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Abstract

We establish a connection between motivic cohomology classes over the Siegel

threefold and non-critical special values of the degree-four L-function of some cuspidal

automorphic representations of GSp(4). Our computation relies on our previous work

[On higher regulators of Siegel threefolds I: the vanishing on the boundary, Asian J.

Math. 19 (2015), 83–120] and on an integral representation of the L-function due to

Piatetski-Shapiro.

1. Introduction

The analytic class number formula of Dedekind and Dirichlet, proved in the middle of the

nineteenth century, is a mysterious relationship between an analytic invariant and an arithmetic

invariant of a number field K. It relates the leading Taylor coefficient at zero of the zeta function

of K to the units O×K of K through the regulator map

O×K // Rr1+r2 ,

where r1 and r2 denote the number of real and complex places of K, respectively. According to

Beilinson’s conjectures on special values of motivic L-functions [Bei85], such relationships should

exist in great generality. To generalize the analytic class number formula, Beilinson replaces units

by motivic cohomology classes and the classical regulator by the higher regulator

H i
M(X,Q(n)) // H i

H(X/R,R(n))

from motivic cohomology to absolute Hodge cohomology. Here X denotes a smooth projective

scheme over Q. For an introduction to Beilinson’s conjectures, to the motivic formalism

underlying them, and for a survey of known results, the interested reader might consult the

article [Nek94]. In this paper, we establish a connection between elements in the motivic

cohomology of the Siegel threefold and special values of the degree-four L-function of some

cuspidal automorphic representations of the symplectic group GSp(4). The author hopes that the

present work may not be useless to discover more general phenomena explaining the connection

between special values of automorphic L-functions and mixed motives.

Like in the previous approaches, the motivic cohomology classes that we work with

are constructed using Beilinson’s Eisenstein symbol and the functorial properties of motivic
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F. Lemma

cohomology. For any non-negative integer n and level K, the Eisenstein symbol [Bei88, § 3] is a
Q-linear map

EisnM : Bn // H1
M(MK , SymnV2(1)) (1)

whose target is the motivic cohomology of the Shimura variety MK of GL(2), or modular curve,
of level K, with coefficients in the nth symmetric power of the motivic sheaf V2 associated to
the standard representation of GL(2). The definition of Bn will be given later, but we would like
to mention that for φf ∈ Bn, the image of EisnM(φf ) under the regulator

rD : H1
M(MK ,SymnV2(1)) // H1

D(MK/R, SymnV2(1))

in Deligne–Beilinson cohomology can be explicitly described by real analytic Eisenstein series.
At present, most of the results relating special values of L-functions to regulators rely on the
Eisenstein symbol (see, for example, [Bei88, Den89, Den90, Kin98, Kat04]).

To explain the construction of the motivic cohomology classes that we shall study, let us
introduce some notation. Let I2 be the identity matrix of size two and let ψ be the symplectic
form whose matrix is

ψ =

(
I2

−I2

)
.

The symplectic group GSp(4) is defined as

GSp(4) = {g ∈ GL4/Q | tgψg = ν(g)ψ, ν(g) ∈ Gm}.
It is a reductive linear algebraic group over Q and contains the group GL(2)×Gm GL(2), where
the fiber product is over the determinant, via the embedding

GL(2)×Gm GL(2)
ι // GSp(4)

defined by

ι

((
a b
c d

)
,

(
a′ b′

c′ d′

))
=

a b
a′ b′

c d
c′ d′

 .

For a fixed level L, the Shimura variety SL associated to GSp(4) is a smooth quasi-projective
threefold defined over Q. Moreover, for any level K, the morphism ι induces a closed embedding

MK ×MK
ι // SL

for some L. The basic idea is to map the external cup-product EispM tEisqM to the motivic
cohomology of SL via this embedding. To be more precise, let p and q be non-negative
integers, and let (Symp V2 � Symq V2)(3) denote the irreducible algebraic representation
(Symp V2 � Symq V2)⊗ det⊗3 of GL(2)×Gm GL(2), where det is the determinant character. Let
W be an irreducible representation of GSp(4) such that, as representations of GL(2)×Gm GL(2),
we have

(Symp V2 � Symq V2)(3) ⊂ ι∗W. (2)

In what follows, we shall take the liberty to denote by the same symbol W the motivic sheaf
on SL corresponding to W (see § 4.1). Taking the external cup-product of EispM and EisqM, we
obtain the map

EispM tEisqM : Bp ⊗Q Bq // H2
M(MK ×MK , (Symp V2 � Symq V2)(2)).
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On higher regulators of Siegel threefolds II

Composing with the map induced by the inclusion (Symp V2�Symq V2)(2) ⊂ ι∗W (−1) and with
the Gysin morphism corresponding to ι, we obtain the map

Eisp,q,WM : Bp ⊗Q Bq // H4
M(SL,W ). (3)

To go further, let us recall the main result of [Lem15], which will be crucial for us. Irreducible
algebraic representations of GSp(4) are classified by their highest weight, i.e. by two integers
k > k′ > 0. Let k and k′ be two such integers. Assume that k + k′ ≡ p + q (mod 2) and let
W be an irreducible algebraic representation of GSp(4) with highest weight λ(k, k′, c), with the
notation of § 2, where c = p + q + 6. Then, condition (2) above is equivalent to the following
inequalities:

(i) we have p 6 k;

(ii) if 0 6 p < k′ and p < k − k′, then k − k′ − p 6 q 6 k − k′ + p;

(iii) if 0 6 p < k′ and k − k′ 6 p, then p− k + k′ 6 q 6 p+ k − k′;
(iv) if k′ 6 p 6 k and k′ < k − p, then k − k′ − p 6 q 6 k + k′ − p;
(v) if k′ 6 p 6 k and k − p 6 k′, then p− k + k′ 6 q 6 k + k′ − p.

Let H3
B,!(SL,W ) be the image of the Betti cohomology with compact support in the

cohomology without support, in the middle degree. By the theory of mixed Hodge modules,
there is a pure real Q-Hodge structure of weight 3 − c = −p − q − 3 on H3

B,!(SL,W ). ‘Real’

means that the vector space H3
B,!(SL,W ) is endowed with an involution whose C-antilinear

complexification stabilizes the Hodge filtration. For H3
B,!(SL,W ), this involution is just the map

induced by complex conjugation on the complex points of S and on W . Let us also denote by
Eisp,q,WH the composite of Eisp,q,WM and of the regulator

rH : H4
M(SL,W ) // H4

H(SL/R,W )

in absolute Hodge cohomology.

Theorem 1.1 [Lem15, Theorem 6.8]. Assume k > k′ > 0, k + k′ 6= p + q, k − p − q − 1 6= 0,
k−k′−p−q−2 6= 0 and k−p−q−2 6= 0. Assume that (k−k′−p−q−2)/2 and (k−k′+p+q)/2
are even and that the cusps in the boundary of the Baily–Borel compactifications of MK ×MK

and of SL are totally real. Then Eisp,q,WH factors through the inclusion

Ext1
MHS+

R
(R(0), H3

B,!(SL,W )R) ⊂ H4
H(SL/R,W )

where MHS+
R denotes the abelian category of mixed real R-Hodge structures and H3

B,!(SL,W )R
denotes H3

B,!(SL,W )⊗Q R.

Let π =
⊗′

v πv be a cuspidal automorphic representation of GSp(4). As GSp(4) is its own
Langlands dual group, we can associate to π the partial Euler product

LV (s, π, r) =
∏
v/∈V

L(s, πv, r)

where V denotes the set of places of Q where π is ramified together with the archimedean place
and where r : GSp(4) −→ GL(4) is the natural inclusion. This L-function is called the spinor,
or degree-four, L-function in the literature. Assume that p = k − 1, q = k′ − 1 and that the
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non-archimedean component of π occurs in the middle degree cohomology of S, with coefficients
in W . This means that the central character of π has infinity type −k − k′ − 4 and that the
archimedean component of π is a discrete series of Harish-Chandra parameter (k + 2, k′ + 1).
Then, the non-archimedean part πf of π is defined over its rationality field, which is a number
field E(πf ) (see [BHR94]) and that will be enlarged if necessary. As a consequence, we can look
at the L-function LV (s, π, r) as an E(πf ) ⊗Q C-valued function. In general, the automorphic
representation π will be stable at infinity (Definition 4.16 and Remark 4.18) and we assume here
that it is the case. Then, the Q-vector space

MB(πf ,W ) = HomQ[G(Af )](ResE(πf )/Q πf , H
3
B,!(S,W ))

underlies a pure real Q-Hodge structure with coefficients in E(πf ), which is of rank four and
weight −k − k′ − 1. Let Af be the finite adeles of Q and let

Ext1
MHS+

R
(R(0), H3

B,!(S,W )R) = lim−→
L

Ext1
MHS+

R
(R(0), H3

B,!(SL,W )R)

where the limit is taken over all levels L ⊂ GSp(4)(Af ), which is a R[GSp(4)(Af )]-module. The

sub-Q[GSp(4)(Af )]-module generated by the images of the Eisp,q,WH for varying levels will be
denoted by K(p, q,W ). As π is assumed to be stable, the πf -isotypical component Ext1

MHS+
R

(R(0),

MB(πf ,W )R) of Ext1
MHS+

R
(R(0), H3

B,!(S,W )R) is a rank-one E(πf )⊗Q R-module and is endowed

with its Deligne E(πf )-structure D(πf ,W ). Let K(πf ,W ) denote the projection of K(p, q,W ) on
Ext1

MHS+
R

(R(0),MB(πf ,W )R). To state our main result, we need to consider the Deligne period

c−(πf ,W ) associated to πf andW and Harris’ occult period invariant a(π, ν1, ν2), first introduced
in [Har04]. Roughly speaking, the invariant a(π, ν1, ν2) measures the difference between the
rational structure on πf coming from de Rham cohomology and that coming from the Fourier
expansion of cusp forms along the Siegel parabolic. A precise definition will be given in the
body of the paper but note that the notation a(π, ν1, ν2) is slightly abusive as the occult period
invariant cannot be defined merely by reference to the abstract representation π but depends on
its realization in cohomology. The following theorem is our main result.

Theorem 1.2. Let π be as above and let π̌ be the contragredient representation. Let ν0
1 ,

respectively ν0
2 , be a finite order Hecke character of sign(−1)k−1, respectively of sign(−1)k

′−1,
and let ν1 = | |1−k′ν0

1 , respectively ν2 = | |1−kν0
2 . Let V be the finite set of places where π, ν1 or

ν2 is ramified together with the archimedean place. Assume that:

(a) we have k > k′ > 0;

(b) we have k + 1 ≡ k′ ≡ 0 (mod 2);

(c) we have k 6= 3, k′ 6= 2;

(d) the automorphic representation π is stable at infinity.

Then

K(πf ,W ) = π−2a(π, ν1, ν2)c−(πf ,W )LV (k + k′ − 1/2, π̌)D(πf ,W ).

Three remarks are in order.
(i) The author announced a similar result some time ago [Lem08, Theorem 4], but the proof

he thought he had found contained an error. The present work shows that a slight variant of
[Lem08, Theorem 4] is true and goes significantly further (see Corollary 1.3 below).
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(ii) The hypothesis k+1 ≡ k′ ≡ 0 (mod 2) implies that we can apply Theorem 1.1 to p = k−1

and q = k′− 1. This limitation on p and q can be called technical and we would be able to get a

similar result for arbitrary p and q satisfying the assumption of Theorem 1.1 at the cost of very

long (but elementary) calculations. See Remark 4.31 for more details.

(iii) The term π−2a(π, ν1, ν2)c−(πf ,W ) is expected to be an algebraic number according to

Beilinson’s conjecture. This expectation is coherent with the main result of the paper [Har04],

where the transcendental part of critical values of the spinor L-function are computed in terms

of a(π, ν1, ν2). By looking closely at the arguments of [Har04], it is not too difficult to see that

the transcendental part of the uncomputed constants appearing in the main result of [Har04] are

powers of π. As a consequence, according to the Deligne conjecture on critical values [Del79],

as stated for example in [Har04, 2.6], we should have a(π, ν1, ν2)c−(πf ,W ) ∈ πZQ×. The

explicit computation of these constants and of the archimedean integrals in [Har04] should give

a(π, ν1, ν2)c−(πf ,W ) ∈ π2Q×. For more details on the compatibility between the main result of

[Har04] and Deligne conjecture see [Har04, Remarks following Theorem 3.5.5].

Corollary 1.3. Let n > 0 be an integer. Let A −→ S be the universal abelian surface of infinite

level over the Siegel threefold and let An be the nth-fold fiber product over S. If n is odd and

n > 7, then the motivic cohomology space Hn+4
M (An,Q(n+ 2)) is non-zero.

The proof of Theorem 1.2 relies on three main ingredients. The first is Theorem 1.1. The

second is the analytic description of the composite Eisp,q,WD = rD ◦ Eisp,q,WM where

rD : H4
M(S,W ) // H4

D(S/R,W )

is the regulator in real Deligne–Beilinson cohomology. This follows from Beilinson’s explicit

description of the image of the Eisenstein symbol in Deligne–Beilinson cohomology, the

functoriality of the regulator and the explicit description of the cup-product and the Gysin

morphism in Deligne–Beilinson cohomology. The third ingredient is an integral representation

of the spinor L-function whose study was initiated in [Pia97] and carried on in [BFF97, Mor11,

Tak00]. The contribution of the present work is to explain why these three ingredients, which

might seem of quite different natures, are in fact closely related.

Let us give an overview of the different sections of the article. In § 2 we collect conventions and

notation that will be important in the following. We would like to draw the reader’s attention to

§ 2.4 where the normalizations of the measures on adelic groups are explained and to § 2.5 where

the convention on the weight of variation of Hodge structures is adopted, as this last point differs

from one author to the other. Section 3 recalls the connection between discrete series L-packets for

GSp(4) and the Hodge decomposition of H3
! . In § 4, we provide the basis for the computation of

the regulator. First, the explicit description of the map Eisp,q,WD is given (Proposition 4.10). Then,

we adapt to our setting an idea of Beilinson which permits the reduction of the computation

of the regulator to the computation of a Poincaré duality pairing (Lemma 4.21). Finally, in

a series of lemmas, the computation of the pairing, hence of the regulator, is reduced to the

computation of an adelic integral, where the integrand is the product of a cusp form by an

Eisenstein series (Corollary 4.29). Section 5 is devoted to the computation of this integral. First,

we need to compare very precisely the Eisenstein series appearing in our integral with that

defined by Piatetski-Shapiro in [Pia97]. This is done in Proposition 5.3. Then, we have to study

an integral as defined by Piatetski-Shapiro. The constructions of [Pia97] are based on the Fourier
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expansion of cusp forms along the Siegel parabolic and more precisely, on the existence of Bessel
models for automorphic representations of GSp(4). The integrals of [Pia97] expand into Euler
products, whose factors need to be computed. In the case we are interested in, the unramified
non-archimedean local integrals are computed in Proposition 5.9. The ramified non-archimedean
integrals and the archimedean integral are analyzed in Propositions 5.11 and 5.12, respectively.
In § 6, we introduce Deligne periods, Harris’ occult period invariant and perform a period
computation which explains the contribution of D(πf ,W ) to Theorem 1.2. In § 7, we explain
how to deduce the existence of split Bessel models from results of Moriyama [Mor04] and
Takloo-Bighash [Tak00]. We finally prove Theorem 1.2 and Corollary 1.3 as an easy consequence
of the previous results.

2. Notation and conventions

In this section, we collect some notation, conventions and basic results that will be used in the
rest of the article. The reader might prefer to look at this section only according to their needs,
following the references given in the paper.

2.1 Given a ring A, an A-algebra A −→ B and an A-module M , we will denote by MB the
B-module B ⊗AM when the base ring A is clear from the context. Similarly for any A-scheme
X, we will denote by XB the B-scheme obtained by extension of scalars to B.

2.2 Let Af = Q ⊗Z Ẑ, respectively A = R × Af , denote the topological rings of finite adeles,
respectively of adeles, of Q. The field R is endowed with its usual absolute value. For every prime
number p, we normalize the non-archimedean absolute value on Qp by |p| = p−1 as usual. Hence,
the map A× −→ C× defined by (xv)v 7−→

∏
v |xv| induces a continuous character | | : Q×\A× −→

C×. Every continuous character ν =
⊗′

v νv : Q×\A× −→ C× can be written uniquely ν = | |sν0 for
some complex number s and some finite-order character ν0 (see [Bum97, Proposition 3.1.2(ii)]).
The infinity type of ν is by definition the complex number s and the sign of ν, is by definition
ν∞(−1).

2.3 Let I2 be the identity matrix of size two and let

ψ =

(
I2

−I2

)
.

The symplectic group G = GSp(4) is the reductive linear algebraic group over Q defined as

G = {g ∈ GL4/Q | tgψg = ν(g)ψ, ν(g) ∈ Gm}.

Then ν : G −→ Gm is a character and the derived group of G is Sp(4) = Ker ν. We denote by
T ⊂ G the diagonal maximal torus defined as

T = {diag(α1, α2, α
−1
1 ν, α−1

2 ν) | α1, α2, ν ∈ Gm}

and by B = TU the standard Borel subgroup of upper triangular matrices in G. We identify the
group X∗(T ) of algebraic characters (we will also, as usual, say ‘weights’) of T to the subgroup
of Z2 ⊕ Z of triples (k, k′, c) such that k + k′ ≡ c (mod 2) via

λ(k, k′, c) : diag(α1, α2, α
−1
1 ν, α−1

2 ν) 7−→ αk1α
k′
2 ν

(c−k−k′)/2.

894

https://doi.org/10.1112/S0010437X16008320 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008320


On higher regulators of Siegel threefolds II

Let ρ1 = λ(1,−1, 0) be the short simple root and ρ2 = λ(0, 2, 0) be the long simple root. Then
the set R ⊂ X∗(T ) of roots of T in G is

R = {±ρ1,±ρ2,±(ρ1 + ρ2),±(2ρ1 + ρ2)}

and the subset R+ ⊂ R of positive roots with respect to B is

R+ = {ρ1, ρ2, ρ1 + ρ2, 2ρ1 + ρ2}.

Then, the set of dominant weights is the set of λ(k, k′, c) such that k > k′ > 0. For any dominant
weight λ, there is an irreducible algebraic representation Vλ of G of highest weight λ, unique
up to isomorphism, and all isomorphism classes of irreducible algebraic representations of G are
obtained in this way. If Vλ is irreducible with highest weight λ(k, k′, c), the contragredient of Vλ
has highest weight λ(k, k′,−c).

The Weyl group W of (G,T ) is defined as the normalizer of T in G modulo its centralizer.
It is a group of order eight such that the images in W of the elements

s1 =

 1
1

1
1

 , s2 =

1
1

1
−1


generate W . Then W acts on X∗(T ) according to the rule

(w.λ)(t) = λ(w−1tw)

and we have s1.λ(k, k′, c) = λ(k′, k, c) and s2.λ(k, k′, c) = λ(k,−k′, c) which means that s1

corresponds to the reflection associated to the short simple root ρ1 and s2 to that associated to
the long simple root ρ2.

We shall also denote by G′ the reductive linear algebraic group GL2×GmGL2 over Q, where
the fiber product is over the determinant. As mentioned in the introduction, we have the
embedding ι : G′ −→ G defined by

ι

((
a b
c d

)
,

(
a′ b′

c′ d′

))
=

a b
a′ b′

c d
c′ d′

 .

The subgroup of upper triangular matrices in G′ is denoted by B′.

2.4 Let us explain our normalizations of the Haar measures on adeles groups, in the case
of G(A). A similar discussion can be done for G′(A). Consider the unitary group U(2) = {g ∈
GL(2,C) | tgg = I2} where g denotes the complex conjugate of g. The map κ : U(2) −→ Sp(4,R)
defined by

g = A+ iB 7−→
(
A B
−B A

)
,

where A and B denote the real and imaginary parts of g, identifies U(2) with a maximal compact
subgroup K of Sp(4,R). Let AG = R×+ be the identity component of the center of G, write
KG for the subgroup AGK of G(R), which is maximal compact modulo the center, and let
ξ : AG −→ C× be a continuous character. Denote again by ξ : G(A) −→ C× the extension of ξ to
G(A) given by ξ((gv)v) = |ν(g∞)|1/2. The choice of a generator 1G of the highest exterior power
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of LieGR/Lie(AGK) determines a left translation invariant measure on G(R)/(AGK). Together
with the Haar measure on K whose total mass is one, this datum determines a left translation
invariant measure dg∞ on G(R)/AG. For every prime number p, we endow G(Qp) with the Haar
measure dgp for which G(Zp) has volume one. Then, we have the translation invariant measure
dg =

∏
v6∞ dgv on G(A). To introduce automorphic representations, let L2(G(Q)\G(A), ξ) be

the space of functions f : G(Q)\G(A) −→ C such that:

(i) for all z ∈ AG, for all g ∈ G(A), f(zg) = ξ(z)f(g);

(ii) the function ξ−1f is square-integrable on AGG(Q)\G(A).

