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ADDITION THEOREMS AND BINARY EXPANSIONS 

JONATHAN M. BORWEIN AND ROLAND GIRGENSOHN 

ABSTRACT. Let an interval / C R and subsets D0,D\ C / with D0UD\ = I and 
DQ D D\ = 0 be given, as well as functions r&.Do —+ I, r\\D\ —-> /. We investi
gate the system (S) of two functional equations for an unknown function/: / —» [0, 1]: 

2f(x)=f(r0(x)) ifxGDo, 

2f(x)-\ =f(n (*)) i f x e O , . 

We derive conditions for the existence, continuity and monotonicity of a solution. It 
turns out that the binary expansion of a solution can be computed in a simple recursive 
way. This recursion is algebraic for, e.g., inverse trigonometric functions, but also for 
the elliptic integral of the first kind. Moreover, we use (S) to construct two kinds of 
peculiar functions: surjective functions whose intervals of constancy are residual in /, 
and strictly increasing functions whose derivative is 0 almost everywhere. 

1. Introduction. We begin with an introductory example. Let x > 0. Set 

ao = x and an+\ = -̂y (with an+\ = —oo if an = ±1). 

Then 

1 

_ 1 _ arctanx 

/7>0 

Simon Plouffe (Université Bordeaux-I) detected this identity numerically; the purpose 
of the present paper is to explain why it is true and how the underlying method can be 
used to get similar recursions for other functions. Let us observe two things: First, the 
above series is just the binary expansion of arctan(x)/7r. Second, the recursion formula 
corresponds in a certain way to the addition theorem for 2 arc tan x. In the present paper 
we will explore how addition theorems of this type can be used to compute similar binary 
expansions for a wide class of functions. 

More precisely, we will deal with the following type of functional equations. Let an 
interval / Ç R and subsets D0,D\ CI with Do U D\ = I and D0 Pi D\ = 0 be given, as 
well as functions r$\ D0 —» I,r\:D\ —» /. Then consider the system (S) of the following 
two functional equations for an unknown function/: / —» [0, 1]. 

(So) 2f(x)=f(r0(x)) ifxGDo, 

(Si) 2f(x)-\=f(n(x)) i fxGDp 
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Stating the functional equations in this way implies that for each solution / the 
following must be true: x G D0 =>/(*) G [0,1/2] andx G D\ =>/(*) G [1/2,1]. 

Why are we interested in this system of functional equations? The reason is that on the 
one hand there are many interesting functions which can be shown to solve the system, 
and that on the other hand the system links these functions to Plouffe iterations like the 
one described for the arctan. In fact, as we will see in the next section of this paper, 
Plouffe's iteration for the arctan is proved upon the observation that 

ff \- j arctan(x)/7r ifx G [0,oo) 
* W ~ j 1 + arctan(x)/7r if x G [-oo, 0) 

satisfies (S) on / = R U {-oo} with D0 = [0, oo), Dx = [-oo, 0), r0(x) = -fy, r0(l) = 
—oo, r\(x) = - ^ i , ri(—1) = —oo. Other interesting functions which satisfy the system 
(S) are the logarithm, inverse trigonometric and hyperbolic functions and even the elliptic 
integral of the first kind. Moreover, it is also possible to describe quite peculiar functions 
as solutions of the system. If we choose D0 = [0,1/2), D\ = [1/2,1], ro(x) = 4x2, 
r\(x) = 1 — 4(x — l)2, then the solution of (S) is surjective but has intervals of constancy 
which are residual in /. If we choose D0 - [0,3/4), D\ = [3/4,1], r0(x) = 4x/3, n(x) = 
4x — 3, then the solution is strictly increasing but has derivative 0 almost everywhere (it 
is the inverse of a function with the same property constructed by G. de Rham in [2]). 
We will prove these two statements in somewhat greater generality in Section 3, after 
having given conditions for the existence, continuity and monotonicity of a solution in 
Section 2 of this paper. 

