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In his fundamental paper, " On the structure of semigroups " [6], J. A. Green has
examined certain important minimal conditions which may be satisfied by a semigroup S.
We say that S satisfies the minimal condition on principal left ideals if every set of principal
left ideals of S contains a minimal member with respect to inclusion : this condition is denoted
by ^#x. The corresponding conditions on principal right ideals and principal two-sided ideals
are denoted by ^ttT and ^tt respectively. The purpose of the present paper is to give some
further results concerning these three conditions. Extensive use is made of the work of
A. H. Clifford ([3] and [4]) on minimal ideals.

The discussion falls into three sections. The first of these contains a preliminary account
of the conditions ^x, ^MT and JCt, in the course of which it is pointed out that they are, in
general, independent. I t is shown, however, that in a semisimple semigroup ^ , implies <M't
(Theorem 1.2).

In the second section we introduce the concept of a completely semisimple semigroup.
This is a semigroup whose principal factors are all completely simple. Such, a semigroup is
necessarily regular, but the converse is not true. We also define two further conditions, ^f
and JK*, which are similar to, but weaker than J(l and J(r respectively. These are used in
the formulation of alternative criteria for complete semisimplicity (Theorems 2.3 and 2.5);
we deduce that a semisimple semigroup satisfying ^ t and <J(T is completely semisimple, and
that a regular semigroup satisfying ^(x is completely semisimple. Semigroups which admit
relative inverses (Clifford, [2]) form an important class of completely semisimple semigroups.
With the aid of a result due to R. Croisot [5], these are given a new characterisation in Theorem
2.7 : it follows from this that if S is a semigroup satisfying ^&l and such that every element
a e S belongs to the set a?S, then S admits relative inverses. Finally, it is shown that in a
completely semisimple semigroup the conditions Jix, Jlr and Jtf are all equivalent (Theorem
2.9).

The last section deals with the topic of radicals in a semigroup, again with emphasis on
results dependent on minimal properties. First we define the " upper radical " of a semi-
group S to be the intersection of all the ideals M such that S/M is semisimple ; if this is
non-empty it may be described as the unique smallest ideal N' such that S/N' is semisimple
(Theorem 3.1). I t follows from the results of the previous section that if every element of 8
has finite order, or if S satisfies ^ , and ^tfr, then S/N' is completely semisimple. By contrast,
corresponding to any ideal M we define the " If-radical" NM to be the union of all the
M-potent ideals of <S. This radical is of a type previously studied by Schwarz [10] and by
Clifford [4]. If NM is If-potent, then S/NM is a semigroup without nilpotent ideals. We
show that if such a semigroup satisfies any one of the conditions *Jflt ^/Kr, dl't, then every
non-zero ideal contains a non-zero simple ideal (Theorem 3.4). This result yields two corol-
laries which give conditions for the M-potence of a semigroup »S, where M is an ideal of S.

1. The conditions Jtx, J(T and Jlt. By a semigroup we shall mean a set which is closed
under a single associative binary operation : this will be denoted by juxtaposition in the
usual way.
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We recall some definitions given by Green [6]. The elements a and 6 of a semigroup 8
are said to be I-equivalent if a and b generate the same left ideal of S ; that is, if Sa w a = Sb v-» b.
In the same way, two elements are r-equivalent if they generate the same right ideal of S,
and (-equivalent if they generate the same two-sided ideal of S. For any a e 8 we shall
denote by La, Ba and Fa the I-, t- and f-classes respectively to which a belongs. Evidently
La C Fa and Ra £ Fa.

Let 7 be a principal (that is, simply generated) ideal of 8, and let J be its set of non-
generators : then I - J, the set of elements in I but not in J, is an f-class of S, say F. It can
easily be shown that if J is non-empty it is an ideal of 8, and we call the Rees quotient semi-
group IjJ the principal factor of S corresponding to F. This is either simple, or else its
square is zero. If it is simple, then we say that F is a simple f-class ; this is the case if and
only if every element a eF belongs to the set FaF ([6], Theorem 5). If all the f-classes of S
are simple, then 8 is said to be semisimple.