The subspace 0L2(G(Q)\G(A), ξ) of admissible cuspidal functions is a discrete sum with
finite multiplicities of closed irreducible ((g,KG) × G(Af ))-invariant subspaces, which are
cuspidal automorphic representations of G by definition. Here, we denote by g the Lie algebra
of G(R). Let C∞(G(Q)\G(A), ξ), respectively C∞c (G(Q)\G(A), ξ), be the space of functions
f : G(Q)\G(A) −→ C such that:

(i) for all z ∈ AG, for all g ∈ G(A), f(zg) = ξ(z)f(g);

(ii) the restriction of f to G(R) is C∞, respectively C∞ and compactly supported modulo AG;

(iii) the restriction of f to G(Af ) is locally constant and compactly supported.

Let C∞(2)(G(Q)\G(A), ξ) denote the space L2(G(Q)\G(A), ξ) ∩ C∞(G(Q)\G(A), ξ). We have

natural inclusions of ((g,KG)×G(Af ))-modules

C∞c (G(Q)\G(A), ξ) ⊂ C∞(2)(G(Q)\G(A), ξ) ⊂ C∞(G(Q)\G(A), ξ). (4)

Finally, let C∞cusp(G(Q)\G(A), ξ) denote 0L2(G(Q)\G(A), ξ) ∩ C∞(G(Q)\G(A), ξ). Smooth
truncation to a large compact modulo the center subset induces a map

C∞cusp(G(Q)\G(A), ξ) −→ C∞c (G(Q)\G(A), ξ). (5)

2.5 Let S = ResC/RGm,C be the Deligne torus. Following Deligne and Pink, our convention
for the equivalence of categories between algebraic representations of S in finite-dimensional
R-vector spaces and (semisimple) mixed R-Hodge structures is as follows. Let (ρ, V ) be such
a representation of S. Then the summand V p,q of VC of type (p, q) is the summand on which
ρ(z1, z2) acts by multiplication by z−p1 z−q2 for any (z1, z2) ∈ S(C). In particular, any algebraic
representation V of S with central character c corresponds to a pure Hodge structure of weight
−c. This convention disagrees with that adopted in [Har04, Tay93] and [Wei05] but agrees with
that adopted in [Kin98, Lem08] and [Pin90].

3. Motives for GSp(4)

In this section, we are mainly interested in reviewing the connection between the Hodge
decomposition of the middle degree cohomology of Siegel threefolds and the discrete series
L-packets for G. Let us start by recalling the classification of discrete series for G.

3.1 Discrete series L-packets
In this section and in several other places of the present article, the reader will have to be familiar
with the representation theory of compact Lie groups as exposed, for example, in [Kna86, ch. IV].

In § 2.4, we identified the unitary group U(2) to a maximal compact subgroup K of
Sp(4,R) via the isomorphism κ : U(2) ' K. Let k denote the Lie algebra of K and by kC
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its complexification. The differential of κ induces an isomorphism of Lie algebras dκ : gl2,C ' kC.
Let sp4 denote the Lie algebra of Sp(4,R) and by sp4,C its complexification. A compact Cartan
subalgebra of sp4 is defined as h = RT1 ⊕ RT2 where

T1 = dκ

((
i
))

=

 1

−1

 ,

T2 = dκ

((
i

))
=

 1

−1

 .

Define a C-basis of h∗C by e1(T1) = i, e1(T2) = 0, e2(T1) = 0, e2(T2) = i. The root system ∆ of the
pair (sp4,C, hC) is ∆ = {±2e1,±2e2,±(e1 ± e2)}. We denote by ∆c, respectively ∆nc, the set of
compact, respectively non-compact, roots in ∆. We have ∆c = {±(e1− e2)} and ∆nc = ∆−∆c.
We choose the set of positive roots as ∆+ = {e1− e2, 2e1, e1 + e2, 2e2}. Then, the set of compact,
respectively non-compact, positive roots is ∆+

c = ∆c ∩ ∆+, respectively ∆+
nc = ∆nc ∩ ∆+. For

each symmetric matrix Z ∈ gl2,C, define the element p±(Z) of sp4,C by

p±(Z) =

(
Z ±iZ
±iZ −Z

)
.

Let X(α1,α2) ∈ sp4,C be defined as

X±(2,0) = p±

((
1
))

, X±(1,1) = p±

((
1

1

))
, X±(0,2) = p±

((
1

))
.

It follows from an easy computation that X(α1,α2) is a root vector corresponding to the non-
compact root (α1, α2) = α1e1 + α2e2. If we set

p± =
⊕
α∈∆+

nc

CX±α, (6)

we have the Cartan decomposition sp4,C = kC ⊕ p+ ⊕ p−.
Integral weights are defined as (k, k′) = ke1+k′e2 ∈ h∗C with k, k′ ∈ Z and an integral weight is

dominant for ∆+
c if k > k′. Assigning its highest weight to a finite-dimensional irreducible complex

representation τ of K, we define a bijection between isomorphism classes of finite-dimensional
irreducible complex representations of K and dominant integral weights, whose inverse will be
denoted by (k, k′) 7−→ τ(k,k′). Let (k, k′) be a dominant integral weight and let d = k − k′. Then
dimC τ(k,k′) = d+ 1. More precisely, there exists a basis (vs)06s6d of τ(k,k′), such that

τ(k,k′)

(
dκ

(
1
))

vs = (s+ k′)vs,

τ(k,k′)

(
dκ

(
1

))
vs = (−s+ k)vs,

τ(k,k′)

(
dκ

(
1
))

vs = (s+ 1)vs+1,

τ(k,k′)

(
dκ

(
1

))
vs = (d− s+ 1)vs−1
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which we call a standard basis of τ(k,k′). In the identities above, we agree to use the convention
v−1 = vd+1 = 0. We will denote by WK the Weyl group of (kC, hC). According to the classification
theorem [Kna86, Theorem 9.20], we have the following result.

Proposition 3.1. Let G(R)+ be the identity component of G(R), let ξ be a character of AG and
let (k, k′) ∈ h∗C be an integral weight. Assume k > k′ > 0. Then, there exist four isomorphism
classes πH∞, πW∞ , πW∞ , πH∞ of irreducible discrete series representations of G(R)+ with Harish-
Chandra parameter (k+ 2, k′+ 1) and central character ξ. Furthermore, the restrictions of these
representations to K contain as minimal K-types the representations τ(k+3,k′+3), τ(k+3,−k′−1),
τ(k′+1,−k−3) and τ(−k′−3,−k−3), respectively.

Remark 3.2. For the cohomological considerations that follow, we need to be more precise and
explain the specific representatives of the isomorphism classes of discrete series that we choose.
Let N be the element of G(R) defined as

N =

 −1
−1

1
1

 .

We shall see that N is related to the action of complex conjugation on the set of complex points
of Siegel threefolds (Proposition 3.13). For the adjoint action Ad : G(R) −→ GL(h), we have

AdN (T1) = −T2,

AdN (T2) = −T1.

Furthermore, as ν(N) = −1, the matrix N normalizes G(R)+. It follows from the identities above
and from [Kna86, Theorem 9.20] that the representation of G(R)+ obtained by conjugating πH∞,
respectively πW∞ , by N is isomorphic to πH∞, respectively πW∞ . If we fix such isomorphisms, given
a vector Ψ∞ belonging to the space underlying πW∞ , of weight (u, v), we will denote by Ψ∞ the
same vector regarded as a vector of the space underlying πW∞ . It has weight (−v,−u).

For the arithmetic applications we aim at, we will need the following result.

Proposition 3.3 [BHR94, Theorem 3.2.2]. Let π = π∞ ⊗ πf be a cuspidal automorphic
representation of G such that π∞|G(R)+ is a discrete series. Then πf is defined over its rationality
field, which is a number field E(πf ).

3.2 Cohomology of Siegel threefolds
Siegel threefolds are the Shimura varieties associated to the group G. Let us briefly recall their
definition. Let S = ResC/RGm,C be the Deligne torus and let H be the G(R)-conjugacy class of
the morphism h : S −→ GR given on R-points by

x+ iy 7−→

 x y
x y

−y x
−y x

 .
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The pair (G,H) is a pure Shimura datum in the sense of [Pin90, 2.1]. The cocharacter µ of GC
associated to the morphism h as in [Pin90, 1.3] induces

z 7−→

z z
1

1


on complex points, hence it is defined over Q. In other terms, the reflex field of (G,H) is Q. For
any neat compact open subgroup L of G(Af ), we denote by SL the Siegel threefold of level L.
This is a smooth quasi-projective Q-scheme such that, as complex analytic varieties, we have

San
L,C = G(Q)\(H×G(Af )/L),

where San
L,C denotes the analytification of the base change of SL to C. For g ∈ G(Af ) and L, L′

two neat compact open subgroups of G(Af ) such that g−1L′g ⊂ L, right multiplication by g on
San
L,C descends to a morphism [g] : SL′ −→ SL of Q-schemes, which is finite étale. This implies

that there is an action of G(Af ) on the projective system (SL)L indexed by neat compact open
subgroups of G(Af ). In what follows, all compact open subgroups of G(Af ) will be assumed to
be neat and we will not mention it again. Because the SL are Shimura varieties associated to
(G,H), for any algebraic representation E of G in a finite-dimensional Q-vector space, we have
a polarizable variation of Q-Hodge structure, abusively denoted again by E, on SL. We take the
liberty not to mention the level L in the notation because these variation of Hodge structures are
compatible under the pull-back maps induced by the above morphisms [g]. We will also denote
by E the local system underlying the variation of Hodge structure E. This should not lead to
confusion.

Let E an irreducible algebraic representation of G in a finite-dimensional C-vector space, let
ξ be the inverse of its central character and let L be a compact open subgroup of G(Af ). Let
A∗c(SL, E) be the de Rham complex of C∞ differential forms with compact support on San

L,C with
values in the local system E, let A∗(2)(SL, E) be the complex of square integrable differential

forms and let A∗(SL, E) be the complex of usual differential forms. If ◦ is the symbol c, (2) or
the empty symbol define

A∗◦(S,E) = lim−→
L

A∗◦(SL, E).

When ◦ is c or (2), this definition is legitimate because the transition morphisms [g] are finite
étale. Moreover, these complexes carry an action of G(Af ) induced by the action on (SL)L
described above. In § 2.4, we introduced the Lie algebra g of G(R) and the subgroup KG = AGK
of G(R), which is maximal compact modulo the center. For any (gC,KG)-module V , let C∗(gC,
KG, V ) be the (gC,KG)-complex of V as defined in [BW80, I]. According to [BW80, VII § 2], we
have G(Af )-equivariant isomorphisms of complexes

A∗c(S,E) ' C∗(gC,KG, E ⊗C C∞c (G(Q)\G(A), ξ)),

A∗(S,E) ' C∗(gC,KG, E ⊗C C∞(G(Q)\G(A), ξ))

which are compatible with the inclusions A∗c(S,E) ⊂ A∗(S,E) and

C∗(gC,KG, E ⊗C C∞c (G(Q)\G(A), ξ)) ⊂ C∗(gC,KG, E ⊗C C∞(G(Q)\G(A), ξ)).

Taking cohomology, we obtain G(Af )-equivariant isomorphisms

H∗dR,c(S,E) ' H∗(gC,KG, E ⊗C C∞c (G(Q)\G(A), ξ)),

H∗dR(S,E) ' H∗(gC,KG, E ⊗C C∞(G(Q)\G(A), ξ))
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which are compatible with the maps from cohomology with compact support to cohomology
without support. Let H∗(2)(S,E) denote the L2 cohomology of S with coefficients in E, i.e. the

cohomology of the complex A∗(2)(S,E). According to [Bor83], we have a G(Af )-equivariant
isomorphism

H∗(2)(S,E) = H∗(gC,KG, E ⊗C C∞(2)(G(Q)\G(A), ξ)).

Applying the (gC,KG)-cohomology functor to the maps appearing in (4) and (5) of § 2.3, we
obtain the maps

H∗cusp(S,E) → H∗dR,c(S,E) → H∗(2)(S,E) → H∗dR(S,E) (7)

where H∗cusp(S,E) denotes H∗(gC,KG, E ⊗C C∞cusp(G(Q)\G(A), ξ)). Let

H∗dR,!(S,E) = Im(H∗dR,c(S,E) −→ H∗dR(S,E)).

Proposition 3.4 [MT02, Proposition 1]. The maps (7) induce G(Af )-equivariant isomorphisms

H∗cusp(S,E) = H∗(2)(S,E) = H∗dR,!(S,E) = H3
dR,!(S,E).

The ((gC,KG)×G(Af ))-module C∞cusp(G(Q)\G(A), ξ) decomposes into a direct sum

C∞cusp(G(Q)\G(A), ξ) =
⊕
π

m(π)π

indexed by irreducible cuspidal automorphic representations of G, with finite multiplicities. This
induces a decomposition

H3
dR,!(S,E) =

⊕
π=π∞⊗πf

m(π)H3(gC,KG, E ⊗C π∞)⊗ πf

into irreducible C[G(Af )]-modules.

Definition 3.5. Let E be an irreducible algebraic representation of G. The discrete series L-
packet P (E) associated to E is the set of isomorphism classes of discrete series of G(R)+ whose
Harish-Chandra parameter and central character are opposed to those of E.

Lemma 3.6. Assume that E has highest weight λ(k, k′, c). Then,

P (E) = {πH∞, πW∞ , πW∞ , πH∞}

and the restrictions of πH∞, π
W
∞ , π

W
∞ and πH∞ to K contain as minimal K types the representations

τ(k+3,k′+3), τ(k+3,−k′−1), τ(k′+1,−k−3) and τ(−k′−3,−k−3), respectively.

Proof. If E is irreducible, with highest weight λ(k, k′, c), then it has infinitesimal character
(k + 2, k′ + 1). So, the statement is a direct consequence of Proposition 3.1. 2

The main result of [VZ84] implies that the π contributing to the above sum, i.e. those for
which H3(gC,KG, π∞ ⊗C E) is non-zero, are those such that π∞|G(R)+ ∈ P (E) (see the proof
of [MT02, Proposition 1] for more details). As a consequence, we have

H3
dR,!(S,E) =

⊕
π=π∞⊗πf |π∞∈P (E)

H3
dR,!(S,E)(πf )⊗ πf (8)
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where the sum is indexed by irreducible cuspidal automorphic representations of G whose
archimedean component belongs to P (E) and where

H3
dR,!(S,E)(πf ) =

⊕
π∞∈P (E)

m(π∞ ⊗ πf )H3(gC,KG, E ⊗C π∞). (9)

According to [BW80, II. § 3, Proposition 3.1], for any π∞ ∈ P (E), the (gC,KG)-complex of
π∞ ⊗C E has zero differential. Hence, we have

H3(gC,KG, E ⊗C π∞) = HomKG

( 3∧
sp4,C/kC, E ⊗C π∞

)
.

In this last equality, we are using the fact that the inclusion sp4,C ⊂ gC induces an isomorphism
sp4,C/kC ' gC/(LieKG)C. By the Cartan decomposition sp4,C = kC ⊕ p+ ⊕ p−, where p± are

defined by (6), we have
∧3 sp4,C/kC =

⊕
p+q=3

∧p p+ ⊗C
∧q p−. As the weights for the adjoint

representation of hC on
∧p p+⊗C

∧q p− are the sums of p distinct weights of p+ and of q distinct
weights of p−, the reader will easily deduce the following decompositions

3∧
p+ = τ(3,3),

2∧
p+ ⊗C p− = τ(3,−1) ⊕ τ(2,0) ⊕ τ(1,1),

p+ ⊗C

2∧
p− = τ(1,−3) ⊕ τ(0,−2) ⊕ τ(−1,−1),

3∧
p− = τ(−3,−3)

into irreducible C[K]-modules from the basic facts on irreducible representations of K reviewed
in § 3.1. If E has highest weight λ(k, k′, c), its infinitesimal character is (k + 2, k′ + 1).

Proposition 3.7. The C-vector spaces

H3(gC,KG, π
H
∞ ⊗C E) = HomKG

( 3∧
sp4,C/kC, E ⊗C π

H
∞

)
,

H3(gC,KG, π
W
∞ ⊗C E) = HomKG

( 3∧
sp4,C/kC, E ⊗C π

W
∞

)
,

H3(gC,KG, π
W
∞ ⊗C E) = HomKG

( 3∧
sp4,C/kC, E ⊗C π

W
∞

)
,

H3(gC,KG, π
H
∞ ⊗C E) = HomKG

( 3∧
sp4,C/kC, E ⊗C π

H
∞

)
have dimension one.

Proof. This is a particular case of [BW80, II. Proposition 3.1 and Theorem 5.3]. 2

From now on, let us assume that the irreducible algebraic representation E takes values in
a finite-dimensional Q-vector space. In particular, the results explained above can be applied
to the complexification EC of E. For any cuspidal automorphic representation π = π∞ ⊗ πf of
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G such that π∞ ∈ P (E), denote again by πf the model of πf defined over its rationality field,
which is the number field E(πf ) (see Proposition 3.3). Following [Har97, 2.6.2 and 2.6.3], define

MdR(πf , E) = HomQ[G(Af )](ResE(πf )/Q πf , H
3
dR,!(S,E))

and similarly
MB(πf , E) = HomQ[G(Af )](ResE(πf )/Q πf , H

3
B,!(S,E))

where H3
B,!(S,E) denotes the Betti cohomology with coefficients in E. These are Q-vector spaces

endowed with a Q-linear action of E(πf ). Extending scalars from Q to C, according to the
identities (8) and (9), we have

MdR(πf , E)C =
⊕

σ:E(πf )→C

⊕
π∞∈P (E)

m(π∞ ⊗ πf )H3(gC,KG, EC ⊗C π∞).

For any πf , the C-vector space⊕
π∞∈P (E)

m(π∞ ⊗ πf )H3(gC,KG, EC ⊗C π∞),

has finite dimension

m(πH∞ ⊗ πf ) +m(πW∞ ⊗ πf ) +m(πW∞ ⊗ πf ) +m(πH∞ ⊗ πf )

according to Proposition 3.7. As a consequence, the dimension of MdR(πf , E) as an E(πf )-vector
space is

m(πH∞ ⊗ πf ) +m(πW∞ ⊗ πf ) +m(πW∞ ⊗ πf ) +m(πH∞ ⊗ πf ).

The same holds for MB(πf , E) because of the comparison isomorphism

I∞ : MB(πf , E)C
∼ //MdR(πf , E)C.

It follows from Saito’s formalism of mixed Hodge modules that for any open compact
subgroup L of G(Af ), the interior cohomology H3

! (SL, E) underlies a Q-Hodge structure. With
the convention adopted here, and explained in § 2.4, this Q-Hodge structure is in fact pure of
weight 3 − c, where x 7−→ xc is the central character of E. Hence, we obtain a pure Q-Hodge
structure on MB(πf , E):

Proposition 3.8. Let t = (c− k − k′)/2. The Hodge decomposition of MB(πf , E) is

MB(πf , E)C = M3−t,−k−k′−t
B ⊕M2−k′−t,1−k−t

B ⊕M1−k−t,2−k′−t
B ⊕M−k−k′−t,3−tB

where

M3−t,−k−k′−t
B =

⊕
σ:E(πf )→C

m(πH∞ ⊗ πf )H3(gC,KG, E ⊗C π
H
∞),

M2−k′−t,1−k−t
B =

⊕
σ:E(πf )→C

m(πW∞ ⊗ πf )H3(gC,KG, E ⊗C π
W
∞ ),

M1−k−t,2−k′−t
B =

⊕
σ:E(πf )→C

m(πW∞ ⊗ πf )H3(gC,KG, E ⊗C π
W
∞),

M−k−k
′−t,3−t

B =
⊕

σ:E(πf )→C

m(πH∞ ⊗ πf )H3(gC,KG, E ⊗C π
H
∞).
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Proof. A reference for the statement on Hodge types is [Har04, (1.4)]. However, let us remark
that [Har04] uses the sign convention opposite to ours (see § 2.4). The result then follows from
the fact that the Hodge decomposition of L2 cohomology given by harmonic forms coincides
with the Hodge decomposition given by the theory of mixed Hodge modules (Proposition 3.4
and [HZ99, Theorem 5.4]). 2

The following definition is taken from [Bei86, § 7].

Definition 3.9. Let A be a subfield of R. A real mixed A-Hodge structure is a mixed A-Hodge
structure whose underlying A-vector space is endowed with an involution F∞ stabilizing the
weight filtration and whose C-antilinear complexification F∞ ⊗ τ , where τ denotes the complex
conjugation, stabilizes the Hodge filtration. We call F∞ ⊗ τ the de Rham involution.

Let MHS+
A denote the abelian category of real mixed A-Hodge structures.

Definition 3.10. Let F be a number field. A real mixed A-Hodge structure with coefficients
in F is a pair (M, s) where M is an object of MHS+

A and s : F −→ EndMHS+
A

(M) is a ring

homomorphism.

Let MHS+
A,F denote the abelian category of real mixed A-Hodge structures with coefficients

in F .