We conclude the introduction with two basic observations about the functional equa
tions. Firstly, we have that / = 0 if and only if D\ - 0. (Indeed, assume Do = I and 
xo G A) with/(xo) 7̂  0. Iterate equation (So) until 2nf(xo) - /((ro o • • • o r0)(xo)) = 
/(^(*o)) > 1/2. This contradicts rg(x0) G D0 =»/(rg(x0)) G [0,1/2]. If, on the other 
hand,/ = 0, then D\ ^ 0 would yield a contradiction.) Similarly,/ = 1 if and only if 

Do = 0. 
Secondly, the requirement that a given function/ is the solution of a system of type 

(S) is not very restrictive. Indeed, the following is a necessary and sufficient condition 
for/to satisfy such a system: For eachx G / with/(x) < 1 /2 , there must exist a^(x) G / 
with 2/(x) = f(y(x)Y, for eachx G / with/(x) > 1/2 there must exist ay(x) G / with 
2/(x) — 1 =f(y(x)); and for eachx G / with/(x) = 1 / 2 there must exist ay(x) G / with 
f(y(x)) = 0 or f(y(x)) = 1. Necessity is obvious. On the other hand, if this condition is 
satisfied (with, say,/(y(jt)) = 0 if/(x) = 1/2), then we can define D0 :=/~ l([0, 1/2)), 
D\ := /" 1([ l /2 ,1]) , and the functions r$,r\ can be set equal to this y on /. So, each 
function from which this can be reasonably expected satisfies a system of type (S). 
The challenge is, of course, to find functions ro,n which are "simpler" than/ (e.g., f 
transcendental and r0, r\ algebraic). 

For x G [0, 1], we will always denote the binary expansion of x by (0, v$v\ - • -)i\ this 

meansx = E^oz /"/2 '7+1 withi/0 ,i/i,. . . G {0,1}. 
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2. Properties of solutions of (S). 

THEOREM 1. The system (S) has exactly one solution f\ I —> [0, 1]. 

PROOF. First we show that there is at most one solution. For each solution/, there 
is only one possible value for f(x) at a point x G /. This value is determined by the 
following recursion: Set 

n , i _ jro(an) \ïan G A), 
(1) a0=x and an+\ = 

Then for each solution/ we have 

J/^ofa/i)) = 2/(aw) if an G D0, 
f(an+i) y(ri ( f l | i )) = 2/(a/i) _ i if an G A . 

Compare this with how we compute the binary expansion of ̂  G [0, 1]. With 

(2yn ify„ G [0, i) , 
lo :=y, yn+\ •= \lyn-\ \fyn G (\, l], 

[2j„or2>„ - 1 if>„ = ±, 

we get jv7 = Ejw+1=2>/7~i, «>o ^r- Since _y„ and/(a„) obey the same recursion (recall that 
an G Do implies f(an) G [0, 1/2] while/(aw) G [0, 1/2) implies <zw G Z)0, and similarly 
for an G Z)i), we can identify^ ~f(an) and get 

(2) f(a0)=f(x)= £ ^ H -

On the other hand, define a function/ by this recursion. Then/ indeed maps / into [0, 1 ], 
and/ satisfies the equations (So), (Si): x G Do implies, by (2),/(x) < 1 /2 and 

/(roM) =/(«,)= £ 1=2 E i = 2 E i = 2 / « . 
«>1 «>1 «>0 

Similarly, x G A implies/(/i(x)) = 2/(x) — 1. • 

The recursion (1), (2) is important throughout this paper; we will constantly make use 
of it. In the arctan example, it is exactly Plouffe's iteration. Note that in the statement of 
Theorem 1 no regularity other than the boundedness is required or asserted. 

Under which conditions is the solution/continuous? First of all, continuity of/does 
not imply the existence of continuous ro, r\. Consider, e.g., 

ilx if* G [0,1/4], 
/ (*)= j 3 / 4 - x if JC G [1/4,1/2], 

13/2JC- 1/2 ifxG [1/2,1]. 
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Then, necessarily, r0(x) = 2x if je G [0,1/16) and r0(x) = 8/3x + 1/3 ifx G (1/8, 1/4], 
but between 1/16 and 1/8, there must be at least one point of discontinuity. 

However, if we assume continuity of ro,ri, we can give a sufficient and necessary 
condition for/to be continuous. In the following Theorem 2, closure and interior of A 
and D\ are taken in L 

THEOREM 2. Let ro, r\ be continuous. Then the solution/ of(S) is continuous if and 
only if 

for each i 0 G D 0 n Wx: Mn G N0 : r?(r0(xo)) G A and 3S(n) > 0 : Vy G A with 

|x0 -y\< S(n) we have r%(r\(y)) G A ; 

for each x0 G A H A-' Vw G N0 : r^(ri(x0)) G A awrf 36(n) > 0 : Vy G A w///z 

ko — >i < <$(«) w£ /zflver^(r0(y)) G A . 