It may happen that the intersection K of all the ideals of S is non-empty ; if this is so,
we call K the kernel of 8 (Clifford, [3]). It is a principal ideal, and when I =K in the above
discussion, the set J is empty. We shall make the convention, however, that IjJ = / in this
case, and include it amongst the principal factors. The kernel is a simple f-class of S.

The I-classes of 8 may be given a natural partial ordering as follows. Let L and L' be
[-classes ; then we write L<L ' if and only if the left ideal of 8 generated by elements of L is
contained in the left ideal generated by elements of L'. If every set of I-classes of $ contains
a minimal member with respect to this partial ordering, then we shall say that 8 satisfies the
condition dtx. This means that every set of principal left ideals contains a minimal member
with respect to inclusion, or, equivalently, that every strictly descending chain of principal
left ideals of 8 breaks off after a finite number of terms. As remarked by Green, ^tx is weaker
than the minimal condition on all left ideals of 8, principal and otherwise.

Partial orderings of the r- and f-classes of S (which we shall also denote by the symbol
O , and the corresponding minimal conditions J(T and JKJt are defined in a similar manner.

THEOEEM 1.1. Let 8 be a semigroup satisfying any one of the conditions J(u ^ r , Jtt.
Then 8 has a kernel.

Proof. Suppose first that S satisfies *4ff. From the set of all f-classes of 8 select a
minimal member K. Then K is a minimal ideal of 8, and so it is the kernel of 8 ([3], § 1).

Now suppose instead that 8 satisfies Jlx\d(^\. Then the set of all I-[r-] classes of *S
contains a minimal member, and this is a minimal left [right] ideal of 8. Hence 8 has a
kernel, namely the union of all the minimal left [right] ideals ([3], Theorem 2.1).

In particular, the kernel may consist of a single element; this element is then the zero
of S.

The conditions ^dXi d(T and J(f are, in general, quite independent. It is not difficult to
construct semigroups which satisfy ^ ^ but which fail to satisfy ^(x and dtt. Less immediate,
perhaps, is the fact that a semigroup may satisfy J(x without satisfying J(r and J(t.

Example. Let 8 be the set consisting of an element 0, together with the set of all
ordered pairs (i, j), where i and j are positive integers such that i<j. Multiplication in 8 is
defined by the rules
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This is associative, and so S is a semigroup. The left ideal generated by (i, j) is

{0; (r,j), 1 < r < t } ;

since this set is finite, S satisfies J(x. Similarly, the right ideal Ru generated by {i, j) is
{0 ; (i, s), a>j}> and the two-sided ideal Iit generated by (i,j) is {0 ; (r, s), l < r < i , s^j}.
But the strictly descending sequences i2wDi2((y+1D JS(i^+2D ... and ItfD/,_i+1 D / { i+2D ...
can both be continued indefinitely : hence S satisfies neither ^f(r nor *4lt.

We note, in addition, that the semigroup first discussed by Baer and Levi ([1], p. 7)
provides an example which satisfies both u? t and ^tft (since it consists of a single [-class),
but which does not satisfy ^Mr. On the other hand, Green has shown that dlx and ^Mr to-
gether imply ^tf ([6], Theorem 4).

It will now be shown that the situation illustrated by the example given above cannot
occur in a semisimple semigroup.

THEOKEM 1.2. Let S be a semisimple semigroup satisfying ^tfx. Then S satisfies dtf.
Proof. Let $ be any set of f-classes of S, and let £ be the set of all t-classes of S which

are contained in members of $. Then since S satisfies Jlx, £ contains a minimal member.
Let this be La> for some ae S. We shall show that Fa is minimal in $. Suppose this is
false ; then there exists an element b e S such that Fb e $ and Fb<Fa. From the latter we
see that b e Sa^aS^SaS. Also since S is semisimple, Fb is simple and so b e FbbFb ([6],
Theorem 5). Hence b e Fb(Sa^aS^SaS)Fb, from which it follows easily that b e FbaFb.
Let u and v be elements of Fb such that 6 = uav. Then Fua=Fb e $, and so Lua e £. But
I u o < L a ; hence since Fb<Fa we have Lua<La, which contradicts the minimality of La in
£. Thus Fa is minimal in ^ ; that is, S satisfies ^f.