Proposition 3.11. Let F∞ be the involution on MB(πf , E) induced by the complex conjugation
on S(C) and on E. Then (MB(πf , E), F∞) is an object of MHS+

Q,E(πf ).

Proposition 3.12 [Har94, Corollary 2.3.1]. The Hodge filtration F ∗MB(πf , E)C, which is
defined by

F pMB(πf , E)C =
⊕
p′>p

Mp′,q
B ,

is the image of the complexification of a filtration F ∗MdR(πf , E) of MdR(πf , E) under the
comparison isomorphism I−1

∞ .

Proposition 3.13. Let N ∈ G(R) be as in Remark 3.2. Then, the involution F∞ of MB(πf , E)C
is induced by the action of N on C∗(gC,KG, E ⊗C C∞(G(Q)\G(A))) defined by

f ∈ HomK

( ∗∧
gC/kC, E ⊗C C∞(G(Q)\G(A))

)
7−→ (X 7−→ Nf(AdN (X))).

Proof. Note that

N =

 1
1

1
1


−1

−1
1

1

 .

As the cocharacter µ : Gm,C −→ GC associated to the morphism h : S −→ GR defined above
induces

z 7−→

z z
1

1


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on complex points, the matrix N satisfies the assumptions of [MS81, Lemma 3.2]. So the
statement follows from the proof of Langlands conjecture on the action of complex conjugation
on the set of complex points of a Shimura varieties which, in the case of Siegel varieties, is
explained in [MS81, Remark 3.3(c)]. 2

4. Computation of the regulator

Let p, q, k and k′ be integers as in the introduction and let Bp, respectively Bq, be the source of
Beilinson’s Eisenstein symbol (1) of weight p, respectively q. Assume that p, q, k and k′ satisfy
the assumptions of Theorem 1.1. Then, we have the extension class

Eisp,q,WH (φf ⊗ φ′f ) ∈ Ext1
MHS+

R
(R(0), H3

! (S,W )R) ⊂ H4
H(S/R,W )

for any φf ⊗ φ′f ∈ Bp ⊗Q Bq. Let Eisp,q,WD (φf ⊗ φ′f ) denote the image of Eisp,q,WH (φf ⊗ φ′f ) by the
natural map

H4
H(S/R,W ) // H4

D(S/R,W )

from absolute Hodge to Deligne–Beilinson cohomology (see [Bei86, 5.7] and [Jan88, § 2]). Thanks
to the work of Jannsen [Jan88], the Deligne–Beilinson cohomology groups can be explicitly
described by pairs of currents (S, T ) (Proposition 4.8) and this will permit us to give an

explicit description of Eisp,q,WD (φf⊗φ′f ) (Proposition 4.10). In § 4.3, we introduce Deligne rational

structure D on Ext1 and explain how the image K of Eisp,q,WH can be compared with D via the
computation of a Poincaré duality pairing related to K and another related to D (Lemma 4.21).
This idea goes back to Beilinson [Bei88] (see also [Kin98, 6.1]). In § 4.4, the pairing related to
K is shown to be equal to an explicit adelic integral. Before this, let us introduce some relative
motives.

4.1 The relative motives
In this section, we give a definition of motivic cohomology of the Shimura varieties we are
interested in, with coefficients in sheaves such as Symp V2 � Symq V2 or W . This relies on
the work of Ancona [Anc15] and Cisinski and Déglise [CD09], whose ideas were initiated by
Voevodsky et al. [VSF00]. Ideally, motivic cohomology should be defined as a space of extensions
in categories of mixed motivic sheaves, but these categories have not been discovered yet.

For the necessary background on relative motives of abelian schemes and relative Weil
cohomologies, see [Anc15, §§ 2 and 3], respectively. Let A/S be the universal abelian surface
over the Siegel threefold and let Ak+k′ be the (k+ k′)th-fold fiber product over S. Let R(Ak+k′)
denote the relative motive over S associated to Ak+k′ .

Proposition 4.1. Let k, k′ and c be such that k > k′ > 0 and c ≡ k + k′ (mod 2). Let t denote
the integer (k+k′+c)/2. Let W be an irreducible algebraic representation of G of highest weight
λ(k, k′, c). Then, there exists a relative Chow motive over the Siegel threefold which is a direct
factor of R(Ak+k′)(t) and whose Betti realization is the variation of Hodge structure W .

Proof. Let r : G −→ GL(4) be the standard representation of G. It follows from Weyl’s invariants
theory thatW is a direct factor, defined by a certain explicit Schur projector, of the representation
r⊗(k+k′) ⊗ ν⊗t (see [FH91, § 17.3]). Hence, the statement is a direct consequence of [Anc15,
Theorem 1.3]. 2
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Let DMB,c(S) is the triangulated category of constructible Beilinson motives over S with

Q-coefficients as defined in [CD09, Definition 15.1.1]. Then W is an object of DMB,c(S). Let 1S
be the unit object of DMB,c(S). Motivic cohomology with coefficients in W is the Q-vector space

defined by

H∗M(S,W ) = HomDMB,c(S)(1S ,W [∗]).

The compatibility of this definition with the K-theoretical one follows from [CD09,

Corollary 14.2.14]. For integers p > 0 and q > 0, we can define H∗M(M × M, (Symp V2�
Symq V2)(2)) similarly. Here M denotes a modular curve. Moreover, if p, q, k and k′ verify the

conditions stated in the introduction, the relative motive (Symp V2� Symq V2)(2) over M ×M
is naturally a direct factor of ι∗W , as Ancona’s construction is functorial. As a consequence, the

motivic cohomology space H∗M(M ×M, (Symp V2� Symq V2)(2)) is a naturally a direct factor of

H∗M(M ×M, ι∗W (−1)). As the triangulated category of constructible Beilinson motives has the

formalism of Grothendieck six functors, duality [CD09, Theorem 15.2.4] and the absolute purity

isomorphism [Pép15, Proposition 1.7], we have the Gysin morphism

H∗M(M ×M, ι∗W (−1)) // H∗+2
M (S,W ).

In this setting, the definition of the regulator in Deligne–Beilinson cohomology and the

compatibility with the previous one has been explained in [Sch15].

4.2 Explicit description of the cohomology classes

Let us start by reviewing basic facts about Deligne–Beilinson cohomology. In what follows, we

shall consider Deligne–Beilinson cohomology with coefficients in algebraic representations of the

group underlying a given Shimura variety. This means that, like in [Kin98, 2.3], we consider

Deligne–Beilinson cohomology of the corresponding relative motives.

Let Sch(Q) be the category of smooth quasi-projective Q-schemes. Let X be an object

of Sch(Q) and let n be an integer. For a definition of the real Deligne–Beilinson cohomology

H∗D(X/R,R(n)), the reader is referred to [Nek94, 7]. We also have the real absolute Hodge

cohomology H∗H(X/R,R(n)) of X with coefficients in R(n) = (2πi)nR as defined in [HW98a,

Definition A.2.6] and there is a canonical map

Hm
H (X/R,R(n)) // Hm

D (X/R,R(n)). (10)

Let Sm(X/R,R(n)) be the vector space of C∞ differential forms on X(C) on which the map F∞
induced by complex conjugation on X(C) acts by multiplication by (−1)n. Let Smc (X/R,R(n))

be the compactly supported differential forms belonging to Sm(X/R,R(n)). Let us consider a

smooth projective compactification j : X −→ X∗ and let i : Y −→ X∗ be the complementary

reduced closed embedding. Assume that Y is a normal crossing divisor and let Ωm
X〈Y 〉 be the

C-vector space of holomorphic differentials of degree m on X with logarithmic singularities

along Y , endowed with its Hodge filtration (see [Del74, 3.1 and 3.2.2]). For any integer n, let

πn : C −→ R(n) denote the map z 7−→ 1
2(z + (−1)nz).

Proposition 4.2 [Nek94, 7.3]. For any integer m, we have a canonical isomorphism of R-vector

spaces

Hm
D (X/R,R(m)) =

{(φ, ω) ∈ Sm−1(X/R,R(m))× Ωm
X〈Y 〉 | dφ = πm(ω)}

dSm−2(X/R,R(m))
.
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The Eisenstein symbol [Bei88, § 3] is a Q-linear map

EisnM : Bn // Hn+1
M (En,Q(n+ 1))

where we denote by Hn+1
M (En,Q(n + 1)) the inductive limit over compact open subgroups K

of GL2(Af ) of the motivic cohomology Hn+1
M (EnK ,Q(n+ 1)) of the nth-fold fiber product of the

universal elliptic curve EK/MK over the modular curve of level K. The notation Bn stands for
the space of locally constant Q-valued functions φf on GL2(Af ) such that for any b ∈ Af , any
a, d ∈ Q such that ad > 0 and any g ∈ GL2(Af ), we have

φf

((
a b

d

)
g

)
= a−(n+1) dφf (g), (11)

φf

((
−1

1

)
g

)
= φf (g) (12)

and which are invariant by right translation under
(
Ẑ×

1

)
. The source of the Eisenstein symbol is

indentified to a space of Q-valued functions Fn on GL2(Af ) in [Bei88, p. 7]. Note that the map
ψf 7→ (φf : g 7→ φf (g) = ψf (det(g)−1 tg)) defines a GL2(Af )-equivariant isomorphism Fn ' Bn
when GL2(Af ) acts on Fn, respectively Bn, by left, respectively right, translation. By definition
of the motivic sheaf SymnV2(1), the motivic cohomology H1

M(M,SymnV2(1)) is a direct factor of
Hn+1
M (En,Q(n + 1)). Furthermore, the Eisenstein symbol factors through the natural inclusion

H1
M(M,SymnV2(1)) ⊂ Hn+1

M (En,Q(n + 1)) and we denote again by EisnM the induced map
Bn −→ H1

M(M,SymnV2(1)). The following lemma will be very useful later.

Lemma 4.3. Let Bn,Q be the vector space Bn ⊗Q Q with the action of GL2(Af ) by right
translation. For any finite-order Hecke character ν let In(ν) denote the space of locally constant
functions f : GL2(Af ) −→ Q such that for all a, d ∈ Q×+, for all α, δ ∈ Ẑ×, for all b ∈ Af and for
all g ∈ GL2(Af ),

f

((
aα b

dδ

)
g

)
= a−(n+1) dν(δ)f(g)

and which are invariant by
(
Ẑ×

1

)
when In(ν) is endowed with the action of GL2(Af ) by right

translation. Then, there is a GL2(Af )-equivariant decomposition

Bn,Q =
⊕

sgn(ν)=(−1)n

In(ν)

where the sum is indexed by all finite-order Hecke characters ν of sign(−1)n.

Proof. Let T2 denote the diagonal maximal torus of GL2. We are interested in the action of
T2(Af ) on the space Bn,Q by left translation. Because of the decomposition A×f = Q×+Ẑ×, we are

reduced to study the action of T2(Ẑ) thanks to the equality (11). The Iwasawa decomposition
GL2(Af ) = B2(Af )GL2(Ẑ) and the fact that functions in Bn,Q are locally constant implies

that Bn,Q is a union of finite-dimensional Q-vector spaces V which are stable under T2(Ẑ). By

continuity, the action is trivial on an open subgroup of T2(Ẑ) and so V is a sum of finite-order
characters (

α
δ

)
7−→ χ(α)ν(δ).

By
(
Ẑ×

1

)
-invariance, the character χ has to be trivial and by condition (11), the character ν has

to be of sign(−1)n. 2
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Let us recall now the explicit description of the image of the Eisenstein symbol in Deligne–
Beilinson cohomology, via the isomorphism of Proposition 4.2. Here, we follow [Kin98, 6.3] very
closely.

Let us regard the circle U(1) as a maximal compact subgroup of SL2(R) in the usual way. We
will also sometimes consider the maximal torus Z2(R)+U(1), where Z2(R)+ denotes the identity
component of the center of GL2(R). In what follows, we shall implicitly use the isomorphism
between the de Rham complex on modular curves and a (gl2,C, Z2(R)+U(1))-complex which is
analogous to that stated in § 3.2 for Siegel threefolds. If k2 denotes the Lie algebra of U(1), we
have the Cartan decomposition sl2,C = k2,C ⊕ p′+ ⊕ p′− where

p′± =

{(
z ±iz
±iz −z

)
∈ sl2,C | z ∈ C

}
.

Let v± ∈ p′± denote the vector v± = 1
2

(
1 ±i
±i −1

)
∈ p′±. Let (X,Y ) be a basis of the standard

representation V2 of GL(2) such that
(
a b
c d

)
∈ GL2(Q) acts by(

a b
c d

)
X = aX + cY,(

a b
c d

)
Y = bX + dY.

We regard SymnV2,C as the space of homogeneous polynomials of degree n in the variables X

and Y , with coefficients in C. For any integer 0 6 j 6 n, let b
(n)
j ∈ SymnV2,C be the vector

b
(n)
j = (iX − Y )j(iX + Y )n−j . The family (b

(n)
j )06j6n is a basis of SymnV2,C and we will denote

by (a
(n)
j )06j6n the dual basis.

Lemma 4.4. Let n, c be two integers such that n ≡ c (mod 2). Let λ′(n, c) be the character of
the torus Z2(R)+U(1) defined by

λ′(n, c) :

(
x y
−y x

)
7−→ (x+ iy)n(x2 + y2)(c−n)/2.

Then, the vector a
(n)
j has weight λ′(n− 2j,−n).

Proof. This follows from a trivial computation. 2

Let B2 denote the standard Borel of GL2, and by GL2(R)+, respectively B2(R)+, the identity
component of GL2(R), respectively B2(R). Given n, c as above, we denote by λ(n, c) the algebraic
character of the diagonal maximal torus of GL2 defined by

λ(d, c) :

(
α

α−1ν

)
7−→ αnν(c−n)/2.

For any integer r such that r ≡ n (mod 2), the function φnr ∈ ind
GL2(R)+

B2(R)+
λ(n+ 2, n) is defined as

φnr = (z2 − z2)n+1w
(n−r)/2
2 w

(n+r)/2
2

where

z2

(
a b
c d

)
=
ai+ b

ci+ d
, w2

(
a b
c d

)
= ci+ d.
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Consider

Θn =
(2πi)n+1

2(n+ 1)

n∑
j=0

a
(n)
j ⊗ φn2j−n ∈ SymnV ∨2,C ⊗ ind

GL2(R)+

B2(R)+
λ(n+ 2, n).

Given φf ∈ Bn, we can consider the vector valued series of functions

EisnH(φf ) =
∑

γ∈B2(Q)\GL2(Q)

γ∗(Θn ⊗ φf ),

which is absolutely convergent provided n > 1. Because of the limitations given by the hypothesis
of Theorem 1.1, we only need to work with the Eisenstein symbol EisnM for n > 1 in this work.

Lemma 4.5. Let

ω±n ∈ HomU(1)(p
′+ ⊕ p′−,SymnV ∨2,C ⊗ ind

GL2(R)+

B2(R)+
λ(n+ 2, n))

be the differential form defined by

ω+
n (v+) = (2πi)n+1a(n)

n ⊗ φnn+2,

ω+
n (v−) = 0,

ω−n (v+) = 0,

ω−n (v−) = (2πi)n+1a
(n)
0 ⊗ φn−n−2.

Let ω±n be the differential form deduced from ω±n by applying the complex conjugation on

SymnV ∨2,C ⊗ ind
GL2(R)+

B2(R)+
λ(n+ 2, n). Then ω±n = (−1)nω∓n .

Proof. This follows from the identities φ
n
n+2 = (−1)n+1φn−n−2 and a

(n)
j = (−1)na

(n)
j . 2

For any φf ∈ Bn, the infinite series

EisnB(φf ) =
∑

γ∈B2(Q)\GL2(Q)

γ∗(ω+
n ⊗ φf )

is absolutely convergent and defines a vector valued closed holomorphic differential one-form on
M , i.e. an element of

HomU(1)

( 1∧
(p′+ ⊕ p′−),SymnV ∨2,C ⊗ C∞(GL2(Q)\GL2(Af ))

)
,

as explained in [Kin98, 6.3]. Let E −→M denote the universal elliptic curve overM . By definition
of the relative motive associated to the standard representation V2 of GL(2), the cohomology
H1
D(M/R,SymnV2(1)) is a direct factor of Hn+1

D (En/R,R(n+1)), where En denotes the nth-fold
fiber product over M .

Proposition 4.6 [Kin98, (6.3.5)]. Let EisnD : Bn −→ H1
D(M/R,SymnV2(1)) be the composite

of EisnM and of the regulator

H1
M(M,SymnV2(1)) // H1

D(M/R,SymnV2(1)).

If n > 1, then for any φf ∈ Bn, the class of EisnD(φf ) is represented by (EisnH(φf ),EisnB(φf )) via
the isomorphism of Proposition 4.2.
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By functoriality of the natural map between absolute Hodge and Deligne–Beilinson
cohomology, the Deligne-Beilisnon cohomology classes Eisp,q,WD (φf ⊗ φ′f ) we are interested in
are the image under the Gysin morphism associated to the closed embedding

M ×M ι // S

of cup-products of Eisenstein classes EispD(φf ) t EisqD(φ′f ). Hence, to get an explicit description

of the classes Eisp,q,WD (φf ⊗ φ′f ), we need an explicit description of the cup-product and of the
Gysin morphism.

Proposition 4.7. Let X and Y be two objects of Sch(Q). Let pX : X × Y −→ X and pY :
X × Y −→ Y be the canonical projections. Then, via the isomorphism of Proposition 4.2, the
external cup-product

t : Hm
D (X/R,R(m))⊗Hm′

D (X/R,R(m′)) −→ Hm+m′

D (X/R,R(m+m′))

is

(φ, ω) t (φ′, ω′) = (p∗Xφ ∧ p∗Y (πm′ω
′) + (−1)mp∗X(πmω) ∧ p∗Y φ′, p∗Xω ∧ p∗Y ω′)

for any m,m′.

Proof. The external cup-product is by definition xt y = p∗X(x)∪ p∗Y (y), where ∪ denotes the
usual cup-product. Hence, the statement follows from the explicit formulas for the usual cup-
product given in [DS91, 2.5] (see also [EV88, 3.10]). 2

To give an explicit description of the Gysin morphism, we need to introduce currents and
Deligne–Beilinson homology. For X ∈ Sch(Q) and any integer m, let T ◦(X/R,R(m)) be the
complex of R(m)-valued currents on which the map F∞, induced by complex conjugation
on X(C), acts by multiplication by (−1)m. Let us consider as above a smooth projective
compactification j : X −→ X∗ and let i : Y −→ X∗ be the complementary reduced closed
embedding. Assume Y is a normal crossing divisor. Let T ◦log(X/R,C) be the complex of currents
with logarithmic singularities along Y , endowed with the Hodge filtration (F rT ◦log(X/R,C))r.
Details on these notions are given in [Jan88, 1.4].

Proposition 4.8 [Kin98, Lemma 6.3.9]. Let i and j be two integers. The real Deligne–Beilinson
homology HDi (X/R,R(j)) is the R-vector space

HDi (X/R,R(j)) =
{(S, T ) | dS = πj−1T}

{d(S̃, T̃ )}

where

(S, T ) ∈ T −i−1(X/R,R(j − 1))⊕ F jT −ilog (X/R,C)

and

(S̃, T̃ ) ∈ T −i−2(X/R,R(j − 1))⊕ F jT −i−1
log (X/R,C).

As currents are covariant for proper maps, the proposition above gives an explicit description
of the Gysin morphism in Deligne–Beilinson cohomology.
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Proposition 4.9. The following statements hold.

(i) See [Jan88, Theorem 1.15]. Let X be an object of Sch(Q) of pure dimension dX . There is

a canonical isomorphism between Deligne–Beilinson homology and cohomology

HDi (X/R,R(j)) ' H2dX+i
D (X/R,R(dX + j)).

(ii) See [Kin98, Lemma 6.3.10]. Let Y be an object of Sch(Q) of pure dimension dY and let

i : Y −→X be a closed embedding of codimension c = dX−dY . Then, via the isomorphism above

and the explicit description of Deligne–Beilinson homology classes given in Proposition 4.8, the

Gysin morphism

i∗ : Hm
D (Y/R,R(n)) −→ Hm+2c

D (X/R,R(n+ c))

is induced by the map (S, T ) 7−→ (i∗S, i∗T ).

Let us fix an orientation on the complex manifold X(C) and let φ ∈ Si(X/R,R(j)).

Following [Jan88, § 1], let Tφ ∈ T i−2dX (X/R,R(j − dX)) denote the current defined by

ω ∈ Sic(X/R,R(dX − j)) 7−→ Tφ(ω) =
1

(2πi)dX

∫
X(C)

ω ∧ φ. (13)

Proposition 4.10. Let

Eisp,q,WD : Bp ⊗Q Bq // H4
D(S/R,W )

be the composite of the map (3) and of the regulator

H4
M(S,W ) // H4

D(S/R,W )

in Deligne–Beilinson cohomology. For j = 1, 2 let pj : M ×M −→ M denote the jth projection.