PROOF. Assume that / is continuous. Without loss of generality (wlog), take any 

x0 G A H A - T n e n 2/(*o) =/(r0(x0)) and 

Urn /(r,(x)) = 2 Jim /(*) - 1 = 2/(x0) - 1 =/(r0(x0)) - 1-

Since /( /) Ç [0,1], we must have /(fo(*o)) = 1 and lhTu-^o/(n(x)) = 0. Thus, 

r0(xo) G A - Since 2/(r0(x0)) - 1 = 1 = f(rx (r0(x0)) J, we get ri(r0(x0)) G A , and, 

inductively, rf(Vo(*o)) G A . 
Observe that for any x G d D0 (which equals a A = ( A HA )U(A HA )),/(*) = 1/2. 

Choose « > 0 such that/(y) - / (x 0 ) =/(y) - 1 /2 < 1 /2"+2 for y G A with |x0 -y\<6. 
Then we have/(y) < 1/2 + l/2"+2, therefore 2/(y) - 1 = f(n(yj) < l/2"+1, thus 

2nf{r\(yj) =f(rn
0{ri(y))) < 1/2; and that means ^ ( y ) ) G A -

Lastly, since/(r?(r0(xo))) = 1 and/(rg(ri(y))) < 1/2, it follows that r?(r0(x0)) G 

A and r£(n(y)) G A). (Recall that/(dD0) =/(dD,) = {1/2}.) 
On the other hand, assume that the condition holds. Take any x G 7, n G N, and set 

£ := 1/2A2_1. Consider the numbers ao,a\,... ,an where â  ~ {ruk_x ° • • * ° ^ /0)W
 a nd 

fO ifa^GDo T 1 z/t = t . * " Take 
* \ 1 lfa^GDi 

^ ._ | minJA G { 0 , . . . , « } : ^ G d A ( = dA)} if this set is not empty, 
\n+ 1 otherwise. 

Since r0, n are continuous and â  £ A/* for A: = 0 , . . . , Ao — 1, there is a <5i > 0 such that 
|x — y\ <8\ implies that (rVk_{ o • • • o r1/Q)(y) G AA for A = 0 , . . . , Ao — 1. 

Assume (wlog) ako G A ; then/(x) = (0, i/0 • • • ^0_i011 • • -)2. Again, since r0,ri 
are continuous and a*0+i, ...,a„ G A , there is a 5i > £2 > 0 such that |x — y\ < 82 
and (r%_, o • • • o r1/Q)(y) G A imply that (r^ o r0 o r%_, o • • • o r,/Q)(y) 6 Di for 
w = 0 , . . . , « — Ao — 1. This means that/(y) = (0, z/0 • • • i/*0_i01 • • • l^n+i^n+i • • -)2-
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Lastly, we have a 6\ > £3 > 0 such that |x — y\ < £3 and (rVk , o • • • o r//())(y) G D\ 
imply that \{rl%_x o • • • o r1/Q)(x) - (rl%_x o • • • o r;/0)(y)| < £(« - k0 - 1 ), which in turn 
means that ( r jo r jo rVk _, o • • • o r,,0)(y) G Do for m - 0 , . . . , n — ko — 1. This means that 
f(y) = (0, i/o • • • ̂ 0 - i 10 • • • 0/VH/VK? • • O2. 

Now, if we chooser := m i n l ^ ^ } , then |x — y\ < 8 implies that \f(x) —f(y)\ < E. • 

OBSERVATION. If the solution/ of (S) is continuous and neither/ = 0 nor/ = 1 then 
it is "almost surjective":/(7) D [0,1] \ {p} where p = 0 orp = 1. 

PROOF. AS has been seen in section 1, we have D0,Di f 0. Moreover, there is an 
x G / with/(x) G (0, 1). Assume (wlog) x G D0. As above, iterate equation (So) until 
2nf(x) =/((ro o • • • o ro)(x)) G [1/2, 1]. Since/ is continuous, there is an xo G / with 
/(xo) = 1/2. If x0 G A), then 2/(xo) = 1 =/(r0(xo)), and there is an x\ G D\ with 
/ (* , )= 1/2. It follows that 

2 lim f{x) - 1 = 0 = lim / ( r^x) ) . 

