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On higher regulators of Siegel threefolds II:
the connection to the special value

Francesco Lemma

ABSTRACT

We establish a connection between motivic cohomology classes over the Siegel
threefold and non-critical special values of the degree-four L-function of some cuspidal
automorphic representations of GSp(4). Our computation relies on our previous work
[On higher regulators of Siegel threefolds I: the vanishing on the boundary, Asian J.
Math. 19 (2015), 83-120] and on an integral representation of the L-function due to
Piatetski-Shapiro.

1. Introduction

The analytic class number formula of Dedekind and Dirichlet, proved in the middle of the
nineteenth century, is a mysterious relationship between an analytic invariant and an arithmetic
invariant of a number field K. It relates the leading Taylor coeflicient at zero of the zeta function
of K to the units O of K through the regulator map

)

O?{ > Rr1tre

where r; and ro denote the number of real and complex places of K, respectively. According to
Beilinson’s conjectures on special values of motivic L-functions [Bei85], such relationships should
exist in great generality. To generalize the analytic class number formula, Beilinson replaces units
by motivic cohomology classes and the classical regulator by the higher regulator

Hj (X, Q(n)) — Hj}y(X/R,R(n))

from motivic cohomology to absolute Hodge cohomology. Here X denotes a smooth projective
scheme over Q. For an introduction to Beilinson’s conjectures, to the motivic formalism
underlying them, and for a survey of known results, the interested reader might consult the
article [Nek94]. In this paper, we establish a connection between elements in the motivic
cohomology of the Siegel threefold and special values of the degree-four L-function of some
cuspidal automorphic representations of the symplectic group GSp(4). The author hopes that the
present work may not be useless to discover more general phenomena explaining the connection
between special values of automorphic L-functions and mixed motives.

Like in the previous approaches, the motivic cohomology classes that we work with
are constructed using Beilinson’s Eisenstein symbol and the functorial properties of motivic
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cohomology. For any non-negative integer n and level K, the Eisenstein symbol [Bei88, § 3] is a
Q-linear map

Eish : B, — H (Mg, Sym"Va(1)) (1)

whose target is the motivic cohomology of the Shimura variety My of GL(2), or modular curve,
of level K, with coefficients in the nth symmetric power of the motivic sheaf V5 associated to
the standard representation of GL(2). The definition of 5, will be given later, but we would like
to mention that for ¢; € By, the image of Eis’y(¢¢) under the regulator

rp : Hy (Mg, Sym"Va(1)) — Hj (Mg /R, Sym™Va(1))

in Deligne—Beilinson cohomology can be explicitly described by real analytic Eisenstein series.
At present, most of the results relating special values of L-functions to regulators rely on the
Eisenstein symbol (see, for example, [Bei88, Den89, Den90, Kin98, Kat04]).

To explain the construction of the motivic cohomology classes that we shall study, let us
introduce some notation. Let Iy be the identity matrix of size two and let ) be the symplectic

form whose matrix is
_ I
o= )

The symplectic group GSp(4) is defined as
GSp(4) = {g € GLyq | ‘g9 = v(9)¥, v(g9) € G}

It is a reductive linear algebraic group over Q and contains the group GL(2) xg,, GL(2), where
the fiber product is over the determinant, via the embedding

GL(2) xg,, GL(2) —— GSp(4)

defined by
a b

a b a b\\ _ a’ il
“\Ne d)\¢ @)) " |e d
d d
For a fixed level L, the Shimura variety S associated to GSp(4) is a smooth quasi-projective
threefold defined over Q. Moreover, for any level K, the morphism ¢ induces a closed embedding

MKXMK4L>SL

for some L. The basic idea is to map the external cup-product Eis’/’w I_IEisgw to the motivic
cohomology of Sp via this embedding. To be more precise, let p and ¢ be non-negative
integers, and let (Sym”Vy X Sym?V5)(3) denote the irreducible algebraic representation
(SymP V5 X Sym? Vo) @ det®® of GL(2) xg,, GL(2), where det is the determinant character. Let
W be an irreducible representation of GSp(4) such that, as representations of GL(2) xg,, GL(2),
we have

(Sym? Va K Sym? V3)(3) C W (2)

In what follows, we shall take the liberty to denote by the same symbol W the motivic sheaf
on Sy, corresponding to W (see §4.1). Taking the external cup-product of Eis, and Eis}, we
obtain the map

Eish UEish, : By, ®g By — H3(Mg x Mg, (Sym? V3 K Sym? V3)(2)).
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Composing with the map induced by the inclusion (Sym? Vo X Sym? V5)(2) C «*W(—1) and with
the Gysin morphism corresponding to ¢, we obtain the map

Eish?" . B, @q By — HL,(Sp, W). (3)

To go further, let us recall the main result of [Lem15], which will be crucial for us. Irreducible
algebraic representations of GSp(4) are classified by their highest weight, i.e. by two integers
k> kK > 0. Let k and k' be two such integers. Assume that k + k" = p + ¢ (mod 2) and let
W be an irreducible algebraic representation of GSp(4) with highest weight A(k, k’, c¢), with the
notation of §2, where ¢ = p + ¢ + 6. Then, condition (2) above is equivalent to the following
inequalities:

(i) we have p < k;

(i) fO<p< K andp<k—Fk' thenk -k —p<qg<k—FK +p;
(iii) f 0<p<k and k— Kk <p,thenp—k+k <qg<p+k—F,;
(iv) if ' <p<kand ¥ <k—p,thenk -k —p<qg<k+k —p;
(v) ifk'<p<kandk—p<K,thenp—k+k <q<k+k —p.

Let H%!(SL,W) be the image of the Betti cohomology with compact support in the
cohomology7 without support, in the middle degree. By the theory of mixed Hodge modules,
there is a pure real Q-Hodge structure of weight 3 — ¢ = —p — ¢ — 3 on H%’!(SL,W). ‘Real’
means that the vector space H %7!(SL,W) is endowed with an involution whose C-antilinear

complexification stabilizes the Hodge filtration. For H3, (S, W), this involution is just the map
induced by complex conjugation on the complex points of S and on W. Let us also denote by
Eisé’{’q’w the composite of Eis’/’\’j’w and of the regulator

ry s Hy(Sp, W) — H3},(SL/R, W)
in absolute Hodge cohomology.

THEOREM 1.1 [Lem15, Theorem 6.8]. Assume k > k' >0, k+ kK #p+q, k—p—qg—1#0,
k—k —p—q—2#0andk—p—q—2+#0. Assume that (k—k'—p—q—2)/2 and (k—k'+p+q)/2

are even and that the cusps in the boundary of the Baily—Borel compactifications of Mg x Mg

and of S, are totally real. Then Eis%’q’w factors through the inclusion

Ethl\AHSﬁg (R(0), Hp (SL, W)r) C Hyy(SL/R, W)

where MHSng denotes the abelian category of mixed real R-Hodge structures and H%,!(S L, W)r
denotes H%’!(SL, W) ®@qR.

