laplace and heat equations (cf. [16], [9]).
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However, our theory is true in a far wider application; it includes
the hyperbolic differential equations.

For an application of Theorem 3.1, we consider the initial value
problem of the wave equation

4.1 [0%/ot? — % /ox® — Alu(t, x) = f(¢, %)

in the strip S={({,2)eR;0<t<T}=1XR,I=(0,T), with the initial
condition

4.2) (0, x) = u,(0,2) =0 .

Then for any 2€ C and for any f e L,S) = L,(I) ®an L,(R) there exists
a unique solution u in L,(S) of the initial value problem (4.1) and (4.2);

moreover we have ||u|| < C| fll, with a constant C.
To show this, let A = d?/dt* in L,(I) with domain

DIA] = {p e L,(I); d*/dt’p € L,(I), p(0) = ¢'(0) = 0}
and let B = —d*/dz* in L,(R) with domain
DI[B] = {y» € Ly(R) ; —d?/da*} € Ly(R)} .

Then B is a selfadjoint operator in L,(R) with the spectrum o(B) being
the nonnegative real line. A is a densely defined closed linear operator
in L,(I) with empty spectrum ¢(4). For R >0, let U= {(;|Im{|> R or
Rom ¢ > R}.

Then we can show easily that U 4+ ¢(B) = U C [ K(0; R) and that
|RE; A)|| < Cr on [ U, with a constant C, depending only on R. We
denote by L the operator A ® I 4- 1 ® B with domain D[A]®Q D[B]. Apply-
ing Theorem 3.1 yields the emptiness of the spectrum of the closure of
L = 3*/0t* — */0x?, whence follows the desired assertion. Here, we see
that the solution w lies in the domain of the closure of L.
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