Ifx0 G Di, then the same reasoning leads to/(ri(xo)) = 0 and the existence of an xj G D0 

with limjMC! f(ro(x)) = 1. • 

We are now interested in monotonie solutions. 

OBSERVATION. If/ is injective, then so are ro, n . The converse is not true, not even 
when assuming continuity and strict monotonicity for 7*0, r\. 

PROOF. If r0(x) = roOO, then/(r0(x)) = f(r0(yj) and, by (S0), 2/(x) = 2/(y). If/ is 
injective, thenx =y follows. The same for r\. 

On the other hand, consider/(x) = x2 on I = [—1,1] which is not injective. Bu t / 
satisfies the system (S), with Do = [—1/\/2, 1 / A / 2 ] , D\ = I\ Do, and ro(x) = >/2x, 

V zx 11 x > U w h i c n a r e continuous and strictly monotonie. 
1 -V2x2 - 1 if x < 0 

THEOREM 3. Assume that ro,ri are increasing and that Do < D\ (x G Do, y G Di 
implies x < y). Then f is increasing. Similarly, f is decreasing if>o, n #r£ increasing 
and D\ < Do. 

PROOF. We only prove the first part here. Take x,y G / with x < y. As in the proof 
of Theorem 2, consider the numbers ak = (rVk[ o • • • o r//0)(x), ft* = (r/lA_, o • • • o r/i0)(y). 
There are two possibilities: Either ak G Do & bk G Do for all /: G N, which implies 
/(x) = f(y). Or there exists a ko such that for all k < ko, ak G Do £=> &* G D0, and 
ako G D0, ^ 0 G Di. (We have ^ 0 < bko since r0,ri are increasing.) This implies 
/(x) = (0, i/o • • • i/jfco-iOi/̂ +i • • )2 < (0,2/0 • • • i/*o_i 1/ijfco+i • • -)2 =/(y). • 

In Section 3, we will see that strict monotonicity of r0lr\ does not imply strict 
monotonicity off. 
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By inspecting the recursion formula ( 1 ), (2), one would guess that it allows statements 
on the points in / which are mapped b y / to a rational value. The last theorem in this 
section addresses this possibility. The interiors of A), D\ and / are to be taken in R. 

Define a function r: I —• / by r(x) = 

THEOREM 4. Assume that I is closed (possibly, I - [—oo, oop, that ro, r\ are contin
uous and increasing, Do < D\ or D\ < Do, and that ro maps Do onto I and r\ maps D\ 
onto I. (Thenf is continuous and monotonie.) Lastly, assume thatf is strictly monotonie. 
Then 

{xG/:/(x)GQ} 

= {x G / : x is in an orbit under r of a fixed point ofr* = r o • • • o r (k> 1)}. 

PROOF. Call the right-hand set in the assertion M. 
(i) We show that/(x) G Q for x G M. 
Indeed, x G M implies that there exist v$,..., vn-\ and \i\,..., /i# such that 

0>* ° • ' • ° ^ , ° rVn_x o • • • o r//Q)(x) = {rVn_x o • • • o r//0)(x), 

where all of these maps are defined, i.e., x G D1/Q, r„0(x) G A 1 ? and so on. By the 
recursion formula (1), (2), this means that 

f(x) = (0, i/0 • • • i/w-i/ii • • • /i*/zi • • • M ' ' O2? 

that is,/(x) G Q. 
(ii) Assume/(x) G Q, say,/(x) = (0, i/0 • • • vn-\V\ • • • M/tMi ' " Vk" )i- Let/ = [a, b] 

and assume wlog Do <D\. It follows that ro{a) = a and r\(b) = b. Now observe that r* 
has a fixed point xo in (r^1 o • • • o r~*)(I): If (/ii • • • /i*) 7̂  (0 • • • 0) and ^ (1 • • • 1), then 
for S := (r~l o • • • o r~*)(I), we have S Ç /, and since ro and r\ are onto /, we have 

r*(S) = ( / " ' o rm o r~l o • • • o r^X/) = ( ^ ' ° r"1 o • • • o ,--/)(/) = • • • = / , 

therefore, r* has a fixed point in S. If (/ii • • • //*) = (0 • • • 0), then the fixed point is a, for 

(Mi "• Hk) = (1- - - 1), it is ft. 
Setj^ := (r^o- • -or"1 ^(xoXthenjisinanorbitofxoand/^) = (0, I/Q • • • vn-\\*>\ " ' Vk 

AM • • • Hk " ' O2 by (1), (2). Since/ is injective, x = y. m 

3. Several examples. We begin with a short list of transcendental functions/ which 
satisfy a system of type (S) where the functions ro, r\ are algebraic. 