Let m = @/ 7, be a cuspidal automorphic representation of GSp(4). As GSp(4) is its own
Langlands dual group, we can associate to 7 the partial Euler product

Ly(s,m,r) = H L(s,my, )
vgV

where V' denotes the set of places of Q where 7 is ramified together with the archimedean place
and where 7 : GSp(4) —> GL(4) is the natural inclusion. This L-function is called the spinor,
or degree-four, L-function in the literature. Assume that p = k — 1, ¢ = k¥’ — 1 and that the
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non-archimedean component of m occurs in the middle degree cohomology of S, with coefficients
in W. This means that the central character of w has infinity type —k — k' — 4 and that the
archimedean component of 7 is a discrete series of Harish-Chandra parameter (k + 2,k + 1).
Then, the non-archimedean part 7y of 7 is defined over its rationality field, which is a number
field E(my) (see [BHR94]) and that will be enlarged if necessary. As a consequence, we can look
at the L-function Ly (s,m,r) as an E(my) ®g C-valued function. In general, the automorphic
representation 7 will be stable at infinity (Definition 4.16 and Remark 4.18) and we assume here
that it is the case. Then, the Q-vector space

Mp(mp, W) = Homge(a ) (Respr,) o 7, Hy 1 (S, W)

underlies a pure real Q-Hodge structure with coefficients in E(7y), which is of rank four and
weight —k — k' — 1. Let Ay be the finite adeles of Q and let

Ethl\/[Hsﬂg (R(O)a H%,! (Sa W)R) = h_£>n Ethl\/[HSﬁ{ (R(())v H%,!(SL7 W)R)

where the limit is taken over all levels L C GSp(4)(Ay), which is a R[GSp(4)(Af)]-module. The

sub-Q[GSp(4)(Af)]-module generated by the images of the Eisg_zq’w for varying levels will be

denoted by IC(p, ¢, W). As 7 is assumed to be stable, the 7 ¢-isotypical component Exti/[HS+ (R(0),
R

Mp(m¢, W)r) of ExtllleSﬁ{ (R(0), H%J(S, W)R) is a rank-one E(7¢) ®g R-module and is endowed

with its Deligne E(7)-structure D(7s, W). Let K(my, W) denote the projection of K(p,q, W) on

Extll\/[HS+ (R(0), Mp(m¢, W)r). To state our main result, we need to consider the Deligne period
R

¢ (mg, W) associated to 7 and W and Harris’ occult period invariant a(m, vq, 1), first introduced
in [Har04]. Roughly speaking, the invariant a(m,vi,12) measures the difference between the
rational structure on 7y coming from de Rham cohomology and that coming from the Fourier
expansion of cusp forms along the Siegel parabolic. A precise definition will be given in the
body of the paper but note that the notation a(7, v, v2) is slightly abusive as the occult period
invariant cannot be defined merely by reference to the abstract representation = but depends on
its realization in cohomology. The following theorem is our main result.

THEOREM 1.2. Let 7 be as above and let i be the contragredient representation. Let vy,
respectively Vg, be a finite order Hecke character of sign(—l)k_l, respectively of sign(—l)k/_l,
and let vy = | |'=¥' 19, respectively vy = | |*~%19. Let V be the finite set of places where 7,1, or
vy is ramified together with the archimedean place. Assume that:

(a) we have k > k' > 0;

(b) we have k+1 =k =0 (mod 2);

(c) we have k # 3, k' # 2;

(d) the automorphic representation 7 is stable at infinity.

Then
IC(T(fa W) = 7'('_2(1(71', Vi, VQ)C_(Wfa W)LV(k + kK - 1/2> 7VT),D(T‘-f? W)
Three remarks are in order.
(i) The author announced a similar result some time ago [Lem08, Theorem 4|, but the proof

he thought he had found contained an error. The present work shows that a slight variant of
[Lem08, Theorem 4] is true and goes significantly further (see Corollary 1.3 below).

892

https://doi.org/10.1112/50010437X16008320 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16008320

ON HIGHER REGULATORS OF SIEGEL THREEFOLDS II

(ii) The hypothesis k+1 = k' = 0 (mod 2) implies that we can apply Theorem 1.1 to p=k—1
and ¢ = k' — 1. This limitation on p and g can be called technical and we would be able to get a
similar result for arbitrary p and ¢ satisfying the assumption of Theorem 1.1 at the cost of very
long (but elementary) calculations. See Remark 4.31 for more details.

(iii) The term 7 2a(m, v1,v2)c™ (mf, W) is expected to be an algebraic number according to
Beilinson’s conjecture. This expectation is coherent with the main result of the paper [Har04],
where the transcendental part of critical values of the spinor L-function are computed in terms
of a(m,v1,v9). By looking closely at the arguments of [Har04], it is not too difficult to see that
the transcendental part of the uncomputed constants appearing in the main result of [Har04] are
powers of m. As a consequence, according to the Deligne conjecture on critical values [Del79],
as stated for example in [Har04, 2.6], we should have a(m,vi,v0)c™(7f, W) € 7ZQ™. The
explicit computation of these constants and of the archimedean integrals in [Har04] should give
a(m,vi,v2)c” (my, W) € 72Q". For more details on the compatibility between the main result of
[Har04] and Deligne conjecture see [Har04, Remarks following Theorem 3.5.5].

COROLLARY 1.3. Let n > 0 be an integer. Let A —> S be the universal abelian surface of infinite
level over the Siegel threefold and let A™ be the nth-fold fiber product over S. If n is odd and
n > 7, then the motivic cohomology space Hﬁr4 (A", Q(n + 2)) is non-zero.

The proof of Theorem 1.2 relies on three main ingredients. The first is Theorem 1.1. The

second is the analytic description of the composite Eis%q’w =rpo Eisﬁ’j’w where

D Hjlw(S, W) —— H%(S/R, W)

is the regulator in real Deligne—Beilinson cohomology. This follows from Beilinson’s explicit
description of the image of the Eisenstein symbol in Deligne—Beilinson cohomology, the
functoriality of the regulator and the explicit description of the cup-product and the Gysin
morphism in Deligne—Beilinson cohomology. The third ingredient is an integral representation
of the spinor L-function whose study was initiated in [Pia97] and carried on in [BFF97, Morll,
Tak00]. The contribution of the present work is to explain why these three ingredients, which
might seem of quite different natures, are in fact closely related.

Let us give an overview of the different sections of the article. In § 2 we collect conventions and
notation that will be important in the following. We would like to draw the reader’s attention to
§ 2.4 where the normalizations of the measures on adelic groups are explained and to § 2.5 where
the convention on the weight of variation of Hodge structures is adopted, as this last point differs
from one author to the other. Section 3 recalls the connection between discrete series L-packets for
GSp(4) and the Hodge decomposition of HP. In §4, we provide the basis for the computation of
the regulator. First, the explicit description of the map Eis%q’w is given (Proposition 4.10). Then,
we adapt to our setting an idea of Beilinson which permits the reduction of the computation
of the regulator to the computation of a Poincaré duality pairing (Lemma 4.21). Finally, in
a series of lemmas, the computation of the pairing, hence of the regulator, is reduced to the
computation of an adelic integral, where the integrand is the product of a cusp form by an
Eisenstein series (Corollary 4.29). Section 5 is devoted to the computation of this integral. First,
we need to compare very precisely the Eisenstein series appearing in our integral with that
defined by Piatetski-Shapiro in [Pia97]. This is done in Proposition 5.3. Then, we have to study
an integral as defined by Piatetski-Shapiro. The constructions of [Pia97] are based on the Fourier
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expansion of cusp forms along the Siegel parabolic and more precisely, on the existence of Bessel
models for automorphic representations of GSp(4). The integrals of [Pia97] expand into Euler
products, whose factors need to be computed. In the case we are interested in, the unramified
non-archimedean local integrals are computed in Proposition 5.9. The ramified non-archimedean
integrals and the archimedean integral are analyzed in Propositions 5.11 and 5.12, respectively.
In §6, we introduce Deligne periods, Harris’ occult period invariant and perform a period
computation which explains the contribution of D(ws, W) to Theorem 1.2. In §7, we explain
how to deduce the existence of split Bessel models from results of Moriyama [Mor04] and
Takloo-Bighash [Tak00]. We finally prove Theorem 1.2 and Corollary 1.3 as an easy consequence
of the previous results.