2. Completely semisimple semigroups. Let S be a semigroup and T a subset of S.
An idempotent e e T will be said to be primitive in T if the only idempotent in T satisfying
the equations ex=x=xe is e itself. We shall then say that an f-class F of S is completely
simple if it contains an idempotent which is primitive in F. This holds if and only if the
corresponding principal factor is a completely simple semigroup in the sense of Rees ([8] and
[9]); the structure of such semigroups has been fully determined ([8], Theorem 2.93).

DEFINITION. A completely semisimple semigroup is a semigroup in which each f-class is
completely simple.

Evidently a finite semisimple semigroup is completely semisimple. More generally, a
semisimple semigroup in which every element has finite order is completely semisimple ;
for each principal factor is then a simple semigroup in which every element has finite order,
and Rees has shown that such semigroups are completely simple ([8], Lemma 2.4). As was
noted by Green, every element of a semigroup S has finite order if and only if S satisfies
the minimal condition on principal subsemigroups. Another important class of completely
semisimple semigroups comprises those semigroups which admit relative inverses : these are
discussed in Theorem 2.7 below.

Green defines a semigroup >S to be regular if every element a e 8 is such that a e aSa.
It is a consequence of Rees's structure theorem for completely simple semigroups that a
completely semisimple semigroup is regular. Furthermore, a regular semigroup is semi-
simple. However, it is easy to find examples which show that neither of the reverse implica-
tions is true.

We shall make frequent use of the following elementary property of semigroups :
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LEMMA 2.1. Let S be a semigroup and M an ideal of S. Then the I-[r-, f-] classes of S
contained in the set S -M are just the non-zero I-[r-, f-] classes of SjM.

The proof is trivial. Suppose that a and b are distinct elements of S - M. Then the
criteria for their I-equivalence qua elements of S and qua elements of SjM are the same,
namely that there exist elements x and y in S-M such that a=xb and b=ya. Similar
arguments apply to r- and f-equivalence.

In particular, this result shows that if S satisfies J(h J(T or J(u then so also does SjM.
It is convenient at this stage to introduce two further minimal conditions, ^Kf and Jif.

A semigroup S will be said to satisfy ^f \JC?~\ if the set of all I-[r-] classes of $ contained in
any f-class of 8 contains a minimal member. Clearly dtx implies Ulf and d(r implies ̂ #*.

In the proof of the next lemma, and subsequently, we follow Clifford's convention as
regards the use of the term " minimal left [right, two-sided] ideal ". Thus in a semigroup 8
with zero, a minimal left ideal is a non-zero left ideal of S properly containing no left ideal of S
other than the zero ideal.

LEMMA 2.2. Let S be a semigroup satisfying ^Kf, and let F be any f-ctess of 8. Then
every l-class of S contained in F is minimal in the set of all l-classes contained in F.

Proof. Let / be the ideal generated by F, and let J = 1 - F. Then J is an ideal -f of <S,
and IjJ is a minimal ideal of SjJ. Since S satisfies JKf, so also does SjJ by Lemma 2.1,
and thus IjJ contains a minimal left ideal of SjJ. Hence IjJ is a union of minimal left
ideals of S/J ([4], Theorem 2.1), and so every principal left ideal of S/J generated by a non-
zero element of IjJ is minimal in SjJ. Thus every I-class of S/J contained in F is minimal
in the set of all I-classes contained in F ; but by Lemma 2.1 these are also I-classes of S, and
hence we have the required result.

This lemma is similar to part (ii) of Green's Theorem 8, but is more general.
We now go on to obtain two alternative characterisations of complete semisimplicity

involving minimal conditions. The first of these depends directly on results due to Clifford [4].
THEOREM 2.3. A semigroup 8 is completely semisimple if and only if it is semisimple and

satisfies the conditions Jtf and Jl*.