1. 

/(x) = lnx/ln2, /= [1 ,2 ] , 

D0 = [l,>/2), Z>!=[>/2,2], 

r0(x)=x2, ri(x) = x2 /2. 

ro(x) if x G Z)o 
r\(x) if x G A ' 
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Of course, the recursion (1), (2) can be used to compute the binary expansion of 
the function/. Take for example x = ao = 3/2. Then a\ - 9/8, a^ - 81/64, 
«3 = 6561/4096,04 = 316/225, and so on. Here are the first 20 binary digits of In 3 / In 2: 
(1.10010101110000000001)2. 

An application of Theorem 4 would yield that/(x) is rational if and only if x = 2q 

with rational q. But we know that already. 
2. 

f(x) - arccos(x)/7r, / = [—1, 1], 

Do = (0,1], D , = [ - 1 , 0 ] , 

A*O(X) - 2x — 1, r\ (x) = 1 — 2x . 

Theorem 4 says that the points whose value is rational are the fixed points of r* = 
±(ro o • • • o ro) (the sign on each set (r^1 o • • • o r~/){I) must be chosen so that r* is 
increasing) and their orbits. Or put the other way round, these are the values of cos(7rx) 
if x is rational. Note that r̂  = ro o • • • o ro is the Chebychev polynomial of the first kind 
T2k for [-1,1]. 

3. 

f(x) = 2 arcsin(x)/7T, / = [0, 1], 

D0 = [0,l/>/2), D\ = [ l /> /2 , l ] , 

ro(x) = 2xv 1 — x2, r\ (x) = 2x2 — 1. 

f arctan(x)/?r if x G [0, oo) r -. 
/ ( x ) = | l + a r c t a n ( x ) A if * e [-oo, 0) ' ' = ^ { - 0 0 } 

D0 = [0,oo), A = [-oo,0), 
2x 2x 

ro(x) = _ 2 , r0(l) = -oo , n(x) = _ 2 , n ( - l ) = -oo . 

/(x) = arccot(x)/?r, / = R U {-oo}, 

Z)0 = [0, oo), D\ = [-oo, 0), 

x2 — 1 x2 — 1 
^oW = —z—, A-O(O) = -oo , r,(x) = — — . 

2x 2x 

f(x) = arsinh(x)/ In 2, / = [0, 3/4], 

D0 = [0, l /2\ /2) , D, = [l/2>/2,3/4], 

r0(x) = 2xVl + x2, r{(x) = 5 / 2 x \ / l + x 2 - 3 / 2 x 2 - 3/4. 
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7. Denote by F and K the incomplete (resp. complete) elliptic integral of the first 
kind, take k G [0,1). 

= | F ( x / T ^ 2 , k)/2K(k) if x > 0 I = r l u 

[I- F(Vl-x2, k)/2K(k) if x < 0 ' 
Do = (0,1], A = [ -1 ,0 ] , 

_ x 2 - ( l - x2)(£2x2 + 1 - k2) x2 - (1 - x2)(£2x2 + 1 - k2) 
r o ( x ) " x2 + ( l - x 2 ) ( F x 2 + l - F ) ' n ( x ) " ~ x 2 + ( l - x 2 ) ( F x 2 + l - F ) ' 

(Another way to write this is the following, with x' := A/1 — X2: r0(x) = * +x-X2^ > 

Set, e.g., & = 1/A/2 andx = \/y/2. Then the recursion (1), (2) yields 

2F(l/>/2, l/>/2)/i8(l/4,1/4) = (0.001110010000011 • • -fc 

where /?(*,;>) = JoO - uf~xuy~xdu for x,j> > 0 (beta function); note that K(\ / \fl) = 
2"2/?(l/4,1/4) (cf. [1]). As a second example, set k = \fl- 1 andx= 1/A/2. Then we 
get 

2 9 / 4 F( l /v / 2 ,v / 2- l)//3(l/8,1/8) = (0.001111100001010•••)2; 

note that £(>/2 - 1) = 2~13/4/3(l/8,1/8) (c/ [1]). 
Theorem 4 says that the points whose value is rational are the fixed points of r* = 

=b(ro o • • • o ro) (the sign must on each set (r"1 o • • • o r~x)(I) be chosen so that r* is 
increasing) and their orbits. Or put the other way round, these are the values of cn(2A (̂&)x) 
if x is rational. 