2. Notation and conventions

In this section, we collect some notation, conventions and basic results that will be used in the
rest of the article. The reader might prefer to look at this section only according to their needs,
following the references given in the paper.

2.1 Given a ring A, an A-algebra A — B and an A-module M, we will denote by Mp the
B-module B ® 4 M when the base ring A is clear from the context. Similarly for any A-scheme
X, we will denote by Xp the B-scheme obtained by extension of scalars to B.

2.2 Let Ay = Q®g Z, respectively A = R x Ay, denote the topological rings of finite adeles,
respectively of adeles, of Q. The field R is endowed with its usual absolute value. For every prime
number p, we normalize the non-archimedean absolute value on @, by |p| = p~! as usual. Hence,
the map A* — C* defined by (z,), —> [], || induces a continuous character | | : Q*\A* —
C*. Every continuous character v = @/ v, : Q*\A* — C* can be written uniquely v = | [¥2/° for
some complex number s and some finite-order character 1% (see [Bum97, Proposition 3.1.2(ii)]).
The infinity type of v is by definition the complex number s and the sign of v, is by definition

Voo(—1).

2.3 Let I be the identity matrix of size two and let

o= ")

The symplectic group G = GSp(4) is the reductive linear algebraic group over Q defined as

G ={g € GLyyq | ‘g9 =v(9)¢.v(9) € Gn}.

Then v : G — G, is a character and the derived group of G is Sp(4) = Kerv. We denote by
T C G the diagonal maximal torus defined as

T = {diag(al,ag,aflu, a;ly) | a1, c0,v € Gy }

and by B = TU the standard Borel subgroup of upper triangular matrices in G. We identify the
group X*(T') of algebraic characters (we will also, as usual, say ‘weights’) of T' to the subgroup
of Z* @ Z of triples (k, k', c) such that k + k' = ¢ (mod 2) via

Ak, K c) : diag(ag, ag, o] 'y, ap ') —s okl ylek=k)/2,
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Let p1 = A(1,—1,0) be the short simple root and ps = A(0,2,0) be the long simple root. Then
the set R C X*(T') of roots of T'in G is

R = {%p1, £p2, £(p1 + p2), £(2p1 + p2)}

and the subset RT C R of positive roots with respect to B is

R = {p1,p2, p1 + p2,2p1 + p2}.

Then, the set of dominant weights is the set of A\(k, k', ¢) such that k > k' > 0. For any dominant
weight A, there is an irreducible algebraic representation V) of G of highest weight A, unique
up to isomorphism, and all isomorphism classes of irreducible algebraic representations of GG are
obtained in this way. If V), is irreducible with highest weight \(k, k', ¢), the contragredient of V)
has highest weight \(k, k', —c).

The Weyl group W of (G,T) is defined as the normalizer of 7' in G modulo its centralizer.
It is a group of order eight such that the images in W of the elements

1 1

S1 52

1 —1
generate W. Then W acts on X*(T') according to the rule
(w.\)(t) = Mw ™ ttw)

and we have s1.\(k,k',¢) = MK, k,c) and so. \(k, k', ¢) = A(k,—K',c¢) which means that s;
corresponds to the reflection associated to the short simple root p; and so to that associated to
the long simple root ps.

We shall also denote by G’ the reductive linear algebraic group GLaXg,, GL2 over Q, where
the fiber product is over the determinant. As mentioned in the introduction, we have the
embedding ¢ : G’ —> G defined by

a b
a b a bv\\ _ a b
“W\e a) \¢ a e d
c d

The subgroup of upper triangular matrices in G’ is denoted by B’.

2.4 Let us explain our normalizations of the Haar measures on adeles groups, in the case
of G(A). A similar discussion can be done for G’(A). Consider the unitary group U(2) = {g €
GL(2,C) | tgg = Is} where g denotes the complex conjugate of g. The map r : U(2) —> Sp(4,R)

defined by
g=A+iBr— <_‘3‘B ﬁ),

where A and B denote the real and imaginary parts of g, identifies U(2) with a maximal compact
subgroup K of Sp(4,R). Let Ag = R} be the identity component of the center of G, write
K¢ for the subgroup AgK of G(R), which is maximal compact modulo the center, and let
¢ : Ag —> C* be a continuous character. Denote again by £ : G(A) —> C* the extension of £ to
G(A) given by £€((gy)s) = |¥(goo)|"/?. The choice of a generator 1g of the highest exterior power
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of Lie Gr/Lie(Ag K) determines a left translation invariant measure on G(R)/(AgK). Together
with the Haar measure on K whose total mass is one, this datum determines a left translation
invariant measure dgc on G(R)/Ag. For every prime number p, we endow G(Q,) with the Haar
measure dg, for which G(Z,) has volume one. Then, we have the translation invariant measure
dg = [,<oe 9o on G(A). To introduce automorphic representations, let L?(G(Q)\G(A),£) be
the space of functions f : G(Q)\G(A) — C such that:

(i) for all z € Ag, for all g € G(A), f(zg) =&(2)f(9);
(ii) the function ¢! f is square-integrable on AgG(Q)\G(A).

The subspace °L?(G(Q)\G(A),&) of admissible cuspidal functions is a discrete sum with
finite multiplicities of closed irreducible ((g,Kqg) x G(Ay))-invariant subspaces, which are
cuspidal automorphic representations of G' by definition. Here, we denote by g the Lie algebra
of G(R). Let C*(G(Q)\G(A), &), respectively C°(G(Q)\G(A),&), be the space of functions
f:G(Q)\G(A) — C such that:

(i) for all z € Ag, for all g € G(A), f(zg) =&(2)f(9);
i) the restriction of f to G(R) is C*°, respectively C*° and compactly supported modulo Ag;
(iii) the restriction of f to G(Ay) is locally constant and compactly supported.

Let CE’O)( (Q)\G(A), €) denote the space L?(G(Q)\G(A), &) NC®(G(Q)\G(A), ). We have

natural inclusions of ((g, Kg) < G(Af))-modules

C(GQNG(A),§) C CH(GQ\G(A),€) C C(G(QNG(A), S). (4)

Finally, let C3%,(G(Q)\G(A),£) denote °L*(G(Q)\G(A),&) N C®(G(Q)\G(A),£). Smooth
truncation to a large compact modulo the center subset induces a map

Casp(GQNG(A), &) — C(GQ\G(A),§). (5)

2.5 Let S = Resc/r Gm,c be the Deligne torus. Following Deligne and Pink, our convention
for the equivalence of categories between algebraic representations of S in finite-dimensional
R-vector spaces and (semisimple) mixed R-Hodge structures is as follows. Let (p, V') be such
a representation of S. Then the summand VP¢ of Vi of type (p,q) is the summand on which
p(z1, 22) acts by multiplication by z; "2z, ¢ for any (21,22) € S(C). In particular, any algebraic
representation V of S with central character ¢ corresponds to a pure Hodge structure of weight
—c. This convention disagrees with that adopted in [Har04, Tay93] and [Wei05] but agrees with
that adopted in [Kin98, Lem08] and [Pin90].