Proof. Suppose that 8 is completely semisimple. Let F be any f-class of 8, let I be
the ideal generated by F, and let J=I-F. Then IjJ is completely simple. Hence / / /
contains a minimal left ideal and a minimal right ideal of itself ([4], Theorem 3.2). Now
since IjJ is simple, a minimal left ideal of IjJ is also a minimal left ideal of SjJ ([4], Theorem
2.2 ; also [4], reference 3, p. 844), and so its non-zero elements constitute an I-class of SjJ.
Thus the set of all [-classes of SjJ contained in F contains a minimal member, and hence by
Lemma 2.1 *S satisfies Jlf. Similarly, S satisfies J(*.

Conversely, suppose that 8 is semisimple and satisfies *tff and Jt*. Let F, I and J
be defined as above. Then 8/J satisfies J(f and JK* by Lemma 2.1. Hence IjJ is a minimal
simple ideal of SjJ containing a minimal left ideal and a minimal right ideal of SjJ, and so
IjJ is completely simple ([4], Theorem 3.1). Thus 8 is completely semisimple.

COROIXABY 2.4. A semisimple semigroup satisfying ^ l and Jtr is completely semisimple.
Green ([6], p. 171) has shown that such a semigroup is regular.
The next result gives conditions for complete semisimplicity which are intermediate

between those of the definition and those provided by Theorem 2.3.

t Here, as in the proof of Theorem 2.3, if F is the kernel of <S (that is, if J is empty), then we make
use of results from [3] in place of the corresponding results from [4].
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THEOEEM 2.5. A semigroup is completely semisimple if and only if it satisfies JKf and
has the property that every \-class contains an idempotent.

Proof. Let 8 be a completely semisimple semigroup. Then by Theorem 2.3 it satisfies
*#*, and from the definition every f-class contains an idempotent.

Conversely, let S be a semigroup satisfying *4lf, and such that every f-class contains
an idempotent. Let e be any idempotent of S, and let / be an idempotent in Fe with the
property that ef=f=fe. From the relation fe = / we see that Lf^Le. Now since S satisfies
•^7", it follows from Lemma 2.2 that Le is minimal in the set of all I-classes contained in Fe.
Thus Lt —Le. Hence in particular, there is an element a e S such that e =af, and so

ef=af2=af = e.

But ef=f; hence e =/. Thus e is primitive in Fe, and so S is completely semisimple.
A special case of this theorem has previously been obtained by Schwarz [11], who showed

that a simple semigroup without zero is completely simple if and only if it contains a minimal
left ideal and an idempotent.

COKOLLABY 2.6. A regular semigroup satisfying ^Mx is completely semisimple.
We need only note that each f-class of a regular semigroup contains an idempotent

([6], Theorem 6).
This should be compared with Corollary 2.4. By replacing semisimplicity by the stronger

requirement of regularity we have been able to remove one of the minimal conditions.
A semigroup S is said to admit relative inverses if, corresponding to any element a e S,

there are elements e and a' in S such that ea=a=ae and a'a = e =aa'. Clifford characterises
such a semigroup first as a union of disjoint groups ([2], Theorem 1), and then, effectively,
as a completely semisimple semigroup in which each f-class is a subsemigroup ([2], Theorem
2).

Another characterisation has been obtained by Croisot [5] as a result of his generalisa-
tion of the concept of regularity. A semigroup S is said to satisfy the condition (m, n), where
m and n are non-negative integers such that m+n~$z2, if any element a e S belongs to the
set amSan. (The condition (m, 0) is satisfied by S if a e amS for all a € S.) Croisot has shown
that with respect to logical equivalence the set of all such conditions falls into four classes,
from which we may select as representatives the conditions (1,1), (2, 0), (0, 2) and (2, 1).
He has proved, in addition, that a semigroup admits relative inverses if and only if it satisfies
both (2, 0) and (0, 2), and that these are together equivalent to the single condition (2, 1)
([5], Theorems 1 and 2). We now show that the result still holds if we replace one of the
conditions (2, 0) and (0, 2) by a suitable minimal condition.

THEOEEM 2.7. A semigroup admits relative inverses if and only if it satisfies the conditions
(2, 0) and Jlf.

Proof. Let S be a semigroup which admits relative inverses, and let a e S. Then there
exist elements e and a' in S such that ae=a and aa' =e. Hence a=a(aa') e a2S ; that is,
S satisfies (2, 0). Further, as remarked above, JS is completely semisimple ([2], Theorem 2),
and so satisfies JKf by Theorem 2.3.