Then

Eisp,q,WD (φf ⊗ φ′f ) = (ι∗TP p,qH (φf⊗φ′f ), ι∗TP p,qB (φf⊗φ′f ))

where P p,qH (φf ⊗ φ′f ) is defined by

P p,qH (φf ⊗ φ′f ) = p∗1 EispH(φf ) ∧ p∗2(πq EisqB(φ′f )) + (−1)pp∗1(πp EispB(φf )) ∧ p∗2 EisqH(φ′f )

and P p,qB (φf ⊗ φ′f ) is defined by

P p,qB (φf ⊗ φ′f ) = p∗1 EispB(φf ) ∧ p∗2 EisqB(φf ).

Proof. The statement is a direct consequence of Propositions 4.6, 4.7 and 4.9. 2

4.3 The use of Poincaré duality

This section explains how the Poincaré duality pairing can be used to compute the regulator.

This idea is due to Beilinson [Bei88] (see also [Kin98, 6.1]). Let us start with a general result.

Lemma 4.11. Let E be a number field and let M be an object of MHS+
R,E (Definition 3.10) which

is pure weight w < 0. Let MdR be the sub-E ⊗Q R-module of MC where the de Rham involution
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acts trivially and let M− be the submodule of M where F∞ acts by multiplication by −1. Let
M−(−1) = 1/(2πi)M−. Then, there is an exact sequence of E ⊗Q R-modules

0 −→ F 0MdR −→ M−(−1) −→ Ext1
MHS+

R
(R(0),M) −→ 0

where the second map is the composite of the natural inclusions

F 0MdR −→ MdR −→ MC

and of the projections
MC −→ M(−1) −→ M−(−1)

defined by v 7−→ 1
2(v − v) and v 7−→ 1

2(v − F∞(v)), respectively.

Proof. Immediate consequence of [Nek94, (2.1) and (2.5)]. 2

Corollary 4.12. Let W be an irreducible algebraic representation of G of highest weight
λ(k, k′, c), with w = 3 − c < 0. Let πf be the non-archimedean part of an irreducible cuspidal
automorphic representation π of G whose archimedean component π∞ belongs to the discrete
series L-packet P (W ). Then, there is an exact sequence

0 −→ F 0MdR(πf ,W )R −→ MB(πf ,W )−R (−1) −→ Ext1
MHS+

R
(R(0),MB(πf ,W )R) −→ 0,

where the second map is as above.

Proof. For any compact open subgroup L of G(Af ), let F 0H3
dR,!(SL,W )R denote the R-subspace

of F 0H3
B,!(SL,W )C of vectors which are fixed by the de Rham involution and by F 0H3

dR,!(S,W )R
the colimit of the F 0H3

dR,!(SL,W )R over all compact open subgroups L of G(Af ). As filtered
colimits of vector spaces preserve exact sequences, the lemma above implies that we have a
G(Af )-equivariant exact sequence

0 −→ F 0H3
dR,!(S,W )R −→ H3

B,!(S,W )−R (−1) −→ Ext1
MHS+

R
(R(0), H3

B,!(S,W )R) −→ 0

of R-vector spaces. As πf is irreducible, applying the functor

X 7−→ HomQ[G(Af )](ResE(πf )/Q πf , X)

to the above exact sequence, we still get an exact sequence, which is that of the statement of the
corollary. 2

The first term, respectively the second term, of the exact sequence above is obtained applying
⊗QR to the finite-dimensional E(πf )-vector space F 0MdR(πf ,W ), respectively MB(πf ,W )−(−1)
(see Propositions 3.11 and 3.12). Let F 0MdR(πf ,W )∗ be the dual of F 0MdR(πf ,W ). As a
consequence, the one-dimensional E(πf )-vector space

B(πf ,W ) = detE(πf )F
0MdR(πf ,W )∗ ⊗E(πf ) detE(πf )MB(πf ,W )−R (−1)

is an E(πf )-structure of the E(πf )⊗ R-module

detE(πf )⊗QR Ext1
MHS+

R
(R(0),MB(πf ,W )R).

By definition B(πf ,W ) is the Beilinson E(πf )-structure, which occurs in one of the two equivalent
formulations of Beilinson’s conjecture (see [Nek94, 6.1]). Because we are dealing with a partial
L-function, we do not want to use the functional equation in this work. As a consequence, we
prefer to work with the Deligne E(πf )-structure.
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Definition 4.13. Let δ(πf ,W ) ∈ (E(πf ) ⊗Q C)× be the determinant of the comparison
isomorphism MB(πf ,W )C −→ MdR(πf ,W )C computed in basis defined over E(πf ) on both
sides. The Deligne E(πf )-structure of detE(πf )⊗Q R Ext1

MHS+
R

(R(0),MB(πf ,W )R) is

D(πf ,W ) = (2πi)
dimE(πf )

MB(πf ,W )−
δ(πf ,W )−1B(πf ,W ).

Remark 4.14. Of course, this definition does not depend on the choice of the basis.

The ranks of the E(πf )⊗Q R-modules of the exact sequence of Corollary 4.12 are related to
multiplicities of automorphic representations in the discrete series L-packet P (W ).

Lemma 4.15. The following equalities hold:

(a) we have rkE(πf )⊗Q RMB(πf ,W )−R (−1) = m(πH∞ ⊗ πf ) +m(πW∞ ⊗ πf );

(b) we have rkE(πf )⊗Q RF
0MdR(πf ,W )R = m(πH∞ ⊗ πf );

(c) we have rkE(πf )⊗Q R Ext1
MHS+

R
(R(0),MB(πf ,W )R) = m(πW∞ ⊗ πf ).

Proof. Thanks to the exact sequence of Corollary 4.12, it is enough to prove the first two
statements. Write t = (p+ q + 6− k − k′)/2. Then, the first statement easily follows from the
Hodge decomposition

MB(πf ,W )C = M3−t,−k−k′−t
B ⊕M2−k′−t,1−k−t

B ⊕M1−k−t,2−k′−t
B ⊕M−k−k′−t,3−tB ,

where M3−t,−k−k′−t
B ,M2−k′−t,1−k−t

B ,M1−k−t,2−k′−t
B and M−k−k

′−t,3−t
B are E(πf )⊗ C-modules of

respective ranks m(π∞ ⊗ πf ),m(π∞ ⊗ πf ),m(πW∞ ⊗ πf ) and m(πH∞ ⊗ πf ) (Propositions 3.7 and
3.8), and from the fact that F∞ exchanges M r,s

B and M s,r
B . The proof of the second statement

follows from the fact that the conditions on p, q, k and k′ stated in the introduction imply that
2− k′ − t < 0, hence that

F 0MdR(πf ,W )C = M3−t,−k−k′−t
B . 2

Definition 4.16. Let E be an irreducible algebraic representation E of G. Let π = π∞ ⊗ πf
be an irreducible cuspidal automorphic representation such that π∞ belongs to the discrete
series L-packet P (E) (Definition 3.5). The automorphic representation π is stable at infinity if
m(π′∞ ⊗ πf ) = 1 for any π′∞ ∈ P (E).

Hypothesis 4.17. In the rest of the paper, we assume that the considered cuspidal automorphic
representation π is stable at infinity.

Remark 4.18. It follows from Arthur’s classification [Art04] that, for most of π whose π∞ is a
discrete series, π is stable. Specific examples constructed via theta lifts of Hilbert modular forms
over real quadratic fields are discussed in [MT02, 7.3].

Note that Hypothesis 4.17 and Lemma 4.15 imply that Ext1
MHS+

R
(R(0),MB(πf ,W )R) is a

rank-one E(πf ) ⊗Q R-module. From now on, we consider integers p, q, k, k′ and a coefficient
system W of highest weight λ(k, k′, p+ q+6) as in the statement of Theorem 1.1. Let K(p, q,W )
denote the sub-Q[G(Af )]-module of

Ext1
MHS+

R
(R(0), H3

! (S,W )R) = lim−→
L

Ext1
MHS+

R
(R(0), H3

! (SL,W )R)
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generated by the image of Eisp,q,WH and let K(πf ,W ) be defined as

K(πf ,W ) = HomQ[G(Af )](ResE(πf )/Q πf ,K(p, q,W )).

This is an E(πf )-submodule of Ext1
MHS+

R
(R(0),MB(πf ,W )R). We have two E(πf )-submodules of

Ext1
MHS+

R
(R(0),MB(πf ,W )R) ‘geometrically defined’. The elementary one, namely D(πf ,W ), is

defined in terms of the de Rham and Betti cohomology. The sophisticated one, namely K(πf ,W ),

is defined in terms of the regulator. Of course, whereas D(πf ,W ) is non-zero by definition, we

do not know at this point whether K(πf ,W ) is zero or not.

Definition 4.19. If µ and µ′ are two elements of E(πf ) ⊗Q C, denote µ ∼ µ′ if there exists

λ ∈ E(πf )× such that µ = λµ′.

Lemma 4.20. Let vD be a non-zero vector of D(πf ,W ) and vK be a vector of K(πf ,W ). Let

ṽD ∈ MB(πf ,W )−R (−1), respectively ṽK, be an element mapped to vD, respectively vK, by the

third map of the exact sequence of Corollary 4.12. Then

K(πf ,W ) =
ψ(ṽK)

ψ(ṽD)
D(πf ,W )

for any E(πf ) ⊗Q R-linear map ψ : MB(πf ,W )−R (−1) −→ E(πf ) ⊗Q C whose kernel contains

F 0MdR(πf ,W )R.

Proof. Trivial. 2

Our goal is now to compute ψ(ṽK) and ψ(ṽD) for a well-chosen ψ as above. To this end, let us

recall the properties of the Poincaré duality pairing for Siegel threefolds. As the representation

W has highest weight λ(k, k′, p+q+6), its contragredient has highest weight λ(k, k′,−p−q−6).

In other words, we have a perfect bilinear pairing W ⊗W −→ Q(p+ q + 6) where Q(p+ q + 6)

denotes the one-dimensional Q-vector space on which G acts by the (p + q + 6)th power of the

multiplier character ν. This pairing induces a G(Af )-equivariant pairing

H3
B,!(S,W )⊗H3

B,!(S,W (−p− q − 3)) // Q(0)

which becomes perfect after restriction to the vectors which are invariant by a compact open

subgroup of G(Af ), when Q(0) is given the action of G(Af ) by |ν|−3 (see [Tay93, p. 295]). This

induces a morphism of Hodge structures

MB(πf ,W )⊗MB(π̌f |ν|−3,W (−p− q − 3))
〈 , 〉B // E(πf )(0).

Recall that according to Proposition 3.8, we have the Hodge decomposition

MB(π̌f |ν|−3,W (−p− q − 3))C

= M3−t′,−k−k′−t′
B ⊕M2−k′−t′,1−k−t′

B ⊕M1−k−t′,2−k′−t′
B ⊕M−k−k′−t′,3−t′B

where t′ = −(k + k′ + p+ q)/2.
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Lemma 4.21. Let ω ∈MB(π̌f |ν|−3,W (−p− q − 3))C. Let

MB(πf ,W )−R (−1)
〈ω, 〉B // E(πf )⊗ C

be defined as the composition of the natural inclusion MB(πf ,W )−R (−1) → MB(πf ,W )C and of

the pairing with ω. Assume that ω belongs to M2−k′−t′,1−k−t′
B ⊕M1−k−t′,2−k′−t′

B . Then, with the
notation of Lemma 4.20, we have

K(πf ,W ) =
〈ω, ṽK〉B
〈ω, ṽD〉B

D(πf ,W ).

Proof. According to Lemma 4.20, it is enough to know that the kernel of x 7−→ 〈ω, x〉B contains
F 0MdR(πf ,W )R. Write t = (p+ q + 6− k − k′)/2. We have the Hodge decomposition

MB(πf ,W )C = M3−t,−k−k′−t
B ⊕M2−k′−t,1−k−t

B ⊕M1−k−t,2−k′−t
B ⊕M−k−k′−t,3−tB

where 3 − t = (k + k′ − p − q)/2 > 0 and 2 − k′ − t = (k − k′ − p − q − 2)/2 < 0 according
to the inequalities relating p, q, k and k′ stated in the introduction. As a consequence, we have

F 0MdR(πf ,W )C =
⊕

p>0M
p,q
B = M3−t,−k−k′−t

B . This implies that the image of the inclusion

F 0MdR(πf ,W )R //MB(πf ,W )−R (−1)

of the exact sequence of Corollary 4.12 is included in

M3−t,−k−k′−t
B ⊕M3−t,−k−k′−t

B = M3−t,−k−k′−t
B ⊕M−k−k′−t,3−tB .

Hence, the statement follows from the assumption on the Hodge types of ω and fact that 〈 , 〉B
is a morphism of Hodge structures. 2

4.4 From the regulator to a global integral
In this section, we shall explain how to associate a class ω whose Hodge types are as in
Lemma 4.21 to some cusp forms Ψ on G. When ω is associated to Ψ, we shall see that the
pairing 〈ω, ṽK〉B is an integral on G′(Q)Z ′(A)\G′(A) of a function of the shape ΨEH, where EH
is an Eisenstein series on G′ related to the Deligne–Beilinson realization Eisp,q,WD (φf ⊗φ′f ) of the

motivic classes Eisp,q,WM (φf ⊗ φ′f ).

Remark 4.22. At several places in this article, we consider a G(Af )-module V and its πf -
isotypical component V(πf ) = HomG(Af )(πf ,V). Let us choose a vector x ∈ πf , that will be
fixed until the end. Then, the linear map V(πf ) −→ V, φ 7−→ φ(x) is injective because πf is
irreducible. In what follows, we will often regard V(πf ) as a subspace of V, via the choice of x.

According to Theorem 1.1, for any φf ⊗ φ′f ∈ Bp ⊗Q Bq, we have the extension class

Eisp,q,WH (φf ⊗ φ′f ) ∈ Ext1
MHS+

R
(R(0), H3

B,!(S,W )R)

whose image in the Deligne–Beilinson cohomology H4
D(S/R,W ) coincides with the class of the

pair of currents (ι∗TP p,qH (φf⊗φ′f ), ι∗TP p,qB (φf⊗φ′f )) (Proposition 4.10). Due to the above remark
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and Lemma 4.21, we need to compute a pairing of the shape 〈ω, ṽK〉B where ṽK is a class in

H3
B,!(S,W )−R (−1) which is mapped to Eisp,q,WH (φf ⊗ φ′f ) by the surjection

H3
B,!(S,W )−R (−1) // Ext1

MHS+
R

(R(0), H3
B,!(S,W )R).

In the following lemma, whose aim is to describe as explicitly as necessary such a lifting
ṽK, we use two standard facts. The first is that Betti cohomology can be computed by closed
currents. The second is the so-called Liebermann’s trick: let p : A −→ S be an abelian scheme
and let W be a sheaf on S which is a direct factor of (R1p∗Q(0))⊗n(m), for some integers m and
n. Then, the cohomology H i(S,W ) is a direct factor of H i+n(An,Q(t)), for some t, where An

denotes the nth fiber product of A over S. Let r : G −→ GL(4) be the standard representation
of G. It follows from Weyl’s invariants theory that any irreducible algebraic representation W
of G of highest weight λ(k, k′, c) is a direct factor, defined by a certain explicit Schur projector,
of the representation r⊗(k+k′) twisted by a power of ν (see [FH91, § 17.3]). As the variation of
Hodge structure associated to r is R1p∗Q(1), the variation of Hodge structure associated to such
a W is a direct factor of a Tate twist of (R1π∗Q(0))⊗(k+k′) where p : A −→ S is the universal
abelian surface over the Siegel threefold. It is not necessary for us to be more precise. However,
the reader might consult [Anc15] for much more precise and general statements and their proofs.

Lemma 4.23. Let φf ⊗ φ′f ∈ Bp ⊗Q Bq. Let A be the universal abelian surface over S, of infinite

level, and let Ak+k′ be the (k+k′)th-fold fiber product over S. Let Ãk+k′ be a smooth projective
toroidal compactification of Ak+k′ such that the complement Ãk+k′ −Ak+k′ is a normal crossing
divisor. Then, there exists a closed current ρ ∈ T (Ãk+k′/R,R(◦)), for some integer ◦, such that:

(i) the restriction of the cohomology class [ρ] of ρ to Ak+k′ belongs to H3
B,!(S,W )−R (−1);

(ii) the class [ρ] is mapped to the extension class Eisp,q,WH (φf ⊗ φ′f ) by the third map

H3
B,!(S,W )−R (−1) // Ext1

MHS+
R

(R(0), H3
B,!(S,W )R)

of the exact sequence of the proof of Corollary 4.12;

(iii) the pairs of currents (ι∗TP p,qH (φf⊗φ′f ), ι∗TP p,qB (φf⊗φ′f )) and (ρ, 0) represent the same

cohomology class in H4
D(S/R,W ) (see Proposition 4.10).

Proof. The natural map H∗c (Ak+k′) −→ H∗(Ak+k′) factors through H∗(Ãk+k′) −→ H∗(Ak+k′).
Hence, for the first and the second statement, we can take ρ to be any closed current on Ãk+k′

representing a lifting of Eisp,q,WH (φf ⊗ φ′f ) by the map

H3
B,!(S,W )R(−1)+ // Ext1

MHS+
R

(R(0), H3
B,!(S,W )R).

Note that a current on Ãk+k′ can be regarded as a current on Ak+k′ , so that the third statement
is meaningful. As Ãk+k′ is smooth and projective, it follows from [Jan88, 4.5.1] that there exists
a natural map H∗B(Ãk+k′ ,R(◦))− −→ H∗+1

D (Ãk+k′/R,R(◦+1)). This map is induced by the map
sending a closed current τ to the pair (τ, 0) via the description of Deligne–Beilinson homology
classes by pairs of currents (Proposition 4.8) and the isomorphism of the Deligne–Beilinson
cohomology and homology (Proposition 4.9). Composing with the restriction map

HD(Ãk+k′/R,R(◦+ 1)) −→ HD(Ak+k′/R,R(◦+ 1)),
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we obtain the upper map of a commutative diagram

Hk+k′+3
B (Ãk+k′ ,R(◦))− //

��

Hk+k′+4
D (Ak+k′/R,R(◦+ 1))

��
H3
B,!(S,W )(−1) // H4

D(S/R,W )

where the vertical maps are induced by the Schur projectors defining W . Hence, the third
statement follows from the second. 2

To compute the pairing 〈ω, [ρ]〉B, we shall use the notion of rapidly decreasing and slowly
increasing differential form and the fact that the Poincaré duality pairing can be represented by
a pairing between rapidly decreasing and slowly increasing differential forms. For definitions, we
refer the reader to [Har90, 1.3] (see also [Bor81, 3.2]) and for the statement about the Poincaré
duality pairing, we refer the reader to [Har90, Proposition 1.4.4(c)].

The differential forms EispB(φf ) and EisqB(φ′f ) are slowly increasing as explained in [Kin98,
(6.3.1)] and [Kin98, p. 120]. Moreover, according to Proposition 4.10, we have

P p,qH (φf ⊗ φ′f ) = p∗1 EispH(φf ) ∧ p∗2(πq EisqB(φ′f )) + (−1)pp∗1(πp EispB(φf )) ∧ p∗2 EisqH(φ′f ).

Hence, P p,qH (φf ⊗ φ′f ) is slowly increasing. On the other hand, according to Proposition 3.4,
the cohomology class ω can be computed by cuspidal cohomology. So, let Ω be a cuspidal
differential form representing ω. As Ω is rapidly decreasing by definition, the differential form
ι∗Ω ∧ P p,qH (φf ⊗ φ′f ), where ι∗Ω denotes the restriction of Ω to M ×M , is rapidly decreasing.
This differential form has values in the vector space underlying the algebraic representation

ι∗W (−p− q − 3)C ⊗ (Symp V ∨2,C � Symq V ∨2,C)

of G′. Recall that the irreducible representation Symp V2 � Symq V2 occurs in the isotypical
decomposition of ι∗W (−3) by our choice of p, q, k and k′. Hence, we have the G′-equivariant
pairing

ι∗W (−p− q − 3)C ⊗ (Symp V ∨2,C � Symq V ∨2,C)
〈 , 〉 // C(−p− q)

defined as the composite of the natural projection

ι∗W (−p− q − 3) −→ (Symp V ∨2,C � Symq V ∨2,C)

and of the natural pairing

(Symp V ∨2,C � Symq V ∨2,C)⊗ (Symp V ∨2,C � Symq V ∨2,C) // C(−p− q), (14)

which is given by

〈apr � aqs, apr′ � a
q
s′〉 =

0 if r + r′ 6= p or s+ s′ 6= q,

(−1)r+s(2i)−p−q
(
p

r

)(
q

s

)
otherwise.