3. Motives for GSp(4)

In this section, we are mainly interested in reviewing the connection between the Hodge
decomposition of the middle degree cohomology of Siegel threefolds and the discrete series
L-packets for G. Let us start by recalling the classification of discrete series for G.

3.1 Discrete series L-packets

In this section and in several other places of the present article, the reader will have to be familiar

with the representation theory of compact Lie groups as exposed, for example, in [Kna86, ch. IV].
In §2.4, we identified the unitary group U(2) to a maximal compact subgroup K of

Sp(4,R) via the isomorphism « : U(2) ~ K. Let ¢ denote the Lie algebra of K and by £¢
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its complexification. The differential of x induces an isomorphism of Lie algebras dr : gly ¢ >~ tc.
Let sp, denote the Lie algebra of Sp(4,R) and by sp, ¢ its complexification. A compact Cartan
subalgebra of sp, is defined as h = RT} @ RT, where

wea(C)-( )
wea(()-(

-1

Define a C-basis of h¢ by e1(T1) =i,e1(T2) = 0,e2(T1) = 0, e2(T>) = i. The root system A of the
pair (spyc,bc) is A = {+2e1, £2e2, £(e1 £ e2)}. We denote by A, respectively Ay, the set of
compact, respectively non-compact, roots in A. We have A, = {#(e; —e2)} and A, = A — A..
We choose the set of positive roots as AT = {e] — es, 2e1, €1 + €3, 2e2}. Then, the set of compact,
respectively non-compact, positive roots is A7 = A, N A*, respectively At = A,. N A", For
each symmetric matrix Z € gl, ¢, define the element p1(Z) of sp, ¢ by

n=(l; 77)

Let X(q,,a0) € 5P4c be defined as

s () oo () ()

It follows from an easy computation that X4, o,) is a root vector corresponding to the non-
compact root (ay,an) = aje; + ages. If we set

P CXio, (6)

aeA;’[c

we have the Cartan decomposition 5p4 c=ftcapep

Integral weights are defined as (k, k! ) =kei1+kes € htc with k, k¥’ € Z and an integral weight is
dominant for AT if k > k. Assigning its highest weight to a finite-dimensional irreducible complex
representation 7 of K, we define a bijection between isomorphism classes of finite-dimensional
irreducible complex representations of K and dominant integral weights, whose inverse will be
denoted by (k, k) —> 7 iy- Let (k, k) be a dominant integral weight and let d = k — &’. Then
dimg 74, 1y = d + 1. More precisely, there exists a basis (vs)o<s<d Of 7( k), such that

T(k,k") (d’f <1 )) vs = (s + K)o,

e (16 1)) i
(ke k) <dﬁ< 1)) (5 + 1)vsq1,
T(k,k) <dn <1 )) (d—s+1)vs—1
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which we call a standard basis of 7(; ;). In the identities above, we agree to use the convention
v_1 = vg4+1 = 0. We will denote by Wg the Weyl group of (£c, hc). According to the classification
theorem [Kna86, Theorem 9.20], we have the following result.

PROPOSITION 3.1. Let G(R)™ be the identity component of G(R), let £ be a character of Ag and
let (k,k'") € b§ be an integral weight. Assume k > k' > 0. Then, there exist four isomorphism
classes 7h, ¥V 7W 7H of irreducible discrete series representations of G(R)* with Harish-
Chandra parameter (k+2,k' 4+ 1) and central character £. Furthermore, the restrictions of these
representations to K contain as minimal K-types the representations T(y3x/43)s T(k4+3,—k'—1);

T(k'+1,—k—3) and T(_p_3 _p_3), respectively.

Remark 3.2. For the cohomological considerations that follow, we need to be more precise and
explain the specific representatives of the isomorphism classes of discrete series that we choose.
Let N be the element of G(R) defined as

We shall see that N is related to the action of complex conjugation on the set of complex points
of Siegel threefolds (Proposition 3.13). For the adjoint action Ad : G(R) — GL(b), we have

AdN(Tl) = —TQ,
Adn(Tr) = —T1.
Furthermore, as v(NN) = —1, the matrix N normalizes G(R)". It follows from the identities above

and from [Kna86, Theorem 9.20] that the representation of G(R)* obtained by conjugating 7L,
respectively WOVK, by N is isomorphic to ﬁfo, respectively ﬁz. If we fix such isomorphisms, given
a vector W, belonging to the space underlying 7%, of weight (u,v), we will denote by ¥, the
same vector regarded as a vector of the space underlying 7. It has weight (—v, —u).

For the arithmetic applications we aim at, we will need the following result.

PropPOSITION 3.3 [BHR94, Theorem 3.2.2]. Let m = 7o ® mf be a cuspidal automorphic
representation of G such that Te|g(r)+ is a discrete series. Then 7y is defined over its rationality

field, which is a number field E(7y).

3.2 Cohomology of Siegel threefolds

Siegel threefolds are the Shimura varieties associated to the group G. Let us briefly recall their
definition. Let S = Resc/g Gy c be the Deligne torus and let H be the G(IR)-conjugacy class of
the morphism A : S —> Gg given on R-points by

x Yy
T+ iy —> v y
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The pair (G, H) is a pure Shimura datum in the sense of [Pin90, 2.1]. The cocharacter u of G¢
associated to the morphism h as in [Pin90, 1.3] induces

z
Z >

1

on complex points, hence it is defined over Q. In other terms, the reflex field of (G, #) is Q. For
any neat compact open subgroup L of G(Ay), we denote by S, the Siegel threefold of level L.
This is a smooth quasi-projective Q-scheme such that, as complex analytic varieties, we have

Stie = GQQ\H x G(Ay)/L),

where S denotes the analytification of the base change of St to C. For g € G(Ay) and L, L'
two neat compact open subgroups of G(Ay) such that g~'L'g C L, right multiplication by g on

7'c descends to a morphism lg] : Spy —> Sp, of Q-schemes, which is finite étale. This implies
that there is an action of G(Ay) on the projective system (Sr)r indexed by neat compact open
subgroups of G(Ay¢). In what follows, all compact open subgroups of G(Af) will be assumed to
be neat and we will not mention it again. Because the S are Shimura varieties associated to
(G,H), for any algebraic representation F of G in a finite-dimensional Q-vector space, we have
a polarizable variation of Q-Hodge structure, abusively denoted again by F, on St. We take the
liberty not to mention the level L in the notation because these variation of Hodge structures are
compatible under the pull-back maps induced by the above morphisms [g]. We will also denote
by E the local system underlying the variation of Hodge structure E. This should not lead to
confusion.