The common denominator in these examples is an algebraic addition theorem (cf. 
[1]). Assume that g: R —> R, injective on [0,1] and g([0,1]) = /, satisfies P(g(x)1g(y)1 

g(x +y)) = 0 for all x,y G R with a polynomial P. Set D0 := g([0,1/2)) and Dx := 
g([l/2,1]). Then/ := (g|[o,i])_1 satisfies (S) where ro and r\ are determined by solving 
P(g(x\g(x\g(2x)) = 0forg(2x)andP(g(2x),g(-l),g(2x- 1)) = 0forg(2x- l)(with 
the use of ro here). For examples 4 and 5, the interval [0,1] would have to be replaced 
by [0,1). 

A bit more explicit is the following approach which does not work for examples 2 
and 7. Assume g: [0,2] —+ R is injective on [0,1] and on [1,2] andg([0,1]) = /. (Again, 
replace these by halfopen intervals for examples 4 and 5.) Assume that g is a solution 
of the functional equation g(x + y) = a(g(x),g(y)) for x,y G [0,1] with an algebraic 
functiona:lxl-^ g([0,2]). Let/ := (g|[o,i])_1, therefore/:/ —> [0,1]. For w, v G /with 
f(u)+f(v)e [0,1], we have 

g(f(u) +/(v)) = a(g(f(u))lg(f(v))) = a(u, v), 

or f(u) +/(v) = f(a(u, v)). If we set r0(w) := a(u, u) for u G g([0,1/2)) =: Z)0, then for 

each M G Do we have/(ro(w)) = 2/(w). 
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For any x G [0, 1] and for any u, v G / with/(w) +/(v) G [x,x + 1], there exists a 
& = b(u, v) G / with ayb,g(x)j = a(u, v). Indeed, we can write/(w) +/(v) = y + x with 
j^G [0, 1]. Set b := g(y). Then 

a(«,v) = a(g(/W),g(/(v))) =g(/"(«)+/(v)) 

= g(y + x) = a(g(y),g(x)) = a(b,g(xj). 

Now choose x = 1. Then, if w, v G / with/(M) +/(v) G [ 1,2], we have 

*(/"(«) +/(v)) = a(u, v) = fl(6,g(l)) = g(f(b) + 1 ). 

Since g is injective on [ 1,2], it follows that/(w) +/(v) =/(£) + 1. If we set rj (u) := Z?(w, w) 
for w G g([l /2, 1]) =: D\9 then for each w G A we have/(ri(w)) = 2/(w) — 1. 

Let us see how this works for Example 3. Here, g(x) - sin(7a:/2),/= g([0, 1]) = [0, 1], 
Do = g([0, 1/2)) = [0, l/x/2), Dx = g([l /2, 1J) = [l/>/2, 1] and/(i/) = 2arcsin(a)/7r 
for w G [0, 1]. g satisfies g(x +y) = g(x)y 1 — g2(y) +g(y)y 1 — g2(x), therefore <z(w, v) = 
WA/1 — V2+VA/1 — u2foru,v G [0, 1]. To determine b(u1 v), we have to solve a(è,g(l)) = 
a(u,v) for 6 G [0,1] if w,v G [0,1] and/(w)+/(v) G [1,2]. This yields 6(M, v) = 
uv—\J\ — u2V\ — v2 fort/, v G [0, l]andw2+v2 > 1. Thus, A*O(W) = a(u,u) = 2w>/l — w2 

if u G Do and r j (w) = b(u, u) = 2u2 — 1 if u G D\. 

However, this kind of transcendental functions is not the only interesting class of 
solutions of (S) with "simple" ro, r\. In fact, (S) can be used to construct rather peculiar 
functions. We will give two examples here: First, we construct a continuous, "almost" 
surjective function/ for which the set {x G / : / is not constant in a neighbourhood of 
x} is nowhere dense in /. Second, we construct a strictly monotone function which has 
derivative 0 almost everywhere. 