Let AG′ = R×+ be the identity component of the center of G′(R) and let g′, respectively k′,
be the Lie algebra of G′(R), respectively of its subgroup AG′(U(1) ×R× U(1)). Then, with the
notation of the beginning of § 4.2, we have

g′C/k
′
C = (p′+ ⊕ p′−)⊕ (p′+ ⊕ p′−).
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Let 1 be the generator of the highest exterior power
∧4 g′C/k

′
C defined by

1 = (v+, 0) ∧ (0, v+) ∧ (v−, 0) ∧ (0, v−)

where v± = 1
2

(
1 ±i
±i −1

)
∈ p′±. Evaluating the differential form ι∗Ω ∧ P p,qH (φf ⊗ φ′f ) at the tangent

vector 1, we get the rapidly decreasing vector valued function

(ι∗Ω ∧ P p,qH (φf ⊗ φ′f ))(1) ∈ ι∗W (−p− q − 3)C ⊗ (Symp V ∨2,C � Symq V ∨2,C)⊗ C∞rd (G′(Q)\G′(A)).

Here C∞rd (G′(Q)\G′(A)) denotes the space of rapidly decreasing functions defined in [Har90,
p. 48]. Composing with the pairing defined above, finally, we get the rapidly decreasing function

〈(ι∗Ω ∧ P p,qH (φf ⊗ φ′f ))(1)〉 ∈ C∞rd (G′(Q)\G′(A)).

Proposition 4.24. Let ω be a vector of MB(π̌f |ν|−3,W (−p− q − 3))C satisfying the condition
on Hodge types of Lemma 4.21. Let Ω be a cuspidal differential form representing ω, let ρ be a
closed current as in the statement of Lemma 4.23 and let [ρ] be its cohomology class. Let dg be
the measure on G′(Q)Z ′(A)\G′(A) associated to 1 (see § 2.4). Then,

〈ω, [ρ]〉B =
1

(2πi)p+q+2

∫
G′(Q)Z′(A)\G′(A)

〈(ι∗Ω ∧ P p,qH (φf ⊗ φ′f ))(1)〉(g)|det g|3 dg.

Proof. There exists a rapidly decreasing differential form η such that Ω′ = Ω− dη is compactly
supported [Bor81, Corollary 5.5]. We claim that the pairing 〈ι∗dη, P p,qH (φf ⊗ φ′f )〉 is zero. To
prove this, recall that according to the third statement of Lemma 4.23, the classes of the
pairs of currents (ι∗TP p,qH (φf⊗φ′f ), ι∗TP p,qB (φf⊗φ′f )) and (ρ, 0) coincide in H4

D(S/R,W ). According

to Proposition 4.8, this implies the existence of a current ρ′ on the open part Ak+k′ such that

ρ = ι∗TP p,qH (φf⊗φ′f ) + dρ′.

As dρ = 0, for any compactly supported differential form ηc of suitable degree on S, we have

ι∗TP p,qH (φf⊗φ′f )(dηc) = (ρ− dρ′)(dηc) = 0.

The differential form ι∗dη ∧ P p,qH (φf ⊗ φ′f ) on M ×M is rapidly decreasing, hence it extends to

a differential form on a smooth compactification M̃ ×M , which is zero on the boundary. As a
consequence, we can see the pairing 〈ι∗dη, P p,qH (φf ⊗ φ′f )〉 as an integral∫

M̃×M
ι∗ dη ∧ P p,qH (φf ⊗ φ′f )

over the compactification. To prove that this integral is zero, approximate η by a form ηc whose
support is compact in S. We have∫

M̃×M
ι∗ dη ∧ P p,qH (φf ⊗ φ′f )

=

∫
M̃×M

ι∗ dηc ∧ P p,qH (φf ⊗ φ′f ) +

∫
M̃×M

ι∗ d(η − ηc) ∧ P p,qH (φf ⊗ φ′f ).

On the one hand, the first integral coincides with ι∗TP p,qH (φf⊗φ′f )(dηc), hence is equal to zero. On

the other hand, as the manifold M̃ ×M is compact, the second integral can be made arbitrarily
small if the support of ηc is sufficiently close to the support of η. Hence,

〈ι∗dη, P p,qH (φf ⊗ φ′f )〉 = 0.
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As a consequence,

〈ω, [ρ]〉B = ρ(Ω′)

= ι∗TP p,qH (φf⊗φ′f )(Ω
′) + dρ′(Ω′)

= ι∗TP p,qH (φf⊗φ′f )(Ω
′)

= 〈ι∗Ω′, P p,qH (φf ⊗ φ′f )〉
= 〈ι∗Ω, P p,qH (φf ⊗ φ′f )〉.

The second equality follows from the definition of ρ′, the third from the fact that Ω′ is closed,
the fourth from the definition of the current associated to a differential form (13), and the last
from the vanishing of 〈ι∗dη, P p,qH (φf ⊗ φ′f )〉. The fact that 〈ι∗Ω, P p,qH (φf ⊗ φ′f )〉 is computed by
the integral given in the statement of the proposition follows from [Har90, Proposition 1.4.4(c)].
This completes the proof. 2

Our goal is now to give an explicit formula for the integrand in the above integral. The first
step is to explain precisely how to associate differential forms on S to cusp forms on G. Once we
have the results of § 3 at our disposal, this association relies on rather elementary representation
theoretic considerations.

Let T ′ be the maximal compact subtorus of Sp(4,R) defined by

T ′ =


 x y

x′ y′

−y x
−y′ x′


∣∣∣∣∣∣∣ x2 + y2 = x′2 + y′2 = 1

 .

The Lie algebra of T ′ is the compact Cartan subalgebra of sp4 that we denoted by h in § 3.1.
Let AG = R×+ be the identity component of the center of G(R). For integers n, n′, c such that
n+ n′ ≡ c (mod 2), let λ′(n, n′, c) : AGT

′ −→ C× denote the character defined by x y
x′ y′

−y x
−y′ x′

 7−→ (x+ iy)n(x′ + iy′)n
′
(x2 + y2)(c−n−n′)/2,

and by λ′(n, n′) the restriction of λ′(n, n′, c) to T ′. Note that the simple root e1−e2, respectively
2e2, defined in § 3.1, coincides with the differential at the identity matrix of the restriction to T ′

of the character λ′(1,−1, 0), respectively λ(0, 2, 0).

Lemma 4.25. Let E be an irreducible algebraic representation of G in a finite dimensional
Q-vector space and let w ∈ E be a vector of weight λ(u, u′, c). Let

J =
1√
2

1 i
1 i

i 1
i 1

 ∈ Sp(4,C).

Let v = Jw ∈ EC and let v = Nv, where N ∈ G(R) is defined in Remark 3.2. Then, for the
action of the torus AGT

′ ⊂ G(R), the vector v, respectively v, has weight λ′(u, u′, c), respectively
λ′(−u′,−u, c).
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Proof. The statement on the weight of v is a straightforward consequence of the fact that for
any x, x′, y, y′ ∈ R, we have

J−1

 x y
x′ y′

−y x
−y′ x′

 J = J

 x y
x′ y′

−y x
−y′ x′

 J

=

x+ iy
x′ + iy′

x− iy
x′ − iy′

 .

Hence, the statement on the weight of v follows from the identities x y
x′ y′

−y x
−y′ x′

 v = NN−1

 x y
x′ y′

−y x
−y′ x′

Nv

= N

x
′ −y′
x −y

y′ x′

y x

 v

= λ(−u′,−u, c)


 x y

x′ y′

−y x
−y′ x′


 v. 2

Lemma 4.26. Let X(1,−1) ∈ kC be defined by

X(1,−1) = dκ

((
1
))

=

 1 −i
−1 −i

i 1
i −1

 .

Let πW∞ and πW∞ ∈ P (W (−p − q − 3)) be as in Lemma 3.6. Let Ψ∞ ∈ πW∞ be a lowest weight
vector of the minimal K-type τ(k+3,−k′−1) of πW∞ and let Ψ∞ ∈ πW∞ be the vector associated to
Ψ∞ as in Remark 3.2. Let w ∈ W (−p − q − 3) be a vector of weight λ(−k, k′,−p − q) and let
v, v ∈W (−p− q − 3)C be the vectors associated to w as in Lemma 4.25. Let

X(2,0) ∧X(1,1) ⊗X(0,−2) ∈
2∧
p+ ⊗ p−,

X(0,−2) ∧X(−1,−1) ⊗X(2,0) ∈
2∧
p− ⊗C p+,

where the X(u,u′) are the root vectors defined in § 3.1. Then:

(i) there exists a unique non-zero map

Ω(Ψ∞) ∈ HomKG

( 2∧
p+ ⊗C p−,W (−p− q − 3)⊗C π

W
∞

)
such that

Ω(Ψ∞)(X(2,0) ∧X(1,1) ⊗X(0,−2)) =
k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i

(1,−1) Ψ∞;
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(ii) for the action of N on the de Rham complex defined in Proposition 3.13, we have

NΩ(Ψ∞) ∈ HomKG

( 2∧
p− ⊗C p+,W (−p− q − 3)⊗C π

W
∞

)
and

(NΩ(Ψ∞))(X(0,−2) ∧X(−1,−1) ⊗X(2,0)) =
k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i

(1,−1) Ψ∞.

Proof. Note that X(1,−1) is a root vector corresponding to the positive compact root and recall
that we have the isotypical decomposition

2∧
p+ ⊗C p− = τ(3,−1) ⊕ τ(2,0) ⊕ τ(1,1).

Hence, the vector X(2,0) ∧X(1,1)⊗X(0,−2) is a highest weight vector. As a consequence, to define

the restriction of a KG-equivariant map Ω :
∧2 p+ ⊗C p− −→ W (−p − q − 3) ⊗C π

W
∞ to τ(3,−1)

amounts to give the image of X(2,0)∧X(1,1)⊗X(0,−2), under the condition that Ω(X(2,0)∧X(1,1)⊗
X(0,−2)) must have the same highest weight as X(2,0)∧X(1,1)⊗X(0,−2). For every 0 6 i 6 k+k′+4,

the vector Xk+k′+4−i
(1,−1) Ψ∞ has weight λ′(k + 3,−k′ − 1, c) − iλ′(1,−1, 0) where c = p + q + 6.

Similarly, the vector Xi
(1,−1)v has weight λ′(−k, k′,−c) + iλ′(1,−1, 0). As a consequence, the

vector
∑k+k′−1

i=0 (−1)iXi
(1,−1)v ⊗ Xk+k′+4−i

(1,−1) Ψ∞ has weight λ′(3,−1, 0), which is the weight of
X(2,0) ∧X(1,1) ⊗X(0,−2). Furthermore,

X(1,−1)

k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i

(1,−1) ψ∞ =

k+k′−1∑
i=0

(−1)iXi+1
(1,−1)v ⊗X

k+k′+4−i
(1,−1) Ψ∞

+
k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i+1

(1,−1) Ψ∞

=
k+k′−2∑
i=0

(−1)iXi+1
(1,−1)v ⊗X

k+k′+4−i
(1,−1) Ψ∞

+
k+k′−1∑
i=1

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i+1

(1,−1) Ψ∞

= 0.

In other terms,
∑k+k′−1

i=0 (−1)iXi
(1,−1)v ⊗ Xk+k′+4−i

(1,−1) Ψ∞ is a highest weight vector of the KG-

module W (−p− q− 3)⊗C π
W
∞ . As a consequence, there exists a unique non-zero KG-equivariant

map τ(3,−1) −→W (−p−q−3)⊗Cπ
W
∞ sending X(2,0)∧X(1,1)⊗X(0,−2) to

∑k+k′−1
i=0 (−1)iXi

(1,−1)v⊗
Xk+k′+4−i

(1,−1) Ψ∞. Thanks to Proposition 3.7, this proves the first statement. Let us prove the second:

by definition of the action of N on the de Rham complex (Proposition 3.13), we have

(NΩ(Ψ∞))(X(0,−2) ∧X(−1,−1) ⊗X(2,0)) = N(Ω(Ψ∞)(AdN−1(X(0,−2) ∧X(−1,−1) ⊗X(2,0)))).

An easy computation shows that

AdN−1(X(0,−2) ∧X(−1,−1) ⊗X(2,0)) = X(2,0) ∧X(1,1) ⊗X(0,−2).
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Hence,

(NΩ(Ψ∞))(X(0,−2) ∧X(−1,−1) ⊗X(2,0)) = N(Ω(Ψ∞)(X(2,0) ∧X(1,1) ⊗X(0,−2)))

= N

(k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i

(1,−1) ,Ψ∞

)

=

k+k′−1∑
i=0

(−1)iXi
(1,−1)v ⊗Xk+k′+4−i

(1,−1) ,Ψ∞.

The last identity follows from the fact that, by definition of a (g,K)-module V, we have

kXv = Adk(X)kv

for any k ∈ K,X ∈ g and v ∈ V and from the equality AdN (X(1,−1)) = X(1,−1). 2

Lemma 4.27. Let φf ⊗ φ′f ∈ Bp ⊗Q Bq. Let Ψ = Ψ∞ ⊗ Ψf be a factorizable cusp form on G.
Assume that Ψ∞ satisfies the conditions of Lemma 4.26. Let Ak,k′,i,j , Bk,k′,i and Ck,k′,i denote
the integers

Ak,k′,i,j =
(k + k′ + 4− i)!

(k + k′ + 4− (i+ j))!

(i+ j)!

(i− j)!
(k + k′ − i+ j)!

(k + k′ − i)! ,

Bk,k′,i = (i+ 1)(k + k′ + 4− i),
Ck,k′,i = i(k + k′ − i+ 1).

Then,

(ι∗(Ω(Ψ∞)⊗Ψf ) ∧ P p,qH (φf ⊗ φ′f ))(1)

=
3

160

(2πi)p+q+2

(p+ 1)

k+k′−1∑
i=0

3∑
j=0

(−1)i
(

3

j

)
Ak,k′,i,jX

k+k′+4−(i+j)
(1,−1) Ψ⊗Xi−j

(1,−1)v

⊗
p∑
r=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a(p)
r ⊗ a(q)

0 ⊗ γ∗(φp2r−p ⊗ φf )γ′∗(φq−q−2 ⊗ φ′f )

− (−1)p(2πi)p+q+2

8(q + 1)

k+k′−1∑
i=0

(−1)iBk,k′,iX
k+k′+4−(i+1)
(1,−1) Ψ⊗Xi

(1,−1)v

⊗
q∑
s=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a
(p)
0 ⊗ a(q)

s ⊗ γ∗(φp−p−2 ⊗ φf )γ′∗(φq2s−q ⊗ φ′f )

− (−1)p(2πi)p+q+2

8(q + 1)

k+k′−1∑
i=1

(−1)iCk,k′,iX
k+k′+4−i
(1,−1) Ψ⊗Xi−1

(1,−1)v

⊗
q∑
s=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a
(p)
0 ⊗ a(q)

s ⊗ γ∗(φp−p−2 ⊗ φf )γ′∗(φq2s−q ⊗ φ′f ),

and

(ι∗F∞(Ω(Ψ∞)⊗Ψf ) ∧ P p,qH (φf ⊗ φ′f ))(1)

=
3

160

(−1)p(2πi)p+q+2

(q + 1)

k+k′−1∑
i=0

3∑
j=0

(−1)i
(

3

j

)
Ak,k′,i,jX

k+k′+4−(i+j)
(1,−1) Ψ⊗Xi−j

(1,−1)v
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⊗
q∑
s=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a(p)
p ⊗ a(q)

s ⊗ γ∗(φpp+2 ⊗ φf )γ′∗(φq2s−q ⊗ φ′f )

− (2πi)p+q+2

8(q + 1)

k+k′−1∑
i=0

(−1)iBk,k′,iX
k+k′+4−(i+1)
(1,−1) Ψ⊗Xi

(1,−1)v

⊗
p∑
r=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a(p)
r ⊗ a(q)

q ⊗ γ∗(φp2r−p ⊗ φf )γ′∗(φqq+2 ⊗ φ′f )

− (2πi)p+q+2

8(q + 1)

k+k′−1∑
i=1

(−1)iCk,k′,iX
k+k′+4−i
(1,−1) Ψ⊗Xi−1

(1,−1)v

⊗
p∑
r=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a(p)
r ⊗ a(q)

q ⊗ γ∗(φp2r−p ⊗ φf )γ′∗(φqq+2 ⊗ φ′f ).

Proof. Let Ω denote Ω(Ψ∞)⊗Ψf and

e1 = (v+, 0),

e2 = (0, v+),

e3 = (v−, 0),

e4 = (0, v−),

which are vectors of g′C/k
′
C = (p′+ ⊕ p′−)2. Let S4 be the symmetric group on four elements. For

σ ∈ S4, let ε(σ) denote the signature of σ. Then,

(ι∗Ω ∧ P p,qH (φf ⊗ φ′f ))(1) =
∑
σ∈S4

ε(σ)Ω(ι∗(eσ(1) ∧ eσ(2) ∧ eσ(3)))⊗ P p,qH (φf ⊗ φ′f )(eσ(4)).

By definition, we have Ω(ι∗(eσ(1) ∧ eσ(2) ∧ eσ(3))) = 0 whenever eσ(1) ∧ eσ(2) ∧ eσ(3) is not ±(v+, 0)
∧ (0, v+) ∧ (0, v−) or ±(v+, 0) ∧ (0, v+) ∧ (v−, 0). So we have to compute Ω( ι∗(v

+, 0) ∧ (0, v+)
∧ (0, v−)) and Ω(ι∗(v

+, 0) ∧ (0, v+) ∧ (v−, 0)). Recall the decomposition

2∧
p+ ⊗ p− = τ(3,−1) ⊕ τ(2,0) ⊕ τ(1,1)

into irreducible C[K]-modules. By construction (Lemma 4.26), Ω factors through the projection∧2 p+ ⊗ p− −→ τ(3,−1) and sends the highest weight vector X(2,0) ∧X(1,1) ⊗X(0,−2) of τ(3,−1) to

k+k′−1∑
i=0

(−1)iXk+k′+4−i
(1,−1) Ψ⊗Xi

(1,−1)v.

Hence, we need to compute the image of ι∗(v
+, 0) ∧ (0, v+) ∧ (0, v−) by the projection above.

The identities

ι∗(v
±, 0) = X±(2,0),

ι∗(0, v
±) = X±(0,2)

imply
ι∗(v

+, 0) ∧ (0, v+) ∧ (0, v−) = X(2,0) ∧X(0,2) ⊗X(0,−2),

which has weight (2, 0) = (3,−1) + (−1, 1). Let us write

ι∗(v
+, 0) ∧ (0, v+) ∧ (0, v−) = αx(3,−1) + βx(2,0) + γx(1,1)
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where x(3,−1) ∈ τ(3,−1), x(2,0) ∈ τ(2,0), x(1,1) ∈ τ(1,1) are weight vectors and α, β, γ ∈ C. Because
weights of T ′ in irreducible representations of K are multiplicity free, we can assume that
x(3,−1) = adX(−1,1)

(X(2,0) ∧ X(1,1) ⊗ X(0,−2)) where ad denotes the adjoint representation
gC −→ End(gC). As τ(1,1) does not contain vectors of weight (2, 0), we have γ = 0. Furthermore,
as τ(2,0) has highest weight (2, 0), we have

adX(1,−1)
(ι∗(v

+, 0) ∧ (0, v+) ∧ (0, v−)) = α adX(1,−1)
(x(3,−1)),

that is,

adX(1,−1)
(X(2,0) ∧X(0,2) ⊗X(0,−2)) = α adX(1,−1)

(X(2,0) ∧X(1,1) ⊗X(0,−2)).

An easy computation shows that α = 1
4 . As a consequence, we have

Ω(ι∗(v
+, 0) ∧ (0, v+) ∧ (0, v−)) = Ω

(
1

4
adX(−1,1)

(X(2,0) ∧X(1,1) ⊗X(0,−2))

)
=

1

4
X(−1,1)

k+k′−1∑
i=0

(−1)iXk+k′+4−i
(1,−1) Ψ⊗Xi

(1,−1)v.

It follows from the definition of standard basis (§ 3.1) that

Xm
(−1,1)X

n
(1,−1)Ψ∞ =

n!

(n−m)!

(k + k′ + 4− n+m)!

(k + k′ + 4− n)!
Xn−m

(1,−1)Ψ∞,

Xm
(−1,1)X

n
(1,−1)v =

n!

(n−m)!

(k + k′ − n+m)!

(k + k′ − n)!
Xn−m

(1,−1)v.

Hence,

Ω(ι∗(v
+, 0) ∧ (0, v+) ∧ (0, v−))

=
1

4

k+k′−1∑
i=0

(−1)i(k + k′ + 4− i)(i+ 1)X
k+k′+4−(i+1)
(1,−1) Ψ⊗Xi

(1,−1)v

+
1

4

k+k′−1∑
i=1

(−1)ii(k + k′ − i+ 1)Xk+k′+4−i
(1,−1) Ψ⊗Xi−1

(1,−1)v.