Let E an irreducible algebraic representation of GG in a finite-dimensional C-vector space, let
¢ be the inverse of its central character and let L be a compact open subgroup of G(Ay). Let
A%(SL, E) be the de Rham complex of C* differential forms with compact support on 7 with
values in the local system FE, let AE‘Q)(S L, E) be the complex of square integrable differential
forms and let A*(Sg, E) be the complex of usual differential forms. If o is the symbol ¢, (2) or
the empty symbol define

AL(S,E) = liz})lAz(SL,E).
When o is ¢ or (2), this definition is legitimate because the transition morphisms [g] are finite
étale. Moreover, these complexes carry an action of G(Af) induced by the action on (Sr)r,
described above. In § 2.4, we introduced the Lie algebra g of G(R) and the subgroup Kg = AgK
of G(R), which is maximal compact modulo the center. For any (gc, K¢)-module V', let C*(gc,
K¢, V) be the (gc, Kg)-complex of V' as defined in [BWS80, I]. According to [BW80, VII § 2], we
have G(A¢)-equivariant isomorphisms of complexes

AZ(S, E) = C*(gc, Ka, E ®c C°(GQ\G(A),
A™(S, E) = C*(gc, Ka, E @c C*(GQ\G(A),

which are compatible with the inclusions A%(S, E) C A*(S, F) and
C*(gc, Ka, E ©c C°(GQ\G(A),§)) € C*(gc, Ko, E ©c C(G(QN\G(A),€)).

Taking cohomology, we obtain G(Af)-equivariant isomorphisms

Hip (S, E) ~ H*(gc, Kg, E @c C°(G(Q)\G(A),£)),
Har(S, E) ~ H"(gc, Ka, E ®@c C*(G(Q)\G(A), €))

);

§
£))
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which are compatible with the maps from cohomology with compact support to cohomology
without support. Let H (*2)(5, E) denote the L? cohomology of S with coefficients in F, i.e. the

cohomology of the complex A?‘Q)(S’, E). According to [Bor83|, we have a G(Af)-equivariant
isomorphism

1Y, (8, F) = H'(ge, Ko, F @ C5,(G(Q)\G(A), €)).
Applying the (gc, K¢g)-cohomology functor to the maps appearing in (4) and (5) of §2.3, we
obtain the maps

cusp(S E) - HdRc(S E) - H(Q)(S E) - HdR(S E) (7)
where HZ . (S, E) denotes H*(gc, K¢, F ®c C3%, (G(Q)\G(A), £)). Let

cusp cusp

Hip, (S, E) = Im(Hgpg (S, E) — Hap(S, E)).
PROPOSITION 3.4 [MT02, Proposition 1]. The maps (7) induce G(A y)-equivariant isomorphisms

(S, E) = H(5)(S, E) = Hyp (S, E) = Hip (S, E).

cusp

The ((gc, Ka) x G(Ay))-module Coy (G(Q)\G(A),§) decomposes into a direct sum
Caion (GQ\G(A),€) = P m(m)m

indexed by irreducible cuspidal automorphic representations of G, with finite multiplicities. This
induces a decomposition

Hip(S,E)= @ m(m)H(9c, Ko, E Oc 7o) @ 7y

MT=Too ®7rf

into irreducible C[G(Af)]-modules.

DEFINITION 3.5. Let F be an irreducible algebraic representation of GG. The discrete series L-
packet P(E) associated to E is the set of isomorphism classes of discrete series of G(R)" whose
Harish-Chandra parameter and central character are opposed to those of E.

LEMMA 3.6. Assume that E has highest weight \(k, k', c). Then,

P(E) = {m, m¢, T Mo

H _W W

and the restrictions of m [, w2, , T oy and 7TH to K contain as minimal K types the representations

T(k+3,k'+3)s T(k+3,—k'—1)> T(k’+1,fk73) and T(—k'—3,—k—3)s respectively.

Proof. If E is irreducible, with highest weight A(k,%’,¢), then it has infinitesimal character
(k+2,k" 4+ 1). So, the statement is a direct consequence of Proposition 3.1. O

The main result of [VZ84] implies that the 7 contributing to the above sum, i.e. those for
which H3(gc, Kg, Too @c E) is non-zero, are those such that Toolgm)+ € P(E) (see the proof
of [MT02, Proposition 1] for more details). As a consequence, we have

HSR,!(Sa E) = @ HC?R,!(S, E)(m¢) @y (8)
T=Too QT f| oo EP(E)
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where the sum is indexed by irreducible cuspidal automorphic representations of G whose
archimedean component belongs to P(E) and where

Hip (S, E)mp) = @B mire ® 1) H (g, Kaiy E @ Too). (9)
T EP(E)

According to [BWS8O0, II. §3, Proposition 3.1], for any no, € P(F), the (gc, K¢g)-complex of
Teo ®c E has zero differential. Hence, we have

3
H?(gc, Ka, E @¢ Too) = Homp,, (/\ spyc/te, E @c Woo)-

In this last equality, we are using the fact that the inclusion sp, ¢ C g¢ induces an isomorphism
spyc/tc = gc/(LieKg)c. By the Cartan decomposition sp, ¢ = €c @ pt @ p~, where p* are
defined by (6), we have \® spyc/tc = D,y =3 NPT ®c A7p~. As the weights for the adjoint
representation of hc on AP pt ®c A?p~ are the sums of p distinct weights of p™ and of ¢ distinct
weights of p~, the reader will easily deduce the following decompositions

3
/\IJJr = T(3,3)
2
/\P+ Qcp =73,-1) D T2,0 D 7(1,1)
2
pt ®c /\P_ = T(1,-3) D T(0,—2) D T(—1,—1)»

3
Ap™ =133

into irreducible C[KJ-modules from the basic facts on irreducible representations of K reviewed
in §3.1. If E has highest weight \(k, k', ¢), its infinitesimal character is (k + 2, k" + 1).

ProposITION 3.7. The C-vector spaces

3
H*(gc, Ko, nll @c E) = Homg,, | \ spyc/tc, E@c

o0
3
H3(gC,Kg,7TOM£ KR E) = HOHIKG /\5]347(;/{?@,E RC Tao

3

N spac/te, E@c T
3

[\ spac/tc, E @c Tl

H3(gc, Kg, T @c F) = Homp,

H3(g(c, Kg,fgo Kc E) = HOII]KG

N N

W>7
v).
‘)

have dimension one.
Proof. This is a particular case of [BW80, II. Proposition 3.1 and Theorem 5.3]. O
From now on, let us assume that the irreducible algebraic representation E takes values in

a finite-dimensional Q-vector space. In particular, the results explained above can be applied
to the complexification E¢ of E. For any cuspidal automorphic representation m = mo, ® 7y of
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G such that 7o € P(F), denote again by 7y the model of 7 defined over its rationality field,
which is the number field E(7f) (see Proposition 3.3). Following [Har97, 2.6.2 and 2.6.3|, define

Mag(wy, E) = Homgca ) (Resp(x,) /o 7, Hig (S, E))

and similarly
Mp(ns, B) = Homgg(a ) (Resp(r) /0 7f, H ) (S, )

where H% (S, E) denotes the Betti cohomology with coefficients in E. These are Q-vector spaces
endowed with a Q-linear action of E(7s). Extending scalars from Q to C, according to the
identities (8) and (9), we have

MdR(ﬂ'f,E)(c = @ @ 7roo®77f)H3(g(C7KG’7E(C X 7700)-
0:E(nf)—>Crec€P(E)
For any 7y, the C-vector space
@ m(ﬂ—co ®7Tf)H3(g(C,KG,E(C Qc ’ﬂ'oo),
Toc EP(E)
has finite dimension
m(rl @ mp) +m(rl @mp) +m(T @ mp) + m(Th @)

according to Proposition 3.7. As a consequence, the dimension of Mgr(7s, E) as an E(7f)-vector
space is
m(r @) +m(r @ np) +mFY @ 1) + m(TL @ 7).

The same holds for Mp(7y, E) because of the comparison isomorphism
I : Mp(ny, E)c — Mag(7¢, E)c.