In the following Theorem 5, the interior of Do, D\ and / is taken in PL 

THEOREM 5. Let ro, r\ be continuous and increasing, Do < D\, and ro mapping Do 
onto I, r\ mapping D\ onto I. (Thenf is continuous and increasing.) If there exists an x\ 
such that x\ G Do vv///z ro(x\) < x\ or x\ G D\ with r\(x\) > JCI, then for each x,y G / 
with x < y, there exists a non-degenerate intervalJ Ç [x,y] with f\j = const. 

PROOF. Assume that JCI G D0 with ro(x\) < x\ (wlog). Let x := max{x G D0 : 
ro(x) < x}- We have x G Do and, since ro is increasing, ro(x) < x <^ x < Je, which 
means by (1), (2) that/(x) = 0 <=> x < x. Inductively, f(x) = (0, i/0 • • • i/n-\00 • • O2 <=> 
(r,v , o • • • o r//Q)(x) < x. Since ro, n map D0 resp. Di onto I, the set 

(r,;1 o • • • o r-X
Hj(b0 H (-00,*)) = int {x G / :/(*) = (0, i/0 • • • i/„_i00 - • O2} 

is non-empty; since/ is increasing, this set is a non-degenerate interval. Since the dyadic 
rationals are dense in/(/), the assertion follows. • 

At the end of Section 2, we asserted that there are non-strictly monotonie solutions/of 
(S) with strictly increasing r0, n . Theorem 5 provides us with an example: Set / = [0, 1], 
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D0 = [0,1/2), D\ = [1/2,1], r0(x) = 4x2 and r,(x) = 1 - 4(x - l)2. Then the solution of 
this system (S) has the desired property. 

However, functions which have this property can also be constructed as solutions of 
systems (S) which do not satisfy the assumptions of Theorem 5. It is enough that ro, r\ 
map Do resp. D\ onto / and that the solution/ has at least one non-degenerate interval 
of constancy. Here is another example: Set / = [0, 1], D0 = [0, 1/2), D\ = [1/2, 1] and 

r o W j x + 1 / 2 i f x > l / 8 ' r i W
 \ 5 J C - 4 if* > 7 /8 ' 

We turn now to the construction of a continuous, strictly increasing function/ which 
has derivative 0 almost everywhere. As mentioned, these functions, constructed in the 
following Theorem 6, are the inverses of de Rham's functions with the same property. 
Note that the set of measure 1 on which the derivative off vanishes is mapped b y / onto 
a set of measure 0 on which the derivative of/"1 does not exist, and vice versa. 

THEOREM 6. Take any t G (0,1) \ {1/2}. Set D0 = [0, t), Dx = [t, 1], r0(x) = x/t, 
r\(x) = (x — 0/(1 ~~ 0- Then the solution f of this system (S) is strictly increasing and 
its derivative is 0 wherever it exists. 

PROOF. First, according to the conditions in Theorems 2 and 3 , / is continuous and 
increasing. In fact,/ is strictly increasing: Set L := min{ 1 //, 1 / ( l — 0}, then L > 1. For 
each x,y G / for which there exists an n G No such that ak(x) G Do & ak(y) G Do for all 
k = 0 , . . . , n is true, we have \an(x) — an(y)\ > Ln\x—y\ (with an(x) := (rVn_, o • • • or1/Q)(x), 
as in the proof of Theorem 2). Therefore,/(x) =/(y), which means an(x) G D o ^ an(y) G 
Do for all /iGN0 , impliesx-y. 

Since/ is strictly monotonie,/'(x) exists almost everywhere. Take any x where f'{x) 
exists. Assume/(x) = (0, v$v\ • • -)2- Set ô •- t and t\ := 1 — t. For each n G No, choose 
xn,yn G [0,1] with/(x„) = (0,z/0---^_i00---)2 and/fo) =f(x„)+ 1/2". Since/ is 
strictly increasing, we have xn < x < yn. It can be proved by induction (see below) that 
yn xn — tl/Q - - - h/n_x • 

Now assumef'{x) f 0. Then 

f(yn)-f(xn) yn+\ -xn+\ 

yn -Xn j(yn+\)-j(Xn+\) 

But we have 

f(yn) -f(x„) _ yn+\ -xn+{ = \/2n ^ t„0 • • • tVn_x • tVn _ 

yn - Xn /(V/i+l) -f(Xn+\ ) t1/Q • • • tVn_x 1 /2n+l 

The latter sequence has at least one partial sequence which is constant, but its value (2t 
or 2(1 — 0) is unequal to 1 if tf 1 /2 . That is a contradiction. • 

We close this section with the induction we omitted in the proof of Theorem 6. 
Notations are as in that proof. 