To compute Ω(ι∗(v
+, 0) ∧ (0, v+) ∧ (v−, 0)), note that the vector

ι∗(v
+, 0) ∧ (0, v+) ∧ (v−, 0) = X(2,0) ∧X(0,2) ⊗X(−2,0)

has weight (0, 2) = (3,−1) + 3(−1, 1). A computation as above shows that the image of the
vector ι∗(v

+, 0) ∧ (0, v+) ∧ (v−, 0) by the natural projection
∧2 p+ ⊗ p− −→ τ(3,−1) is equal to

3
80 ad3

X(−1,1)
(X(2,0) ∧X(1,1) ⊗X(0,−2)). Hence,

Ω(ι∗(v
+, 0) ∧ (0, v+) ∧ (v−, 0)) = Ω

(
3

80
ad3

X(−1,1)
(X(2,0) ∧X(1,1) ⊗X(0,−2))

)
=

3

80
X3

(−1,1)

∑
i>0

(−1)iXk+k′+4−i
(1,−1) Ψ⊗Xi

(1,−1)v

=
3

80

k+k′−1∑
i=0

3∑
j=0

(−1)i
(

3

j

)
Ak,k′,i,jX

k+k′+4−(i+j)
(1,−1) Ψ⊗Xi−j

(1,−1)v.
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To finish the proof, we have to compute P p,qH (φf ⊗ φ′f )(v−, 0) and P p,qH (φf ⊗ φ′f )(0, v−). The
differential form P p,qH (φf ⊗ φ′f ) is defined in Proposition 4.10. Unraveling the definitions, we get

P p,qH (φf ⊗ φ′f )(v−, 0) = (−1)p
∑

(γ,γ′)∈B′(Q)\G′(Q)

γ∗πp(ω
+
p ⊗ φf )(v−)γ′∗(Θq ⊗ φ′f ).

According to Lemma 4.5, we have πp(ω
+
p ⊗ φf ) = 1

2(ω+
p + ω−p )⊗ φf . Hence,

P p,qH (φf ⊗ φ′f )(v−, 0)

=
(−1)p(2πi)p+1(2πi)q+1

4(q + 1)

q∑
s=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a
(p)
0 ⊗ a(q)

s ⊗ γ∗(φp−p−2 ⊗ φf )γ′∗(φq2s−q ⊗ φ′f ).

Similarly,

P p,qH (φf ⊗ φ′f )(0, v−)

=
(2πi)p+1(2πi)q+1

4(p+ 1)

p∑
r=0

∑
(γ,γ′)∈B′(Q)\G′(Q)

a(p)
r ⊗ a(q)

0 ⊗ γ∗(φp2r−p ⊗ φf )γ′∗(φq−q−2 ⊗ φ′f ).

The proof of the first statement follows by putting the previous computations together. The
proof of the second statement is a direct consequence of the first, of the identities

AdN−1(v±, 0) = (0, v∓),

AdN−1(0, v±) = (v∓, 0)

and of the formula for P p,qH (φf ⊗ φ′f )(v+, 0) and P p,qH (φf ⊗ φ′f )(0, v+) deduced as above from
Proposition 4.9. 2

According to Lemma 4.27, to compute the integral∫
G′(Q)Z′(A)\G′(A)

〈(ι∗(Ω(Ψ∞)⊗ ψf ) ∧ P p,qH (φf ⊗ φ′f ))(1)〉(g)|det g|3 dg,

we need to compute pairings of the shape 〈Xi
(1,−1)v, a

(p)
r ⊗ a(q)

0 〉, 〈Xi
(1,−1)v, a

(p)
0 ⊗ a

(q)
s 〉 and of the

shape 〈Xi
(1,−1)v, a

(p)
p ⊗a(q)

s 〉, 〈Xi
(1,−1)v, a

(p)
r ⊗a(q)

q 〉. In fact, a lot of these pairings vanish for weight
reasons.

Lemma 4.28. Let i, r, s be integers such that i > 0, p > r > 0, q > s > 0. Then, the following
statements hold

(i) if 〈Xi
(1,−1)v, a

(p)
r ⊗ a(q)

0 〉 6= 0, then i = k′ + q, r = (−k + k′ + p+ q)/2;

(ii) if 〈Xi
(1,−1)v, a

(p)
0 ⊗ a

(q)
s 〉 6= 0, then i = k − p, s = (−k + k′ + p+ q)/2;

(iii) if 〈Xi
(1,−1)v, a

(p)
p ⊗ a(q)

s 〉 6= 0, then i = k′ + p, s = (−k + k′ + p+ q)/2;

(iv) if 〈Xi
(1,−1)v, a

(p)
r ⊗ a(q)

q 〉 6= 0, then i = k + q, r = (−k + k′ + p− q)/2.

Proof. The vector a
(p)
r � a

(q)
s has weight λ′(p−2r, q−2s) for the action of U(1)2 = T ′ (Lemma 4.4),

the vector Xi
(1,−1)v, respectively Xi

(1,−1)v, has weight λ′(−k, k′)+ iλ′(1,−1), respectively λ′(−k′,
k) + iλ′(1,−1). Hence, the statement follows from the fact that, if two weight vectors pair
non-trivially, they have opposite weights. 2
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Corollary 4.29. Let Ψ = Ψ∞ ⊗Ψf be as above, let w ∈W (−p− q − 3) be a vector of weight
λ(−k, k′,−p− q) and let ω be the vector in MB(π̌f |ν|−3,W (−p− q−3))C associated to Ψ and w
by Lemma 4.26. Let φf ⊗ φ′f ∈ Bp ⊗Q Bq and let ρ be a closed current lifting the extension class

Eisp,q,k,k
′

H (φf ⊗ φ′f ) as in Lemma 4.23. Let Ξn,r,s(φf , φ
′
f ) and Ξn,r,s(φf , φ

′
f ) denote the functions

on G′(A) defined by

Ξn,r,s(φf , φ
′
f ) = Xn

(1,−1)Ψ
∑

(γ,γ′)

γ∗(φpr ⊗ φf )γ′∗(φqs ⊗ φ′f ),

Ξn,r,s(φf , φ
′
f ) = Xn

(1,−1)Ψ
∑

(γ,γ′)

γ∗(φpr ⊗ φf )γ′∗(φqs ⊗ φ′f )

where the sums are indexed by all (γ, γ′) ∈ B′(Q)\G′(Q). Let

C1 = 〈Xk′+q
(1,−1)v, a

(p)
r ⊗ a(q)

0 〉,
C2 = 〈Xk−p

(1,−1)v, a
(p)
r ⊗ a(q)

0 〉,
C3 = 〈Xk′+p

(1,−1)v, a
(p)
p ⊗ a(q)

s 〉,
C4 = 〈Xk+q

(1,−1)v, a
(p)
p ⊗ a(q)

s 〉.

Then, the pairing 〈ω, [ρ]〉B equals

C1
3

160(p+ 1)

3∑
j=0

(−1)k
′+q+j

(
3

j

)
Ak,k′,k′+q+j,j

∫
Ξk−q−2j+4,−k+k′+q,−q−2(φf , φ

′
f )

−C2
(−1)k

8(q + 1)
(Bk,k′,k−p − Ck,k′,k−p+1)

∫
Ξk′+p+3,−p−2,−k+k′+p(φf , φ

′
f )

+C3
3

160(q + 1)

3∑
j=0

(−1)k
′+j

(
3

j

)
Ak,k′,k′+p+j,j

∫
Ξk−p−2j+4,p+2,−k+k′+p(φf , φ

′
f )

−C4
(−1)k

′+p+1

8(q + 1)
(Bk,k′,k′+p − Ck,k′,k′−p+1)

∫
Ξk−p+3,−k+k′−q,q+2(φf , φ

′
f ),

where the numbers Ak,k′,i,j , Bk,k′,i and Ck,k′,i are defined in Lemma 4.27 and where the integrals
are over G′(Q)Z ′(A)\G′(A).

Proof. Direct consequence of Proposition 4.24, Lemmas 4.27 and 4.28. 2

To compute the constants C1, C2, C3 and C4, let us start with a trivial remark. The family

(a
(p)
r � a

(q)
s )06r6p,06s6q is a weight basis of Symp V ∨2,C � Symq V ∨2,C for the action of U(1)2 and,

by definition, the vector v is a weight vector for the maximal compact torus T ′ ⊂ G(R). Hence,
the vector Xi

(1,−1)v ∈W (−p− q− 3) is again a weight vector and, because U(1)2 = T ′, its image

under the U(1)2-equivariant projection

% : ι∗W (−p− q − 3) −→ Symp V ∨2,C � Symq V ∨2,C

is equal to λi(v)a
(p)
ri � a

(q)
si for some complex number λi(v) and some integers ri, si.

Given i, is λi(v) zero or not? Note that we have the liberty to multiply the vector w which
enters the definition of the cohomology class ω associated to the cusp form Ψ (Lemma 4.26)
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by any non-zero complex number. Of course, this has the effect to multiply ω by a scalar, but
does not change the ratio 〈ω, ṽK〉B/〈ω, ṽD〉B that has to be computed (see Lemma 4.21). If
λi(v) 6= 0, we can replace the vector w by λi(v)−1w. This has the effect of replacing the vector

v = Jw by λi(v)−1v. For this choice, %(Xi
(1,−1)v) = a

(p)
ri � a

(q)
si and so the computation of the

pairing follows (see (14)).

Lemma 4.30. Let p = k− 1 and q = k′− 1. Then, for any non-zero vector v ∈W (−p− q− 3) of
weight λ′(−k, k′,−p− q), the image of X(1,−1)v under the G′-equivariant projection

% : ι∗W (−p− q − 3) −→ Symp V ∨2,C � Symq V ∨2,C

is non-zero.

Proof. Thanks to the explanations preceding Lemma 4.26 and by symmetry under the Weyl
group, we are reduced to prove the following statement. IfX−(ρ1+ρ2) ∈ g is a root vector associated
to −(ρ1 + ρ2) and if v ∈W (−p− q − 3) is a highest weight vector for the action of the diagonal
maximal torus T , then ρ(X−(ρ1+ρ2)v) 6= 0. Let X−ρ1 , X−ρ2 ∈ g be root vectors associated to the
simple negative roots. We can assume that X−ρ2 ∈ g′ and that X−(ρ1+ρ2) = [X−ρ1 , X−ρ2 ]. The

vector X−ρ1v is a highest weight vector of the representation Symk−1 V ∨2,C � Symk′−1 V ∨2,C which
is a subrepresentation of ι∗W (−k− k′− 1). Hence, we have %(X−ρ2X−ρ1v) = 0. It is well known
that W (−k − k′ − 1) is generated by applying monomials in the variables X−ρ1 and X−ρ2 to v.
Furthermore, X−ρ2X−ρ1 and X−ρ1X−ρ2 are the only two such monomials whose application to
v gives weight λ(k − 1, k′ − 1,−k − k′ − 2), which is the highest weight of the representation
Symk−1 V ∨2,C� Symk′−1 V ∨2,C. So, the fact that %(X−ρ2X−ρ1v) = 0 implies that %(X−ρ1X−ρ2v) 6= 0
which implies %(X−(ρ1+ρ2)v) 6= 0. 2

Remark 4.31. In [Mol07, Theorem 9.6.2], Molev constructs a basis of irreducible representations
W of G and is able to derive explicit formulas for the action of generators of the Lie algebra of
G on the vectors of the basis. The non-vanishing of λi(v) can be derived from his result at the
price of a very lengthy (but elementary) calculation. Thanks to a program implementing Molev’s
result and written in Python by Molin, the author verified numerically the non-vanishing of λi(v)
for some small values of p, q, k and k′.

Corollary 4.32. Assume p = k − 1 and q = k′ − 1. There exists v ∈W (−p− q − 3) of weight

λ′(−k, k′,−p− q) such that 〈X(1,−1)v, a
(p)
0 � a

(q)
q 〉 = (−1)p(2i)−k−k

′−2.

5. Computation of the integral

Given a cuspidal automorphic representation π of G, the spinor L-function is defined as the
partial Euler product

LV (s, π, r) =
∏
v/∈V

L(s, πv, r)

where V denotes the set of places where π is ramified and where r : LG0 ' G −→ GL(4) is the
natural inclusion. This Euler product is absolutely convergent for Re s big enough. In [Pia97],
the analytic continuation and a functional equation of LV (s, π, r) are deduced from the analytic
continuation and a functional equation of a family of Eisenstein series EΦ, via an integral
representation. In this section, as a direct consequence of Proposition 5.3, we show that for
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suitable choice of data, the integrals that appear in the statement of Corollary 4.29 coincide with a
special value of such an integral representation. Via Bessel models, the integrals of [Pia97] expand
into Euler products and we perform the relevant local unramified computation in Proposition 5.9.
The ramified non-archimedean integrals are considered in Proposition 5.11. The archimedean
integral is computed in Proposition 5.12.

5.1 Comparison with Piatetski-Shapiro’s integral
Let dt∞ be the Lebesgue measure on the additive group R. If v is a non-archimedean place of
Q, let dtv be the measure for which Zv has volume one. Following [Tat67], let d×tv be the Haar
measure on Q×v defined by

d×tv =


dtv
|tv|

if v is archimedean,

p

p− 1

dtv
|tv|

if v is p-adic.

Let dt, respectively d×t, denote the product measure
∏
v dtv on A, respectively the product

measure
∏
v d
×tv on A×.

Proposition 5.1. Let µ, ν1, ν2 : Q×\A× −→ C× be continuous characters and let s ∈ C. Let
χµ,ν1,ν2,s be the character of B′(A) defined by

χµ,ν1,ν2,s

((
a1 b1

d1

)
,

(
a2 b2

d2

))
= µ(a1/d2)|a1/d2|s+1/2ν−1

1 (d1)ν−1
2 (d2).

Then, for any Schwartz–Bruhat function Φ on A4, the following statements hold:

(i) the function on G′(A) defined by

(g1, g2) 7−→ fΦ(g1, g2, µ, ν1, ν2, s)

= µ(det g1)|det g1|s+1/2

×
∫
A×

∫
A×

Φ((0, t1)g1, (0, t2)g2)|t1t2|s+1/2µ(t1t2)ν1(t1)ν2(t2) d×t1 d
×t2

belongs to ind
G′(A)
B′(A) χµ,ν1,ν2,s;

(ii) the Eisenstein series

EΦ(g1, g2, µ, ν1, ν2, s) =
∑

(γ,γ′)∈B′(Q)\G′(Q)

fΦ(γg1, γ
′g2, µ, ν1, ν2, s)

is absolutely convergent for Re s big enough and satisfies a functional equation.

Proof. The first statement follows from a trivial computation and the second from [Pia97,
Theorem 5.1]. 2

When µ is the trivial character, we denote χµ,ν1,ν2,s by χν1,ν2,s for simplicity.
Let us recall that for d ≡ c (mod 2), the algebraic character λ(d, c) of the diagonal maximal

torus of GL2 is defined by

λ(d, c) :

(
α

α−1ν

)
7−→ αdν(c−d)/2.
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Lemma 5.2. Let ν0
1 and ν0

2 be two finite-order Hecke characters of respective signs (−1)p and
(−1)q. Let ν1 denote the Hecke character | |−qν0

1 and ν2 denote the Hecke character | |−pν0
2 . Then,

the following statements are satisfied:

(i) the restriction of the archimedean part of χν1,ν2,p+q+3/2 to the identity component of the
diagonal maximal torus of G′(R) is λ(p+ 2, p)� λ(q + 2, q);

(ii) the non-archimedean part χf of χν1,ν2,p+q+3/2 verifies

χf

((
a1α1 b1

d1δ1

)
,

(
a2α2 b2

d2δ2

))
= a

−(p+1)
1 d1a

−(q+1)
2 d2ν

0
1(δ1)−1ν0

2(δ2)−1

for any a1, d1, a2, d2 ∈ Q+, α1, δ1, α2, δ2 ∈ Ẑ× such that a1d1α1δ1 = a2d2α2δ2 and any b1,
b2 ∈ Af .

Proof. Let ((
a1 b1

d1

)
,

(
a2 b2

d2

))
∈ G′(A).

Because a1d1 = a2d2, we have the identities

χν1,ν2,p+q+3/2

((
a1 b1

d1

)
,

(
a2 b2

d2

))
= |a1/d2|p+q+2|d1|q|d2|pν0

1(d1)−1ν0
2(d2)−1

= |a1|p+2|a1d1|−1ν0
1(d1)−1|a2|q+2|a2d2|−1ν0

2(d2)−1.

For a diagonal element ((
a1

d1

)
,

(
a2

d2

))
∈ G′(R)+,

we have a1d1 = a2d2 > 0, hence

χν1,ν2,p+q+3/2

((
a1

d1

)
,

(
a2

d2

))
= |a1|p+2|a1d1|−1 sgn(d1)p|a2|q+2|a2d2|−1 sgn(d2)q

= |a1|p+2(a1d1)−1 sgn(a1)p|a2|q+2(a2d2)−1 sgn(a2)q

= ap+2
1 (a1d1)−1aq+2

2 (a2d2)−1

= (λ(p+ 2, p)� λ(q + 2, q))

((
a1

d1

)
,

(
a2

d2

))
.

This proves the first statement. Let χ∞ denote the archimedean part of χν1,ν2,p+q+3/2. Then, the
second statement follows from the equalities

χf

((
a1α1 b1

d1δ1

)
,

(
a2α2 b2

d2δ2

))
= χf

((
a1

d1

)
,

(
a2

d2

))
χf

((
α1 b1/a1

δ1

)
,

(
α2 b2/a2

δ2

))
= χ∞

((
a1

d1

)
,

(
a2

d2

))−1

χf

((
α1 b1/a1

δ1

)
,

(
α2 b2/a2

δ2

))
= (ap+2

1 (a1d1)−1aq+2
2 (a2d2)−1)−1ν0

1(δ1)−1ν0
2(δ2)−1. 2

The following result obviously implies that, for a suitable choice of data, the Eisenstein series
appearing in the integrals of Corollary 4.29 coincide with a special value of that defined above.
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Proposition 5.3. Let ν0
1 and ν0

2 be two finite-order Hecke characters of respective signs (−1)p

and (−1)q. Let ν1 denote the Hecke character | |−qν0
1 and ν2 denote the Hecke character | |−pν0

2 .
Let Φ1,f =

∏
v<∞Φ1,v and Φ2,f =

∏
v<∞Φ2,v be factorizable Schwartz–Bruhat functions on A2

f

such that for j = 1, 2 and any v, the function Φj,v is Q-valued. Let Sj be the set of places where νj
and Φj,f are ramified. Then, there exist φf ∈ Bp,Q and φ′f ∈ Bq,Q such that the following statement
is verified. For any integers r ≡ p (mod 2) and s ≡ q (mod 2), let Φ be the Schwartz–Bruhat
function on A4 defined by

Φ(x1, y1, x2, y2) =
(−1)p+q+r+s(2i)p+q+2π2(p+q)

((p+ q − 1)!)2LS1(p+ q + 2, ν1)LS2(p+ q + 2, ν2)
Φ1(x1, y1)Φ2(x2, y2).

Here, we denote by Φ1 and Φ2 the factorizable Schwartz–Bruhat functions Φ1 =
∏
v Φ1,v and

Φ2 =
∏
v Φ2,v on A2 where

Φ1,∞(x1, y1) = (ix1 + y1)(p−r)/2(ix1 − y1)(p+r)/2e−π(x21+y21),

Φ2,∞(x2, y2) = (ix2 + y2)(q−s)/2(ix2 − y2)(q+s)/2e−π(x22+y22).

Then, for any (g1, g2) ∈ G′(A), we have

(φpr ⊗ φf )(g1)(φqs ⊗ φ′f )(g2) = fΦ((g1, g2), 1, ν1, ν2, p+ q + 3/2).

Proof. For any place v and any gv ∈ GL2(Qv) let

Z
Φj,v
v (gv, νj,v, s) =

∫
Q×v

Φj,v((0, t)gv)|t|s+1/2νj,v(t) d
×t.

Then, we have the following factorization into an Euler product of local Tate integrals(
(−1)p+q+r+s(2i)p+q+2π2(p+q)

((p+ q − 1)!)2LS1(p+ q + 2, ν1)LS2(p+ q + 2, ν2)

)−1

fΦ(g1, g2, 1, ν1, ν2, p+ q + 3/2)

= |det g1|p+q+2
2∏
j=1

(∏
v

Z
Φj,v
v (gj,v, νj,v, p+ q + 3/2)

)
.

At the archimedean place, we have

Z
Φ1,∞
∞ (1, ν1,∞, p+ q + 3/2)Z

Φ2,∞
∞ (1, ν2,∞, p+ q + 3/2) = (−1)(p+q+r+s)/2π−2(p+q)Γ(p+ q)2

where Γ is the gamma function. The function Φ∞ has weight λ′(r, s) for the action of U(1)2,
which is the same weight as φprφ

q
s. The Iwasawa decomposition for G′(R) implies that the weights

for U(1)2 in ind
G′(R)
B′(R)(λ(p + 2, p) � λ(q + 2, q)) are multiplicity free. Hence, it follows from the

first statement of Proposition 5.1 and from Lemma 5.2 that the archimedean part

(−1)p+q+r+s(2i)p+q+2π2(p+q)

((p+ q − 1)!)2
Z

Φ1,∞
∞ (g1,∞, ν1,∞, p+ q + 3/2)Z

Φ2,∞
∞ (g2,∞, ν2,∞, p+ q + 3/2)

of fΦ is proportional to φprφ
q
s. By the choice of our normalization factor, the two are in fact equal.