It follows from Saito’s formalism of mixed Hodge modules that for any open compact
subgroup L of G(Ay), the interior cohomology H{ (S, E) underlies a Q-Hodge structure. With
the convention adopted here, and explained in §2.4, this Q-Hodge structure is in fact pure of
weight 3 — ¢, where x — z€ is the central character of E. Hence, we obtain a pure Q-Hodge
structure on Mp(nys, E):

PROPOSITION 3.8. Let t = (¢ — k — k')/2. The Hodge decomposition of Mp(m¢, E) is

3—t,—k—k' —t Dk —t 1 —h—t l—k—t,2—k'—t —k—k'—t,3—t
MB(ﬂ'f,E)(c:MB @MB @MB @MB

where

MEPEET = @ m @ m) HE (9o, Ko, B ®c 7,

0:E(mp)—C
Mé_k/_t71_k_t = @ m(ﬂ-owo/ ® ﬂ-f)Hg(g(Ca KGv E Q¢ womcj))

o:E(mp)—C
Méikitgik/it = @ m(ﬁg ®7rf)H3(g(C7KGaE®(C ﬁgg))

o0:E(ny)—C
Mgkik/*t’git = @ m(ﬁfo ®7Tf)H3(gc,Kg,E®(c ffo)

0:E(ny)—C
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Proof. A reference for the statement on Hodge types is [Har04, (1.4)]. However, let us remark
that [Har04] uses the sign convention opposite to ours (see §2.4). The result then follows from
the fact that the Hodge decomposition of L? cohomology given by harmonic forms coincides
with the Hodge decomposition given by the theory of mixed Hodge modules (Proposition 3.4
and [HZ99, Theorem 5.4]). O

The following definition is taken from [Bei86, §7].

DEFINITION 3.9. Let A be a subfield of R. A real mixed A-Hodge structure is a mixed A-Hodge
structure whose underlying A-vector space is endowed with an involution Fy, stabilizing the
weight filtration and whose C-antilinear complexification Fi, ® 7, where 7 denotes the complex
conjugation, stabilizes the Hodge filtration. We call F, ® 7 the de Rham involution.

Let MHSJAf denote the abelian category of real mixed A-Hodge structures.

DEFINITION 3.10. Let F' be a number field. A real mixed A-Hodge structure with coefficients
in F is a pair (M,s) where M is an object of MHSX and s : F' — EndMHSX (M) is a ring
homomorphism.

Let MHSZ p denote the abelian category of real mixed A-Hodge structures with coefficients
in F.

PROPOSITION 3.11. Let Fi, be the involution on Mp(m¢, E) induced by the complex conjugation

on S(C) and on E. Then (Mp(7s, E), F) is an object ofMHS& E(rp)”

PROPOSITION 3.12 [Har94, Corollary 2.3.1]. The Hodge filtration F*Mp(ns, E)c, which is
defined by
FpMB(Trf’E)(C = @ Mg,q7
P

>p

is the image of the complexification of a filtration F*Mgr(ns, E) of Myr(m¢, E) under the
comparison isomorphism I_'.

PROPOSITION 3.13. Let N € G(R) be as in Remark 3.2. Then, the involution F, of Mp(m¢, E)c
is induced by the action of N on C*(gc, Kg, E ®c C*°(G(Q)\G(A))) defined by

f € Hompg (/\ gc/te, E ¢ COO(G(Q)\G(A))> s (X —> Nf(Adn(X))).

Proof. Note that

1 -1
1 -1
N = 1 1
1 1
As the cocharacter y : G, c — G associated to the morphism h : S — G defined above
induces
z
— i
& 1
1
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on complex points, the matrix N satisfies the assumptions of [MS81, Lemma 3.2]. So the
statement follows from the proof of Langlands conjecture on the action of complex conjugation
on the set of complex points of a Shimura varieties which, in the case of Siegel varieties, is
explained in [MS81, Remark 3.3(c)]. O

4. Computation of the regulator

Let p, ¢,k and k' be integers as in the introduction and let B, respectively By, be the source of
Beilinson’s Eisenstein symbol (1) of weight p, respectively gq. Assume that p,q,k and k' satisfy
the assumptions of Theorem 1.1. Then, we have the extension class

Eish " (¢; ® ¢y) € Extim%f (R(0), H? (S, W)g) C H3(S/R, W)

for any ¢y ® ¢ € B, ®q By. Let Eis%q’w(gbf ® ¢;) denote the image of Eis%q’w(gﬁf ® ¢;) by the
natural map

H%(S/R, W) - H%(S/Rv W)

from absolute Hodge to Deligne-Beilinson cohomology (see [Bei86, 5.7] and [Jan88, §2]). Thanks
to the work of Jannsen [Jan88], the Deligne—Beilinson cohomology groups can be explicitly
described by pairs of currents (S,7) (Proposition 4.8) and this will permit us to give an

explicit description of Eis%q’w(¢ f®¢>’f) (Proposition 4.10). In §4.3, we introduce Deligne rational

structure D on Ext! and explain how the image K of Eis’;{’q’w can be compared with D via the

computation of a Poincaré duality pairing related to I and another related to D (Lemma 4.21).
This idea goes back to Beilinson [Bei88] (see also [Kin98, 6.1]). In §4.4, the pairing related to
K is shown to be equal to an explicit adelic integral. Before this, let us introduce some relative
motives.

4.1 The relative motives

In this section, we give a definition of motivic cohomology of the Shimura varieties we are
interested in, with coefficients in sheaves such as SymP Vo X Sym? V5, or W. This relies on
the work of Ancona [Ancl5] and Cisinski and Déglise [CD09], whose ideas were initiated by
Voevodsky et al. [VSF00]. Ideally, motivic cohomology should be defined as a space of extensions
in categories of mixed motivic sheaves, but these categories have not been discovered yet.

For the necessary background on relative motives of abelian schemes and relative Weil
cohomologies, see [Ancl5, §§2 and 3|, respectively. Let A/S be the universal abelian surface
over the Siegel threefold and let A¥*% be the (k + k')th-fold fiber product over S. Let R(AFF)
denote the relative motive over S associated to A¥TF.

PROPOSITION 4.1. Let k, k' and ¢ be such that k > k' > 0 and ¢ = k+ k' (mod 2). Let t denote
the integer (k+k'+c¢)/2. Let W be an irreducible algebraic representation of G of highest weight
Ak, k', c). Then, there exists a relative Chow motive over the Siegel threefold which is a direct
factor of R(A*+*)(t) and whose Betti realization is the variation of Hodge structure W.

Proof. Let r : G —> GL(4) be the standard representation of G. It follows from Weyl’s invariants
theory that W is a direct factor, defined by a certain explicit Schur projector, of the representation
rOHE) @ 1Bt (see [FHO1, §17.3]). Hence, the statement is a direct consequence of [Ancl5,
Theorem 1.3]. O
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Let DMp (S) is the triangulated category of constructible Beilinson motives over S with
Q-coefficients as defined in [CD09, Definition 15.1.1]. Then W is an object of DMp .(.S). Let 1g
be the unit object of DMp .(.5). Motivic cohomology with coefficients in W is the Q-vector space
defined by

Hj, (S, W) = Hompy, (s5)(1s, W[H]).