Conversely, suppose that S satisfies (2, 0) and dff. We shall prove that S admits
relative inverses by showing that it also satisfies (0, 2) ; the result will then follow from
Croisot's Theorem 1. Let ae S ; then since aea2S we have Fa^Fat. But Fa*^Fa, and so
Fat =Fa. This shows that La*QFa. Now £ o t < L a ; hence since S satisfies ^£f, it follows
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from Lemma 2.2 that Lat=La. Thus either a =a2 or a e Sa?, and the former case is included
in the latter, since a=a2 implies that a=a . a2. Hence S satisfies (0, 2), and this completes
the proof.

COKOLLAEY 2.8. A semigroup satisfying (2, 0) and <4tx admits relative inverses.
Theorem 2.7 no longer holds if we replace (2, 0) by (0, 2). This may be illustrated by

the semigroup of Baer and Levi [1], which consists of a single I-class, and so satisfies both
(0, 2) and Jtf, but which is not completely simple.

We end the present section with a result linking the conditions J(lt J(T and Jlt in a
completely semisimple semigroup.

THEOREM 2.9. / / a completely semisimple semigroup satisfies one of the conditions *#,,
ufr, *tff, then it satisfies the others.

Proof. We have already shown in Theorem 1.2 that in a semisimple semigroup ^(x

implies ^f. I t will be sufficient to prove that in a completely semisimple semigroup Jit

implies ^Kx. The remaining cases follow from the left-right duals of these results.
Accordingly, let 8 be a completely semisimple semigroup satisfying ^ t , and let £ be

any set of I-classes of S. Let £ denote the set of all f-classes which contain members of £.
Then since 8 satisfies */tt, § contains a minimal member, F say. Now let L be any member
of £ which is contained in F. We shall show that L is minimal in £. Suppose it is not ; then
there exists L' e £ such that L'<.L. By Theorem 2.3, S satisfies ^K*, and so L is minimal
in the set of all I-classes contained in F, by Lemma 2.2. Hence L' <£ F. Let F' be the f-class
containing L'. Then since L'<L we have F'<F, which contradicts the minimality of F
in $. Hence L must be minimal in £, and so S satisfies J(x, as required.

3. Radicals of a semigroup. In this final section we discuss two types of radical in a
semigroup 8.

First let N' denote the intersection of all the ideals M of 8 which are such that SjM is
semisimple. The set of all such ideals is non-empty, since S itself is a member : however,
N' may be empty, as will happen when S is a semisimple semigroup with no kernel. We
shall call N' the upper radical of 8. I t has previously been discussed by the author in the
case where S has a principal series ([7], § 2). If N' is non-empty, then it is an ideal of S.

THEOREM 3.1. Let N' be the upper radical of a semigroup S. Then S/N' is semisimple.
Proof. Let F be any non-zero f-class of S/N'. Then by Lemma 2.1, F is also an f-class

of S. But from the definition of N' there is an ideal M such that F e 8 -M and SjM is semi-
simple. Hence, again by Lemma 2.1, F is an f-class of 8jM and so is simple. Thus S/N' is
semisimple.

As before, if N' is empty we take 8/N' to mean 8 itself.
Since a semisimple semigroup in which every element has finite order is completely

semisimple, we deduce

COBOLLAEY 3.2. / / every element of 8 has finite order, then S/N' is completely semisimple.
Again, from Lemma 2.1 and Corollary 2.4 we have

COEOLLABY 3.3. / / S satisfies J(x and JKrs then SjN' is completely semisimple.

From Theorem 3.1 we see that if N' is non-empty it may be described as the unique
smallest ideal of S whose quotient semigroup is semisimple. In passing, we note that similar
radicals can be defined by replacing the property of semisimplicity in the definition of JV' by
regularity or complete semisimplicity. The appropriately modified form of Theorem 3.1 will
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hold, in fact, if we take for our definition any property of S which is an intrinsic property of
the f-classes—that is, which holds for S if and only if it holds for each principal factor.