We claim that the non-archimedean part fΦf belongs to Bp,Q ⊗ Bq,Q. To prove this, let v be a
non-archimedean place. By the first statement of Proposition 5.1 and the Iwasawa decomposition
GL2(Qv) = B2(Qv)GL2(Zv), the function

g 7−→ Z
Φj,v
v (g, νj,v, p+ q + 3/2)
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is determined by its restriction to GL2(Zv). Assume that v does not belong to S1 ∪ S2, in other
words, for j = 1, 2, the character νj is unramified at v and Φj,v is the indicator function of Z2

v.

Let us show that g 7→ Z
Φj,v
v (g, νj,v, p + q + 3/2) is constant on GL2(Zv) and let us compute its

value. Let g =
(
a b
c d

)
∈ GL2(Zv). As c is coprime to d, for any non-negative integer n and any

t ∈ Q×v , we have
(0, t) ∈ Z2

v ⇐⇒ (tcv, tdv) ∈ Z2
v

and this implies Φj,v((0, t)g) = Φj,v(tc, td) = Φj,v(0, t). Hence, by a standard computation, for
any j = 1, 2, any non-archimedean v /∈ S1 ∪ S2 and any g ∈ GL2(Zv), we have

Z
Φj,v
v (g, νj,v, p+ q + 3/2) = Lv(p+ q + 2, νj)

where Lv(s, νj) is the local L-factor (see [Tat67, 2.5, p. 320]). Moreover, it follows from the
computations of [Tat67, 2.5, p. 321] that, for any non-archimedean v ∈ S1 ∪ S2 and any g ∈
GL2(Zv), we have

Z
Φj,v
v (g, νj,v, p+ q + 3/2) ∈ Q.

Hence, by our choice of the normalization factor 1/(LS1(p + q + 2, ν1)LS2(p + q + 2, ν2)), the
non-archimedean part fΦf of fΦ is Q-valued. Furthermore, it is obviously invariant by right
translation by the subgroup

(
Ẑ×

1

)
of GL2(Ẑ). As a consequence, it follows from Lemma 4.3

and from the second statement of Lemma 5.2 that fΦf belongs to Bp,Q ⊗ Bq,Q. The conclusion
follows. 2

5.2 Bessel models and local computations
The previous result shows that the integrals of Corollary 4.29, which compute the regulator,
coincide with special values of integrals of the shape∫

G′(Q)Z′(A)\G′(A)
Ψ(g)EΦ(g, µ, ν1, ν2, s) dg

for some specific choices of Ψ and Φ. The properties of these integrals rely on the Fourier
expansion of the cusp form Ψ along the Siegel parabolic subgroup

P =

{(
αA AS

tA−1

)
, α ∈ Gm, A ∈ GL2,

tS = S

}
of G. More precisely, they rely on the existence of Bessel models for cuspidal automorphic
representations ofG. Let us remark that some authors use the terminology ‘generalized Whittaker
model’ rather than ‘Bessel model’. As a motivation for the study of such objects, the reader might
find the first section of [Mor11] very interesting. To introduce Bessel models, let η : Q\A −→ C×
be a fixed additive character, let U denote the unipotent radical of P and let Λ : U(Q)\U(A) −→
C× denote the character defined by

Λ


1 r t

1 t s
1

1


 = η(t).

Introduce the following subgroups of G:

D =

d =

d1

d2

d2

d1

 , d1, d2 ∈ Gm

 ,
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N =

n =

1 r
1 s

1
1

 , u, w ∈ Ga

 ,

R = DU.

Definition 5.4. Let ν1, ν2 : Q×\A× −→ C× be continuous characters. Let αν be the character
of R(A) defined by

αν(du) = ν1(d1)ν2(d2)Λ(u).

A cuspidal automorphic representation π of G has a split Bessel model associated to (ν1, ν2) if
its central character ωπ coincides with ν1ν2 and if there exists Ψ ∈ π such that the function on
G(A) defined by

g 7−→ WΨ(g) =

∫
(Z(A)R(Q))\R(A)

Ψ(rg)αν(r)−1 dr

is not identically zero.

Remark 5.5. Obviously, π has a split Bessel model associated to (ν1, ν2) if and only if the function
g 7−→ WΨ(g) is non-zero for any non-zero Ψ ∈ π.

The connection between the integral we are interested in and split Bessel models is given by
the following result.

Lemma 5.6. Let π be a cuspidal automorphic representation of G and let Ψ ∈ π. Let

Z(Ψ,Φ, µ, ν1, ν2, s) =

∫
(Z(A)G′(Q))\G′(A)

Ψ(g)EΦ(g, µ, ν1, ν2, s) dg.

Then

Z(Ψ,Φ, µ, ν1, ν2, s) =

∫
(D(A)N(A)\G′(A))

WΨ(g)fΦ(g, µ, ν1, ν2, s) dg

for Re s big enough.

Proof. Note that we are in the setting of [Pia97, 2], for the choice

β =

(
1/2

1/2

)
∈ U(Q).

Hence, the statement follows from the proof of [Pia97, Theorem 5.2]. 2

Remark 5.7. The lemma shows that if π does not have a split Bessel model associated to (ν1, ν2),
then the integrals Z(Ψ,Φ, µ, ν1, ν2, s) are identically zero.

The global definition above has a local analog. Roughly speaking, given an irreducible
representation (πv, Vπv) of G(Qv), a local Bessel model of πv is a G(Qv) equivariant map from
Vπv to a space of functions W : G(Qv) −→ C such that W (rg) = α(r)W (g), for some character
α of R(Qv). For a precise definition, in particular at the archimedean place, we refer the reader
to [Mor11, 1.5]. Assume that π has split Bessel model associated to (ν1, ν2). If Ψ =

⊗′
v Ψv is

factorizable, it follows from the unicity of local Bessel models [Pia97, Theorem 3.1] that the
function WΨ factors into a restricted product WΨ =

∏′
vWΨv of local Bessel functions.
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Corollary 5.8. Assume that Φ =
∏′
v Φv and Ψ =

⊗′
v Ψv are factorizable. Then, for Re s big

enough, we have the Euler product expansion

Z(Ψ,Φ, µ, ν1, ν2, s) =
∏
v

Zv(WΨv ,Φv, µv, ν1,v, ν2,v, s)

where

Zv(WΨv ,Φv, µv, ν1,v, ν2,v, s) =

∫
(D(Qv)N(Qv)\G′(Qv))

WΨv(gv)f
Φv(gv, µv, ν1,v, ν2,v, s) dgv

for all places v.

The end of § 5 is devoted to the computation of some of the local integrals above, under the

assumption that π has a split Bessel model associated to (ν1, ν2).

Proposition 5.9. Let p be a non-archimedean place where π, ν1 and ν2 are unramified. Let Ψp

be the standard unramified vector of πp and let Φp be the indicator function of Z4
p. Normalize

WΨp in such a way that WΨp(1) = 1. Then,

Zp(WΨp ,Φp, 1, ν1,p, ν2,p, s) = L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)L(s+ 2, πp, r)

for Re s big enough.

Proof. The representation πp is a subquotient of an unramified principal series representation

ind
G(Qp)
B(Qp) χp (see [Cas80, Proposition 2.6]), where χp is an unramified character of T (Qp) and

where ind denotes normalized induction. As explained in [AS01, 3.2], the Satake parameters are

b0 = χp


1

1
p

p


 ,

b1 = χp


p 1

p−1

1


 ,

b2 = χp


1

p
1

p−1




and the Langlands Euler factor is

L(s, πp, r) =
1

(1− α1p−s)(1− α2p−s)(1− α3p−s)(1− α4p−s)

where we introduced the convenient notation α1 = b0b1b2, α2 = b0b1, α3 = b0 and α4 = b0b2. It
follows from the first statement of Proposition 5.1 that the function g 7−→ fΦp(g, 1, ν1,p, ν2,p, s)

belongs to ind
G′(Qp)
B′(Qp) χν1,p,ν2,p,s. Furthermore, it is easy to see that with our choice of Φp, f

Φp

932

https://doi.org/10.1112/S0010437X16008320 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008320


On higher regulators of Siegel threefolds II

is constant on G′(Zp). As a consequence, according to the Iwasawa decomposition G′(Qp) =
B′(Qp)G

′(Zp), the local integral Zp(WΨp ,Φp, 1, ν1,p, ν2,p, s) equals

fΦp(1, 1, ν1,p, ν2,p, s)

∫
Q×p
|x|s+1/2WΨp


x x

1
1


 d×x

= L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)

∫
Q×p
|x|s+1/2WΨp


x x

1
1


 d×x.

As the Bessel function WΨp satisfies WΨp(ugk) = Λp(u)Wψp(g) for any u ∈ U(Qp), any g ∈ G(Qp)
and k ∈ G(Zp), we have

WΨp


p
−m

p−m

1
1


 = WΨp


p
−m

p−m

1
1


1 1

1 1
1

1




= η(p−m)WΨp


p
−m

p−m

1
1


 .

For any integer m > 0, we have η(p−m) 6= 1. Hence,

WΨp


p
−m

p−m

1
1


 = 0.

As a consequence,

Zp(Ψp,Φp, 1, ν1,p, ν2,p, s)

= L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)
+∞∑
m=0

p−m(s+1/2)WΨp


p

m

pm

1
1


 .

Let β1 = ν1,p(p) and β2 = ν2,p(p). Because we assume that π has a split Bessel model associated to
(ν1, ν2), ν1ν2 coincides with the central character of π, hence we have α1α3 = α2α4 = β1β2. The
Weyl group W acts on the αi through all permutations which preserve the relation α1α3 = α2α4.
More precisely, with the notation of § 2.3, we have s1α1 = α2, s1α2 = α1, s1α3 = α4, s1α4 = α3

and s2α1 = α1, s2α2 = α4, s2α3 = α3, s2α4 = α2. Let A denote
∑

w∈W (−1)l(w)w, seen as an
element of the group algebra C[W ], where l(w) denotes the length of w. According to [BFF97,
Theorem 1.6 and Corollary 1.9(2)], the following explicit formula

WΨp


p

m

pm

1
1


WΨp(1)−1 = p−3m/2A(αm+2

3 α−1
4 )

A(α2
3α
−1
4 )
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is true for any integer m > 0. As a consequence, using WΨp(1) = 1, we have

Zp(WΨp ,Φp, 1, ν1,p, ν2,p, s) = L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)

×A(α2
3α4)−1A(α2

3α
−1
4 (1− α3p

−(s+2))−1)

which can be rewritten as

L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)L(s+ 2, πp, r)

×A(α2
3α4)−1A(α2

3α
−1
4 (1− α1p

−(s+2))(1− α2p
−(s+2))(1− α4p

−(s+2)))

because the local L-factor L(s+ 2, πp, r) is invariant under W . We claim that

A(α2
3α
−1
4 (1− α1p

−(s+2))(1− α2p
−(s+2))(1− α4p

−(s+2))) = A(α2
3α
−1
4 ).

Indeed, using the relation, α1α3 = α2α4, we find

α2
3α
−1
4 (1− α1p

−(s+2))(1− α2p
−(s+2))(1− α4p

−(s+2))

= α2
3α
−1
4 − (α2α3 + α2α

2
3α
−1
4 + α2

3)p−(s+2)

+ (α1α
2
3 + α2α

2
3 + α2

2α3)p−2(s+2) − α1α2α
2
3p
−3(s+2).

But, as α2α3 is fixed by s2s1s2 ∈ W , which has odd length, we have A(α2α3p
−(s+2)) = 0.

Similarly, note that α2α
2
3α
−1
4 is fixed by s2s1s2 because of the relation α1α3 = α2α4. So

A(α2α
2
3α
−1
4 p−(s+2)) = 0. Similarly we find that

A(α2
3p
−(s+2)) = A(α2

3α1p
−2(s+2)) = A(α1α2α

2
3p
−3(s+2)) = 0.

As (s2s1s2)(α2
3α2) = α2

2α3, we have A((α2α
2
3 + α2

2α3)p−2(s+2)) = 0. This proves our claim. As a
consequence, we have the equality

Zp(WΨp ,Φp, 1, ν1,p, ν2,p, s) = L(s+ 1/2, ν1,p)L(s+ 1/2, ν2,p)L(s+ 2, πp, r). 2

Remark 5.10. A similar result is stated without proof in [Pia97, Theorem 4.4].

Let us consider the ramified non-archimedean integrals.

Proposition 5.11 [Har04, Lemma 3.5.4]. Let p be a non-archimedean place. Then, if the
Schwartz function Φp and the Bessel function WΨp are Q-valued, we have

Zp(WΨp ,Φp, 1, ν1,p, ν2,p, p+ q + 2) ∈ Q.

Furthermore, if Ψp has a split Bessel model associated to (ν1,p, ν2,p), then there exists a Q-valued
function Φp such that

Zp(WΨp ,Φp, 1, ν1,p, ν2,p, p+ q + 2) ∈ Q×.

The archimedean computation below is a direct application of [Mor11, Theorem 7.1] and of
the Mellin inversion formula.

Proposition 5.12. Let π∞ be a discrete series representation of G(R)+ with minimal K-type
τ(λ1,λ2). Let ν1,∞, ν2,∞ : R× −→ C× be the characters defined by

ν1,∞(x) = |x|q sgn(x)p,

ν2,∞(x) = |x|p sgn(x)q.
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Let (vt)06t6λ1−λ2 be a standard basis of τ(λ1,λ2) and for any integer 0 6 t 6 λ1 − λ2, let
W∞,t : G(R)+ −→ C denote a Bessel function corresponding to vt in the sense of [Mor11, 3.1].
Let r ≡ p (mod 2) and s ≡ q (mod 2) be two integers. Assume that Φ∞ is of the shape

(x1, y1, x2, y2) 7−→ Φ∞(x1, y1, x2, y2) = Φ∞,1(x1, y1)Φ∞,2(x2, y2)

where

Φ∞,1(x1, y1) = (ix1 + y1)(p−r)/2(ix1 − y1)(p+r)/2e−π(x21+y21),

Φ∞,2(x2, y2) = (ix2 + y2)(q−s)/2(ix2 − y2)(q+s)/2e−π(x22+y22).

Then, the following statements are satisfied.
(i) If t+ λ2 + r 6= 0 or −t+ λ1 + s 6= 0, then

Z∞(W∞,t,Φ∞, 1, ν1,∞, ν2,∞, p+ q + 3/2) = 0.

(ii) Otherwise, let

a1 =
t− λ2 − (q − p)/2 + 2

2
,

a2 =
2λ1 + λ2 − t+ (q − p)/2 + 2

2
,

c1 =
λ1 + λ2 + 4

4
,

c2 =
λ1 − λ2 + 4

4
,

c3 =
λ1 + λ2 + 2

4
,

c4 =
λ1 − λ2 + 2

4
.

Then,

Z∞(W∞,t,Φ∞, 1, ν1,∞, ν2,∞, p+ q + 3/2)

= W∞,t(1)

(
2π(3(p+q)+6)/2

∫
L

Γ(c1 − s)Γ(c2 − s)Γ(c3 − s)Γ(c4 − s)
Γ(a1 − s)Γ(a2 − s)

π2s ds

2πi

)−1

× Γ(c1 + 3(p+q)+6
4 )Γ(c2 + 3(p+q)+6

4 )Γ(c3 + 3(p+q)+6
4 )Γ(c4 + 3(p+q)+6

4 )

Γ(a1 + 3(p+q)+6
4 )Γ(a2 + 3(p+q)+6

4 )

where Γ denotes the gamma function and where the path L is a loop starting and ending at +∞
and encircling all the poles of Γ(cj − s) for 1 6 j 6 4 once, in the negative direction.

Proof. The vector vt has weight λ′(t+ λ2,−t+ λ1) and the function Φ∞ has weight λ′(r, s) for
T ′ = U(1)2. Hence, W∞,t has weight λ′(t+λ2,−t+λ1) and fΦ∞ has weight λ′(r, s). The Iwasawa
decomposition G′(R) = B′(R)U(1)2 implies that Z∞(W∞,t,Φ∞, 1, ν1,∞, ν2,∞, s) equals

∫
R×+

∫
U(1)2

W∞,t


x x

1
1

 k

 fΦ∞


x x

1
1

 k, 1, ν1,∞, ν2,∞, s

 d×x dk.
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So, if t+ λ2 + r 6= 0 or −t+ λ1 + s 6= 0, we have

∫
U(1)2

W∞,t


x x

1
1

 k

 fΦ∞


x x

1
1

 k, 1, ν1,∞, ν2,∞, s

 dk = 0

for all x because the integral of a non-trivial character on a group is zero. In the case where
t+ λ2 + r = −t+ λ1 + s = 0, the integral equals

∫
R×+

W∞,t


x x

1
1


 fΦ∞


x x

1
1

 , 1, ν1,∞, ν2,∞, s

 d×x.

The Meijer G-function G4,0
2,4(z, a1, a2, c1, c2, c3, c4) is defined for any non-zero complex number z

by

G4,0
2,4(z, a1, a2, c1, c2, c3, c4) =

∫
L

Γ(c1 − s)Γ(c2 − s)Γ(c3 − s)Γ(c4 − s)
Γ(a1 − s)Γ(a2 − s)

zs
ds

2πi
.

It follows from [Mor11, Theorem 7.1(ii)] that for any positive real number x, we have

W∞,t


x x

1
1


 = W∞,t(1)x(p+q)/2

G4,0
2,4((πx)2, a1, a2, c1, c2, c3, c4)

G4,0
2,4(π2, a1, a2, c1, c2, c3, c4)

.

It is well known and explained in [BS13, p. 870], for example, that the contour L can be replaced
by a path L′ from −i∞ to +i∞ such that for 1 6 j 6 4, the poles of Γ(cj − s) are on the right
of L′. Furthermore, we have

fΦ∞


x x

1
1

 , 1, ν1,∞, ν2,∞, s

 = (−1)(p+q+r+s)/2π−2(p+q)((p+ q − 1)!)2xp+q+2

for any x ∈ R×+. Hence, we need to compute∫
R×+

x(3(p+q)/2)+2

∫
L′

Γ(c1 − s)Γ(c2 − s)Γ(c3 − s)Γ(c4 − s)
Γ(a1 − s)Γ(a2 − s)

(πx)2s ds

2πi

dx

x

which equals

1

2
π−(3(p+q)+6)/2 Γ(λ1+λ2+3(p+q)+10

4 )Γ(λ1−λ2+3(p+q)+10
4 )Γ(λ1+λ2+3(p+q)+8

4 )Γ(λ1−λ2+3(p+q)+8
4 )

Γ(2(t−λ2)+4p+2q+10
4 )Γ(2(2λ1+λ2−t)+4q+2p+10

4 )

by the Mellin inversion formula. This completes the proof. 2

6. Periods

In this section, we compute the pairing 〈ω, ṽD〉B (see Lemma 4.21) and we introduce Harris’
occult period invariant, which plays a crucial role in the present work.
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The E(πf )-module MB(πf ,W )−(−1) has rank two and the E(πf )-module F 0MdR(πf ,W )
has rank one (Lemma 4.15 and Hypothesis 4.17). Let us fix a basis (v1, v2) of MB(πf ,W )−(−1)
and let θ be a non-zero vector of F 0MdR(πf ,W ). This vector can be regarded as a vector of
MB(πf ,W )−R (−1) via the second arrow of the exact sequence of Lemma 4.12. Let λ1, λ2 ∈
E(πf )⊗ R be its coordinates in the basis (v1, v2).

Lemma 6.1. Let µ1, µ2 ∈ E(πf ) ⊗ R. Then µ1v1 + µ2v2 is mapped to a generator of B(πf ,W )
by the surjection

MB(πf ,W )−R (−1) // Ext1
MHS+

R
(R(0),MB(πf ,W )R)

of Corollary 4.12 if and only if λ1µ2 − λ2µ1 ∈ E(πf )×.

Proof. The map

θ∧ : MB(πf ,W )−R (−1) −→ detE(πf )⊗RMB(πf ,W )−R (−1)

is part of the following commutative diagram with exact lines

0 // F 0MdR,R //M−B,R(−1)
θ∧ // detM−B,R(−1) //

��

0

0 // F 0MdR,R //M−B,R(−1) // Ext1
MHS+

R
(R(0),M) // 0.