The compatibility of this definition with the K-theoretical one follows from [CDO09,
Corollary 14.2.14]. For integers p > 0 and ¢ > 0, we can define H},(M x M, (Sym? VX
Sym?V53)(2)) similarly. Here M denotes a modular curve. Moreover, if p, ¢, k and k' verify the
conditions stated in the introduction, the relative motive (Sym” Vo X Sym? V5)(2) over M x M
is naturally a direct factor of :*W, as Ancona’s construction is functorial. As a consequence, the
motivic cohomology space H} (M x M, (Sym? V3 X Sym?V3)(2)) is a naturally a direct factor of
Hi (M x M, *W(—1)). As the triangulated category of constructible Beilinson motives has the
formalism of Grothendieck six functors, duality [CD09, Theorem 15.2.4] and the absolute purity
isomorphism [Pépl5, Proposition 1.7], we have the Gysin morphism

Hi(M x M, oW (—=1)) —= H (S, W).

In this setting, the definition of the regulator in Deligne—Beilinson cohomology and the
compatibility with the previous one has been explained in [Sch15].

4.2 Explicit description of the cohomology classes

Let us start by reviewing basic facts about Deligne—Beilinson cohomology. In what follows, we
shall consider Deligne—Beilinson cohomology with coefficients in algebraic representations of the
group underlying a given Shimura variety. This means that, like in [Kin98, 2.3|, we consider
Deligne—Beilinson cohomology of the corresponding relative motives.

Let Sch(Q) be the category of smooth quasi-projective Q-schemes. Let X be an object
of Sch(Q) and let n be an integer. For a definition of the real Deligne-Beilinson cohomology
H}(X/R,R(n)), the reader is referred to [Nek94, 7]. We also have the real absolute Hodge
cohomology Hj,(X/R,R(n)) of X with coeflicients in R(n) = (2mi)"R as defined in [HW98a,
Definition A.2.6] and there is a canonical map

H3} (X/R,R(n)) — Hp' (X/R,R(n)). (10)

Let S™(X/R,R(n)) be the vector space of C* differential forms on X (C) on which the map Fy,
induced by complex conjugation on X (C) acts by multiplication by (—1)". Let S7*(X/R,R(n))
be the compactly supported differential forms belonging to S"(X/R,R(n)). Let us consider a
smooth projective compactification j : X — X* and let i : Y — X™ be the complementary
reduced closed embedding. Assume that Y is a normal crossing divisor and let Q% (Y") be the
C-vector space of holomorphic differentials of degree m on X with logarithmic singularities
along Y, endowed with its Hodge filtration (see [Del74, 3.1 and 3.2.2]). For any integer n, let
Tn : C —> R(n) denote the map z —> 3(z + (—1)"z).

PROPOSITION 4.2 [Nek94, 7.3]. For any integer m, we have a canonical isomorphism of R-vector
spaces
{(¢,w) € ™ HX/R,R(m)) x Q(Y) | dp = 7 (w) }

HE (X/R,R(m)) = dS™=2(X/R,R(m))

905

https://doi.org/10.1112/50010437X16008320 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16008320

F. LEMMA

The Eisenstein symbol [Bei88, § 3] is a Q-linear map
Eish, : B, —= H{'(E",Q(n + 1))

where we denote by ijl(E”,Q(n + 1)) the inductive limit over compact open subgroups K
of GL2(A ) of the motivic cohomology H3f ' (E%,Q(n + 1)) of the nth-fold fiber product of the
universal elliptic curve Ex /Mg over the modular curve of level K. The notation B, stands for
the space of locally constant Q-valued functions ¢ on GLa(Af) such that for any b € Ay, any
a,d € Q such that ad > 0 and any g € GLa(Af), we have

o1 ((“ Z) g) =a" "V dgy(g), (11)

o (71 1)a) = osto (12

and which are invariant by right translation under (2X 1). The source of the Eisenstein symbol is
indentified to a space of Q-valued functions 7™ on GL2(Ay) in [Bei88, p. 7]. Note that the map
Vr > (¢p 1 g ¢p(g) = ¢y(det(g) ! Yg)) defines a GLo(Af)-equivariant isomorphism F" ~ B,
when GLa(Af) acts on F", respectively B, by left, respectively right, translation. By definition
of the motivic sheaf Sym” V5 (1), the motivic cohomology H (M, Sym”V5(1)) is a direct factor of
H}\le(E”, Q(n + 1)). Furthermore, the Eisenstein symbol factors through the natural inclusion
HY (M, Sym"Vs(1)) € HY'(E™,Q(n + 1)) and we denote again by Eis%, the induced map
B, — Hj,(M,Sym"V5(1)). The following lemma will be very useful later.

LEMMA 4.3. Let B, g be the vector space B, ®q Q with the action of GLa(Ayf) by right
translation. For any finite-order Hecke character v let Z,(v) denote the space of locally constant
functions f : GLa(Ay) — Q such that for all a,d € QF, for all a,6 € Z*, for all b € Ay and for

all g € GLa(Ay), ; <<aa b) _ —(n+1)
b g) —a dv(6)f(g)

and which are invariant by (zx 1) when I,(v) is endowed with the action of GLa(Ay) by right
translation. Then, there is a GL2(A f)-equivariant decomposition

B.g= P W)

sgn(v)=(—-1)"

where the sum is indexed by all finite-order Hecke characters v of sign(—1)".

Proof. Let Ty denote the diagonal maximal torus of GLg. We are interested in the action of
T2(Ay) on the space Bn@ by left translation. Because of the decomposition A¥ = QY Z*, we are

~

reduced to study the action of T2(Z) thanks to the equality (11). The Iwasawa decomposition
GL2(Af) = Ba(Af)GL2(Z) and the fact that functions in B, 5 are locally constant implies
that B, 5 is a union of finite-dimensional Q-vector spaces V which are stable under Ty (2) By

~

continuity, the action is trivial on an open subgroup of T3(Z) and so V is a sum of finite-order
characters

(QQHMW@

By (2X 1)-ilrlvauriaunce, the character x has to be trivial and by condition (11), the character v has
to be of sign(—1)". O
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Let us recall now the explicit description of the image of the Eisenstein symbol in Deligne—
Beilinson cohomology, via the isomorphism of Proposition 4.2. Here, we follow [Kin98, 6.3] very
closely.

Let us regard the circle U(1) as a maximal compact subgroup of SLo(R) in the usual way. We
will also sometimes consider the maximal torus Z(R)TU(1), where Z3(R)™ denotes the identity
component of the center of GLy(R). In what follows, we shall implicitly use the isomorphism
between the de Rham complex on modular curves and a (gly ¢, Z2(R)*U(1))-complex which is
analogous to that stated in §3.2 for Siegel threefolds. If ¢ denotes the Lie algebra of U(1), we
have the Cartan decomposition sly c = €2 ¢ & p'* & p'~ where

p'i = {(:I:?;Z jilzz) 65[2,((3 ‘ z e C}.

Let v* € p'* denote the vector v = (L, #1) € p'*. Let (X,Y) be a basis of the standard
representation V5 of GL(2) such that (¢Y) € GL2(Q) acts by

(‘c‘ b)X:aX—i-cY,

<“ b>Y:bX+dY.
c d

We regard Sym"V, ¢ as the space of homogeneous polynomials of degree n in the variables X

and Y, with coefficients in C. For any integer 0 < j < n, let bg-”) € Sym"V, ¢ be the vector

b;") = (iX —Y)(iX +Y)" . The family (b;n))ogjgn is a basis of Sym" V5 ¢ and we will denote

by (ag-n))ogjgn the dual basis.