We now go on to discuss a second type of radical in S. Let M be any ideal of S. Then
if A is a subset of S such that AnQ M for some positive integer n, A is said to be ilf-potent.
In particular, if S has a zero 0 and if M = (0), then we say that A is nilpotent. We define
NM to be the union of all the two-sided if-potent ideals of S, and call it the M-radical of S ;
it follows as in [4], Lemma 5.2, that N^ contains all the M-potent left and right ideals of S.
In general, NM is not itself M-potent; however, a sufficient condition for this to be the case
is that S satisfies the maximum condition on two-sided ideals.

The M-radical and the upper radical are related by the inclusion N^QN'^M. For
suppose that A is any M -potent ideal of S. Then (A ̂ N' ^>M)j(N' wjf) is a nilpotent ideal of
SjiN'^M). Now by Lemma 2.1 every non-zero f-class of S/(N'^M) is an f-class of S in
S - (N'^M) and is thus an f-class of S/N'. But by Theorem 3.1, S/N' is semisimple ; hence

is semisimple, and so has no nilpotent ideal other than the zero ideal. Thus
, and so NM£N'^>M.

In particular, if S has a kernel K, then K^N' and so Ng^N'. It is an easy matter to
construct semigroups in which NE^N'. The JT-radical (previously called the lower radical
of S by the author ([7], § 2)) has been discussed by Schwarz [10] and by Clifford [4].

Following Clifford, we shall say that a semigroup S with zero 0 has " no nilpotent ideals "
if it has no nilpotent left, right or two-sided ideals apart from (0). If M is an ideal of a semi-
group S, and if NM is if-potent, then S/NM has no nilpotent ideals ([4], Theorem 5.1, with
M replacing K).

THEOBEM 3.4. Let S be a semigroup with zero and without nilpotent ideals. Then if S
satisfies any one of the conditions ~MX, ^Kr, ~4Kt, any non-zero ideal of S contains a non-zero
simple ideal of S.

Proof. Let M be an ideal of S other than the zero ideal. First suppose that S satisfies
J(t. From the set of all principal ideals of S generated by non-zero elements of M select a
minimal member. This is a minimal ideal of S, and since it is non-nilpotent, it is simple.

Next suppose that S satisfies ^x. From the set of all principal left ideals of S generated
by non-zero elements of M select a minimal member. This is a minimal left ideal of S, and
so, since S has no nilpotent ideals, it is contained in a minimal two-sided ideal A of S ([4],
Lemma 4.2). Evidently A QM, and since A is non-nilpotent it is simple. A similar argument
holds when <S satisfies JKr.

This result shows that the zero element is, so to speak, ringed with simple f-classes.
We conclude with two corollaries which closely resemble results obtained by Schwarz

and Clifford ([10], Theorem 42 and [4], Corollary 5.3 respectively), but which proceed from
weaker hypotheses.

COROLLABY 3.5. Let Shea semigroup in which every element has finite order. In addition,
let S satisfy the maximal condition on two-sided ideals, and any one of the conditions Jtx, Jlr,
Jit. Let M be any ideal of S. Then S is M-potent if and only if it contains no idempotent
outside M.

Proof. Since S satisfies the maximal condition on two-sided ideals, NM is if-potent.
Now suppose that NM ¥= S; then S/NM has no nilpotent ideals. Hence by the theorem,
S/NM contains a non-zero simple f-class, F say, and this is completely simple since every
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element of the corresponding principal factor has finite order. Thus F contains an idem-
potent, and so S - M contains an idempotent. The converse is trivial.

Similarly, we have

COKOLLARY 3.6. Let S be a semigroup satisfying Jtx, ^ r and the maximal condition on
two-sided ideals. Let M be any ideal of S. Then S is M-potent if and only if it contains no
idempotent outside M.

Again NM is if-potent. If NM <£ S, then SINM contains a non-zero simple f-class F.
As in the proof of Theorem 2.3, the two minimal properties ensure that F is completely
simple, and so it contains an idempotent; thus S — Jf contains an idempotent.

In both cases the semigroup S has a kernel K, say, by Theorem 1.1, and we may take
M=K.
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