Moreover, via the isomorphism B(πf ,W ) ' detE(πf )MB(πf ,W )−(−1) induced by the choice of
θ, the vector µ1v1 +µ2v2 is mapped to a generator of B(πf ,W ) if and only if θ∧ (µ1v1 +µ2v2) =
ρv1 ∧ v2 for some ρ ∈ E(πf )×. As θ ∧ (µ1v1 + µ2v2) = (λ1µ2 − λ2µ1)v1 ∧ v2, the statement is
proven. 2

We need to recall the definition of the Deligne periods c±(πf ,W ) of the ‘motive’
M(πf ,W ) from [Del79, 1.7]. Let t denote the integer t = (p+ q + 6− k − k′)/2. We have the
Hodge decomposition

MB(πf ,W )C = M3−t,−k−k′−t
B ⊕M2−k′−t,1−k−t

B ⊕M1−k−t,2−k′−t
B ⊕M−k−k′−t,3−tB

where each M r,s
B is an E(πf )⊗ C-module of rank one (Propositions 3.7 and 3.8 and Hypothesis

4.16). Furthermore, the involution F∞ exchanges M r,s
B and M s,r

B . This implies that the E(πf )-
subspaces MB(πf ,W )± of MB(πf ,W ) where F∞ acts by multiplication by ±1 both have
dimension two. Let I∞ : MB(πf ,W )C −→ MdR(πf ,W )C denote the comparison isomorphism.
The subspaces F±(πf ,W ) of the de Rham filtration of MdR(πf ,W ) defined in [Del79, 1.7] are
equal and characterized by the fact that their complexification is mapped isomorphically to

M3−t,−k−k′−t
B ⊕M2−k′−t,1−k−t

B by I−1
∞ . The determinant of the isomorphism

I±∞ : MB(πf ,W )±C −→ (MdR(πf ,W )/F±(πf ,W ))C,

computed in basis defined over E(πf ), is by definition the Deligne period c±(πf ,W ). Its
equivalence class modulo the relation ∼ of Definition 4.19 does not depend on the chosen basis.
The Deligne periods c±(π̌f |ν|−3,W (−p− q − 3)) are defined similarly.
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Proposition 6.2. Let ω ∈MB(π̌f |ν|−3,W (−p−q−3))C satisfying the condition of Lemma 4.21.
Assume that ω belongs to MB(π̌f |ν|−3,W (−p − q − 3))+

C and that the image of ω by the
comparison isomorphism

I+
∞ : MB(π̌f |ν|−3,W (−p− q − 3))+

C −→ (MdR(π̌f |ν|−3,W (−p− q − 3))/F+)C

belongs to the E(πf )-structure MdR(π̌f |ν|−3,W (−p− q−3))/F+. Let ṽD be a lift of a generator
of D(πf ,W ) by the surjection

MB(πf ,W )−R (−1) −→ Ext1
MHS+

R
(R(0),MB(πf ,W )R)

of Corollary 4.12. Then,
〈ω, ṽD〉B ∼ (2πi)2c−(πf ,W )−1.

Proof. Recall that the Deligne and Beilinson E(πf )-structures are related by the identity

D(πf ,W ) = (2πi)2δ(πf ,W )−1B(πf ,W ).

Let µ1, µ2 ∈ E(πf ) ⊗ R such that λ1µ2 − λ2µ1 = 1. Then, according to Lemma 6.1, the vector
v = µ1v1 + µ2v2 is a lift of a generator of B(πf ,W ) by the surjection

MB(πf ,W )−R (−1) −→ Ext1
MHS+

R
(R(0),MB(πf ,W )R).

For any other lift w of any other generator of B(πf ,W ), we have 〈ω, v〉B ∼ 〈ω,w〉B. Hence, we
need to compute 〈ω, ṽD〉B = (2πi)2δ(πf ,W )−1〈ω, v〉B. Let 〈 , 〉dR denote the Poincaré duality
pairing in de Rham cohomology. Its complexification is part of the following commutative
diagram

MB(πf ,W )C ⊗MB(π̌f |ν|−3,W (−p− q − 3))C
〈 , 〉B //

I∞
��

E(πf )(0)B,C

J∞
��

MdR(πf ,W )C ⊗MdR(π̌f |ν|−3,W (−p− q − 3))C
〈 , 〉dR // E(πf )(0)dR,C

where the vertical maps are the comparison isomorphisms. Let 1B and 1dR be generators of
E(πf )(0)B and E(πf )(0)dR, respectively. We can assume that J∞(1B) = 1dR. Let θ′ be an element
of MdR(π̌f |ν|−3,W (−p − q − 3)) such that 〈θ, θ′〉 = 1dR, where θ ∈ F 0MdR(πf ,W ) is as above.
Let ω′ denote I+

∞(ω). It follows easily from the consideration of Hodge types that (ω′, θ′) is a
basis of MdR(π̌f |ν|−3,W (−p − q − 3))/F±. By definition (v1, v2) is a basis of the E(πf )-vector
space MB(πf ,W )−(−1). As a consequence, (2πiv1, 2πiv2) is a basis of MB(πf ,W )+. Let w1, w2

be vectors of MB(π̌f |ν|−3,W (−p − q − 3))+ such that 〈2πiv1, w1〉B = 〈2πiv2, w2〉B = 1B and
〈2πiv1, w2〉B = 〈2πiv2, w1〉B = 0. Hence, (w1, w2) is a basis of MB(π̌f |ν|−3,W (−p − q − 3))+.
Let α1, α2, β1, β2 ∈ E(πf )⊗C be such that I+

∞(w1) = α1ω
′+ β1θ

′ and I+
∞(w2) = α2ω

′+ β2θ
′. By

definition, we have
c+(π̌f |ν|−3,W (−p− q − 3)) = α1β2 − α2β1

and this implies the identity

ω = c+(π̌f |ν|−3,W (−p− q − 3))−1(β2w1 − β1w2).

Hence,

〈ω, v〉B = c+(π̌f |ν|−3,W (−p− q − 3))−1〈β2w1 − β1w2, µ1v1 + µ2v2〉
= c+(π̌f |ν|−3,W (−p− q − 3))−1(µ1β2 − µ2β1).
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To finish the proof, note that the pairing 〈θ, 〉dR vanishes on F± because the Hodge types do not
match. So 〈θ, ω′〉dR is meaningful, and in fact equal to zero, again because of the Hodge types.
As a consequence, we have

β11dR = 〈θ, I+
∞(w1)〉dR = J∞(〈λ1v1 + λ2v2, w1〉B) = λ11dR.

Hence, β1 = λ1. Similarly β2 = λ2. Hence, 〈ω, v〉B = −c+(π̌f |ν|−3,W (−p− q − 3))−1. It follows
from [Del79, (5.1.7) and (5.1.1)] that c+(π̌f |ν|−3,W (−p− q − 3)) ∼ δ(πf ,W )−1c−(πf ,W ). As a
consequence, 〈ω, v〉B ∼ δ(πf ,W )c−(πf ,W )−1. This completes the proof. 2

In the paper [Har04], Harris defines the occult period invariant and relates it to critical
values of the spinor L-function. Roughly speaking, the occult period invariant measures the
difference between the rational structure on πf defined in terms of de Rham cohomology
with that defined in terms of the Bessel model. To give a precise definition, let us fix Ψ =⊗

v Ψv ∈ π′ = π̌|ν|−3 a factorizable vector whose archimedean component Ψ∞ is a lowest
weight vector of the minimal K-type of the discrete series πW∞ ∈ P (W (−p − q − 3)) (see
Definition 3.5). This defines a cuspidal differential form Ω(Ψ∞) belonging to HomKG(

∧2 p+⊗Cp
−,

W (−p−q−3)⊗Cπ
W
∞ ) (Lemma 4.26) and hence an element (Ω(Ψ∞))σ:E(πf )→C ∈M2−k′−t′,1−k−t′

B

(Propositions 3.7 and 3.8). As F∞ exchanges M2−k′−t′,1−k−t′
B and M1−k−t′,2−k′−t′

B , the class
ω(Ψ∞) = 1

2((Ω(Ψ∞))σ + F∞((Ω(Ψ∞))σ)) satisfies the conditions of Lemma 4.21 and belongs to
MB(π̌f |ν|−3,W (−p− q − 3))+

C .

Definition 6.3. A vector Ψf ∈ π′f is arithmetic if it is the non-archimedean component of a
factorizable cusp form Ψ = Ψ∞ ⊗ Ψf ∈ π′ such that the image of ω(Ψ∞) by the comparison
isomorphism

I+
∞ : MB(π̌f |ν|−3,W (−p− q − 3))+

C −→ (MdR(π̌f |ν|−3,W (−p− q − 3))/F+)C

belongs to the E(πf )-structure MdR(π̌f |ν|−3,W (−p− q − 3))/F+.

The following proposition is a reformulation of [Har04, Proposition 3.5.2].

Proposition 6.4. Assume that π has a split Bessel model associated to (ν1, ν2). Then, there
exists a(π, ν1, ν2) ∈ C× such that the functional Ψf 7−→ a(π, ν1, ν2)WΨf sends the Ψf which are

arithmetic to functions Wψf which are Q-valued.

7. The main result

Theorem 7.1. Let k > k′ > 0 be two integers. Let W be an irreducible algebraic
representation of G of highest weight λ(k, k′, k + k′ + 4). Let π = π∞ ⊗ πf be a cuspidal
automorphic representation of G whose central character has infinity type −k−k′−4 and whose
archimedean component π∞ is a discrete series of Harish-Chandra parameter (k + 2, k′ + 1).
Let ν0

1 be a finite-order Hecke character of sign(−1)k−1 and let ν1 denote the Hecke character
| |1−k′ν0

1 . Let ν0
2 be a finite-order Hecke character of sign(−1)k

′−1 and let ν2 denote the Hecke
character | |1−kν0

2 . Let V be the finite set of places where π, ν1 or ν2 is ramified, together with
the archimedean place. Assume that:

(i) we have k > k′ > 0;

(ii) we have k + 1 ≡ k′ ≡ 0 (mod 2);
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(iii) the automorphic representation π is stable at infinity;

(iv) the automorphic representation π′ = π̌|ν|−3 has a split Bessel model associated to (ν1, ν2).

Then,
K(πf ,W ) = π−2a(π, ν1, ν2)c−(πf ,W )LV (k + k′ − 1/2, π̌)D(πf ,W ).

Proof. The assumptions on k and k′ imply that if we take p = k − 1 and q = k′ − 1, then
p, q, k, k′ satisfy the assumptions of Theorem 1.1. Let Ψ =

⊗
v Ψv ∈ π′ = π̌|ν|−3 be a factorizable

cusp form whose archimedean component Ψ∞ is a lowest weight vector of the minimal K-type
τ(k+3,−k′−1) of the element πW∞ of P (W (−p − q − 3)). Via a vector v given by Corollary 4.32,
and as explained above the statement of Definition 6.3, we associate to Ψ the Betti cohomology
class ω ∈ MB(π̌f |ν|−3,W (−p − q − 3))+

C satisfying the Hodge types conditions of Lemma 4.21.
Note that multiplying ω by a scalar, we can assume that the image of ω by the comparison
isomorphism

I+
∞ : MB(π̌f |ν|−3,W (−p− q − 3))+

C −→ (MdR(π̌f |ν|−3,W (−p− q − 3))/F+)C

belongs to MdR(π̌f |ν|−3,W (−p − q − 3))/F+. Let Eisk−1,k′−1,W
H (φf ⊗ φ′f ) ∈ K(πf ,W ). Let ρ

be a current given by Lemma 4.23. According to the first statement of Lemma 4.23, the Betti

cohomology class [ρ] of ρ is a lift of Eisk−1,k′−1,W
H (φf ⊗ φ′f ) by the natural surjection

MB(πf ,W )−R (−1) −→ Ext1
MHS+

R
(R(0),MB(πf ,W )R)

of Lemma 4.12. Hence, Lemma 4.21 implies that

K(πf ,W ) =
〈ω, [ρ]〉B
〈ω, ṽD〉B

D(πf ,W ).

According to Proposition 6.2, we have

〈ω, ṽD〉B ∼ (2πi)2c−(πf ,W )−1.

With the notation of Corollary 4.29, the pairing 〈ω, [ρ]〉B is equal to

C1
3

160(p+ 1)

3∑
j=0

(−1)k
′+q+j

(
3

j

)
Ak,k′,k′+q+j,j

∫
Ξk−q−2j+4,−k+k′+q,−q−2(φf , φ

′
f )

−C2
(−1)k

8(q + 1)
(Bk,k′,k−p − Ck,k′,k−p+1)

∫
Ξk′+p+3,−p−2,−k+k′+p(φf , φ

′
f )

+C3
3

160(q + 1)

3∑
j=0

(−1)k
′+j

(
3

j

)
Ak,k′,k′+p+j,j

∫
Ξk−p−2j+4,p+2,−k+k′+p(φf , φ

′
f )

−C4
(−1)k

′+p+1

8(q + 1)
(Bk,k′,k′+p − Ck,k′,k′−p+1)

∫
Ξk−p+3,−k+k′−q,q+2(φf , φ

′
f ).

According to Proposition 5.3, if we choose φf and φ′f properly, we have∫
Ξn,r,s(φf , φ

′
f ) =

∫
Xn

(1,−1)ΨE
Φ

where the archimedean component of the Schwartz–Bruhat function Φ is defined by

Φ∞(x1, y1, x2, y2) = (ix1 + y1)(p−r)/2(ix1 − y1)(p+r)/2(ix2 + y2)(q−s)/2

× (ix2 − y2)(q+s)/2e−π(x21+y21+x22+y22).
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This has weight λ′(r, s) for the action of U(1)2. Moreover, the archimedean component of Ψ

is chosen to be a lowest weight vector of the minimal K-type τ(k+3,−k′−1) of πW∞ . Hence Xn
(1,−1)Ψ is

the nth vector of a standard basis of τ(k+3,−k′−1). The integrals above expand into Euler products

of v-adic integrals (Corollary 5.8) and we have∫
Ξk−q−2j+4,−k+k′+q,−q−2(φf , φ

′
f ) = 0

because the identities

k − q − 2j + 4− k′ − 1 + (−k + k′ + q) = −2j + 3 6= 0,

imply the vanishing of its archimedean factor (see the first statement of Proposition 5.12).

Similarly, ∫
Ξk−p−2j+4,p+2,−k+k′+p(φf , φ

′
f ) =

∫
Ξk−p+3,−k+k′−q,q+2(φf , φ

′
f ) = 0.

As a consequence,

〈ω, [ρ]〉B = −C2
(−1)k

8(q + 1)
(Bk,k′,k−p − Ck,k′,k−p+1)

∫
Ξk′+p+3,−p−2,−k+k′+p(φf , φ

′
f )

∼ C2

∫
(Xk′+p+3

(1,−1) Ψ)EΦ.

For this integral, with the notation of Proposition 5.12, we have λ1 = k + 3, λ2 = −k′ − 1 and

t = n = k′+ p+ 3 hence t+λ2 + r = −t+λ1 + s = 0, which means that we can apply the second

result of Proposition 5.12. Normalize the Bessel functional WΨ =
∏′
vWΨv in such a way that for

any place p /∈ V , we have WΨp(1) = 1, and that

WΨ∞(1) = 2π(3(p+q)+6)/2

∫
L

Γ(c1 − s)Γ(c2 − s)Γ(c3 − s)Γ(c4 − s)
Γ(a1 − s)Γ(a2 − s)

π2s ds

2πi

where the notation is the same as in Proposition 5.12. Combining the statements in Corollary 4.32
and Propositions 5.9, 5.11, 5.12 and 6.4, we obtain

〈ω, [ρ]〉B ∼
Γ(c1 + 3(p+q)+6

4 )Γ(c2 + 3(p+q)+6
4 )Γ(c3 + 3(p+q)+6

4 )Γ(c4 + 3(p+q)+6
4 )

Γ(a1 + 3(p+q)+6
4 )Γ(a2 + 3(p+q)+6

4 )

× a(π, ν1, ν2)LV (p+ q + 7/2, π̌, r).

We have

c1 +
3(p+ q) + 6

4
= k +

k′

2
+ 1,

c2 +
3(p+ q) + 6

4
= k + k′ +

4

2
,

c3 +
3(p+ q) + 6

4
= k − k′

2
+ 1,

c4 +
3(p+ q) + 6

4
= k + k′ +

3

2
.
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By our assumption k′ ≡ 0 (mod 2), the numbers c1, c2 and c3 are integers and c4 is a half-integer.
By well-known formulas for the positive integral and half-integral values of the gamma function,
for i = 1, 2, 3, we have

Γ

(
ci +

3(p+ q) + 6

4

)
∼ 1,

Γ

(
c4 +

3(p+ q) + 6

4

)
∼ π1/2.

Similarly, using the assumption k + 1 ≡ k′ ≡ 0 (mod 2), we show

Γ

(
a1 +

3(p+ q) + 6

4

)
∼ 1

Γ

(
a2 +

3(p+ q) + 6

4

)
∼ π1/2.

Then, we obtain

〈ω, [ρ]〉B
〈ω, ṽD〉B

∼ π−2a(π, ν1, ν2)c−(πf ,W )LS(k + k′ − 1/2, π̌). 2

In the case we are interested in, the existence of a split Bessel model follows from some
results of Moriyama and Takloo-Bighash.

Proposition 7.2. Let k, k′, π, ν1, ν2 be as above. If k 6= 3, k′ 6= 2 and π′ is generic, then π′ has
a split Bessel model associated to (ν1, ν2).

Proof. With the notation of Definition 5.4, we see that

WΨ(1) =

∫
Q×\A×

∫
(Q\A)3

Ψ


1 r t

1 t s
1

1


y 1

1
y


 ν1(y)−1η(t)−1 dr ds dt d×y.

This is the central value Z(1/2,Ψ ⊗ ν−1
1 ) of the integral representation Z(s,Ψ ⊗ ν−1

1 ) of the
spinor L-function of Ψ twisted by ν−1

1 , as defined by Novodvorsky (see [Tak00]). Let us mention
that Novodvorsky’s expression for this integral is obtained from ours after an easy change of
variables. To show that this central value is non-zero, it is enough to show that Z(1/2,Ψ⊗ ν−1

1 )
expands into an Euler product where each factor is non-zero. Note that the central character
Ψ⊗ν−1

1 has infinity type ω∞ = k+2k′−3 and that, for integers k, k′ satisfying our assumptions,
we have k + 2k′ > 7. Hence, excluding the case k = 3 and k′ = 2, we have the inequality
1/2 > (5−ω∞)/2, and so it follows from [Mor04, Proposition 4], that the above integral expands
into an Euler product

Z(1/2,Ψ⊗ ν−1
1 ) =

∏
v

Zv(1/2,Ψ⊗ ν−1
1 )

indexed by all places of Q. The archimedean factor is a gamma factor, hence does not vanish. As a
consequence, the computations of the local non-archimedean factors Zv(1/2,Ψ⊗ν−1

1 ) performed
in [Tak00] show that

Z(1/2,Ψ⊗ ν−1
1 ) 6= 0.

This shows that π′ has a split Bessel model associated to (ν1, ν2). 2

942

https://doi.org/10.1112/S0010437X16008320 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008320


On higher regulators of Siegel threefolds II

As we work with a stable L-packet, which always contains a generic member, Theorem 7.1
and Proposition 7.2 directly imply the following result.

Theorem 7.3. Let k > k′ > 0 be two integers. Let W be an irreducible algebraic representation
of G of highest weight λ(k, k′, k + k′ + 4). Let π = π∞ ⊗ πf be a cuspidal automorphic
representation of G whose central character has infinity type −k−k′−4 and whose archimedean
component π∞ is a discrete series of Harish-Chandra parameter (k + 2, k′ + 1). Let ν0

1 be a
finite-order Hecke character of sign(−1)k−1 and let ν1 denote the Hecke character | |1−k′ν0

1 . Let
ν0

2 be a finite-order Hecke character of sign(−1)k
′−1 and let ν2 denote the Hecke character | |1−kν0

2 .
Let V be the finite set of places where π, ν1 or ν2 is ramified, together with the archimedean
place. Assume that:

(i) we have k > k′ > 0;

(ii) we have k + 1 ≡ k′ ≡ 0 (mod 2);

(iii) we have k 6= 3, k′ 6= 2;

(iv) the automorphic representation π is stable at infinity.

Then,

K(πf ,W ) = π−2a(π, ν1, ν2)c−(πf ,W )LV (k + k′ − 1/2, π̌)D(πf ,W ).

Corollary 7.4. Let n be an integer. Let A −→ S be the universal abelian surface of infinite
level over the Siegel threefold and let An be the nth-fold fiber product over S. If n is odd and
n > 7, then the motivic cohomology space Hn+4

M (An,Q(n+ 2)) is non-zero.

Proof. Let k and k′ be two integers satisfying the assumptions of Theorem 7.3 and such that
n = k+ k′. Let t denote the integer (k+ k′ + p+ q+ 6)/2. The target of the map Eisp,q,WM is the

motivic cohomology group H4
M(S,W ), for W as above, which is a subspace of Hk+k′+4

M (Ak+k′ ,
Q(t)) according to Proposition 4.1. Assume that p = k−1 and q = k′−1. It follows from [Mor04,
Proposition 4] that the value k + k′ − 1/2 is in the absolute convergence region of the spinor
L-function, hence that the special value LV (k + k′ − 1/2, π̌, r) is non-zero. As a consequence,
Theorem 7.3 implies that the vector space K(πf ,W ) is non-zero. Via Beilinson’s regulator, the

image of Eisp,q,WM surjects on K(πf ,W ) for any πf which is the non-archimedean part of a
cuspidal automorphic representation satisfying the conditions of Theorem 7.3. Hence, the motivic
cohomology group Hn+4

M (An,Q(n+ 2)) is non-zero. 2
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