LEMMA. For each n G No and i = (i/o • • • ^«-1)2 £ {0 , . . . , 2W — 1}, let Xi^y^n G 
[0, 1] such thatf(xUn) = i/2n

ff(y^n) = (1 + 1)/2W. ThenyUn - xun = t„0 • • • tVn_x. 
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PROOF. First, we define r0(t) := 1, such that 2f(x) =/(r0(x)) for x G D0 U {/}. 

For n = 0, we have / = 0, xo,o ~ 0,jo.o = *' and.yo,o — *o.o = h whereas t„0 • • • tVn , is 
the empty product. 

Assume now that the assertion has been proved for an n G No. To prove it for n + 1, 
we distinguish two cases; first, assume / G {0 , . . . , 2n — 1}. Then (/ + l)/2"+1 < 1/2, 
which means that x/^+bj^+i G Do U {/} and that x/i/7,_y;> exist. Moreover, we have 
/(*/,*+! ) = (0,0//! • • • i/„00 • • -)2 and/(x,„) = (0, //, • • • //„00 • • -)2. Now, 

/ K „ + i / 0 =/ (^o(^ + i ) ) = 2f(xiM+]) = 2 • i/2n+l = / /2" =/(*/.„); 

s ince/ is strictly increasing, that means that xiM+\ = /x/.w. Similarly, j ^+ i = />,>. 
Therefore, 

t§ • t]/{ • • • tyn = t • (y/,« — XiM) — (y,> — txun — yiM+\ — XiM+\. 

On the other hand, if / G {2", . . . ,2'7+1 - 1}, then //2"+1 > 1/2, which means 
that */,„+!,>>/,„+! G Z>i and that JC/_2«,«,>;/-2W,« exist. Moreover, we have/(x/?„+i) = 
(0, \vx • • • z/„00 • • -)2 and/(jc/_2n,w) = (0, v\ • • • i/„00 • • )2. Now, 

/((*/,«+! - 0/(1 - 0) = f(n(x,n+])) = 2f(x,n+l) - 1 = 2 - //2'î+1 - 1 

= (i-2n)/2n=f(xi-2',nY, 

since/ is strictly increasing, that means thatx/^+i = (1 — 0*/-2",w + ^ Similarly, yLn+\ = 
(1 — t)yi-2»,n + *• Therefore, 

*1 ' *//, * " ' *//„ ~ (1 — 0 ' (y/,« — Xi,n) 

= (l - OAII +1 - ((l - 0*/.« +1) = yiM+\ - xiM+\. B 

4. Closing remarks. We conclude the paper with two remarks concerning possible 
generalizations. 

First, the same type of reasoning as we did here would also work for systems of more 
than two equations. We give here only two examples. 

1. f(x) = arccos(x)/7r satisfies 

3/to =f(4*3 ~ 3*) if * £ (1 /2 , 1], 

3/(x) - 1 = / ( -4x 3 + 3x) if x G ( -1 /2 , 1/2], 

3/(x) - 2 =/(4x3 - 3x) if x G [ - 1 , - 1 / 2 ] . 

That means that/ can be computed by the following recursion: 

4a3
n-3an if an G (1/2, 1] U [ -1 , - 1 / 2 ] 

-4a3„ + 3a„ ifaw G (—1/2,1/2] 

Then arccos(x)/7r = Efl/f€(-i/2,i/2] 3 ^ + £a„e[-i,-i/2] 3^-
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2. Pick any b E N \ {1}. Then/(x) = lnx satisfies 

bf(x) - v =f(e'1/xb) if x G 

for i/ = 0 , . . . ,6 — 1 o n / = [l,e]. 
Second, there is no particular reason for the set I to be an interval. In fact, Theorems 1 

and 2 seem to work in any topological space /. Possibly, functional equations of type (S) 
can be used to construct "counterexamples", i.e., functions with peculiar properties, in 
such spaces. However, it might sometimes be necessary to take discontinuous functions 
ro,r\ to describe a continuous function/, as we saw in the example before Theorem 2. 
So, the construction of a counterexample by use of (S) might be more difficult than a 
straight-forward construction. 
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