LEMMA 4.4. Let n,c be two integers such that n = ¢ (mod 2). Let X (n,c) be the character of
the torus Z»(R)TU(1) defined by

N(n,c): <_$y Z) — (x + iy)"(x? +y2)(c—n)/2_

Then, the vector agn) has weight X' (n — 2j, —n).
Proof. This follows from a trivial computation. O

Let By denote the standard Borel of GLg, and by GLa(R) ™, respectively Bo(R)™, the identity
component of GLa(R), respectively Bo(R). Given n, ¢ as above, we denote by A(n, ¢) the algebraic
character of the diagonal maximal torus of GLy defined by

R R

GL2(R)* A

For any integer r such that r =n (mod 2), the function ¢;' € indp, R+

(n+2,n) is defined as

a b ai+b a b .
z9 (C d) = Ci+d’ w2 (C d) =ci+d.
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Consider

o m)mt ol
2(n+1) =

® Py, € Sym"Vyle ® 1ndGL(2R§)+) A(n+2,n).

Given ¢y € B, we can consider the vector valued series of functions
Bisji(¢r)= Y. (O ¢p),
7EB2(Q)\GL2(Q)

which is absolutely convergent provided n > 1. Because of the limitations given by the hypothesis
of Theorem 1.1, we only need to work with the Eisenstein symbol Eis'y, for n > 1 in this work.

LEMMA 4.5. Let

wE € Homy) (' @ p'~, Sym"Vyle ® indg 209" A(n +2,m))

be the differential form defined by

w (vF) = 2mi)"Mal) ® ¢,
wy (v7) =0,

w, (vF) =0,

wy (v7) = 2ri)" i @ ¢", .

Let w be the differential form deduced from w by applying the complex conjugation on

Sym"Vy/c ® deLf(;[i) A(n +2,n). Then Wy = (—1)"wr.

Proof. This follows from the identities $Z+2 = (=1)"*gn _, and a§n) = (—1)”a§.n). O
For any ¢; € By, the infinite series
Eisg(dr)= Y, (i ©dy)
¥€B2(Q\GL2(Q)

is absolutely convergent and defines a vector valued closed holomorphic differential one-form on
M, i.e. an element of

1
Homyy) (/\(P'+@P' ), Sym" Ve ® C*°(GLa( )\GL2(Af))>,

as explained in [Kin98, 6.3]. Let E —> M denote the universal elliptic curve over M. By definition
of the relative motive associated to the standard representation V2 of GL(2), the cohomology
HL(M/R,Sym"Va(1)) is a direct factor of Hpy™'(E™ /R, R(n+1)), where E™ denotes the nth-fold
fiber product over M.

PROPOSITION 4.6 [Kin98, (6.3.5)]. Let Eis}, : B, —> Hx(M/R,Sym™V5(1)) be the composite
of Eist, and of the regulator

H (M, Sym"Vy(1)) —= Hp(M/R, Sym™ V3(1)).

If n > 1, then for any ¢y € B, the class of Eis’y(¢y) is represented by (Eisy, (¢¢), Eiss(¢y)) via
the lsomorph1sm of Proposition 4.2.
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By functoriality of the natural map between absolute Hodge and Deligne—Beilinson
cohomology, the Deligne-Beilisnon cohomology classes Eis%q’w(qﬁf ® gb}) we are interested in
are the image under the Gysin morphism associated to the closed embedding

MxM-—-=§

of cup-products of Eisenstein classes Eish(¢) U Eiqu(qb’f). Hence, to get an explicit description

of the classes Eis%q’w(qbf ® gZ)’f), we need an explicit description of the cup-product and of the

Gysin morphism.

PROPOSITION 4.7. Let X and Y be two objects of Sch(Q). Let px : X x Y — X and py :
X XY — Y be the canonical projections. Then, via the isomorphism of Proposition 4.2, the
external cup-product

U H(X/R,R(m)) © HE'(X/R,R(m')) — HZ™™ (X/R,R(m +m'))

is
(o, w) U (¢, ') = x @ APy (T ') + (=1)"px (Tmw) A py-¢', piw A pyw’)

for any m,m’.

Proof. The external cup-product is by definition x Uy = p% (x) Up} (y), where U denotes the
usual cup-product. Hence, the statement follows from the explicit formulas for the usual cup-
product given in [DS91, 2.5] (see also [EV8S, 3.10]). O

To give an explicit description of the Gysin morphism, we need to introduce currents and
Deligne-Beilinson homology. For X € Sch(Q) and any integer m, let 7°(X/R,R(m)) be the
complex of R(m)-valued currents on which the map Fy, induced by complex conjugation
on X(C), acts by multiplication by (—1)™. Let us consider as above a smooth projective
compactification j : X — X* and let ¢ : ¥ — X™* be the complementary reduced closed
embedding. Assume Y is a normal crossing divisor. Let 1gg(X /R, C) be the complex of currents
with logarithmic singularities along Y, endowed with the Hodge filtration (F"70,(X/R,C));.
Details on these notions are given in [Jan88, 1.4].

PROPOSITION 4.8 [Kin98, Lemma 6.3.9]. Let i and j be two integers. The real Deligne—Beilinson
homology HP (X/R,R(j)) is the R-vector space

{(S,T) | dS = m; 1T}

D ) =
H7(X/R,R(j)) = {d(S,T)}

where

(57 T) € Tﬁiil(X/RJR(j - 1)) @ Fjﬂo_gi(X/Rv C)

and
(S, 7)€ T 2(X/R,R(j — 1)) @ FIT, )7 (X/R,C).

As currents are covariant for proper maps, the proposition above gives an explicit description
of the Gysin morphism in Deligne—Beilinson cohomology.
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PROPOSITION 4.9. The following statements hold.
(i) See [Jan88, Theorem 1.15]. Let X be an object of Sch(Q) of pure dimension dx . There is
a canonical isomorphism between Deligne—Beilinson homology and cohomology

HP (X/R,R(j)) = Hp* ™ (X/R, R(dx + ).

(ii) See [Kin98, Lemma 6.3.10]. Let Y be an object of Sch(Q) of pure dimension dy and let
1:Y —> X be a closed embedding of codimension ¢ = dx —dy . Then, via the isomorphism above
and the explicit description of Deligne—Beilinson homology classes given in Proposition 4.8, the
Gysin morphism

is: HE(Y/R,R(n)) — HET*(X/R,R(n + c))

is induced by the map (S,T) —> (x5, 4.T).

Let us fix an orientation on the complex manifold X(C) and let ¢ € S'(X/R,R(j)).
Following [Jan88, §1], let T,, € T'~24x(X/R,R(j — dx)) denote the current defined by

w € SHX/R,R(dx — j)) —> Ty(w) = (27$)(1X /X(C)w A . (13)

PRrROPOSITION 4.10. Let
Eis2®"V . B, ©g B, — HA(S/R, W)
be the composite of the map (3) and of the regulator
H, (S, W) ——= HE(S/R,W)

in Deligne-Beilinson cohomology. For j = 1,2 let p; : M x M — M denote the jth projection.
Then

Bisp" (67 © ¢7) = (Togacs mep): t=Trpo(s,00)
where Py*(¢; @ ¢;) is defined by
Py(dr @ @) = pi Bisy, (¢5) A p3(mq Bisg(})) + (—1)Pp] (mp Bis (¢5)) A p3 Eis} ()
and PR?(¢y ® ¢'y) is defined by
Py (¢r ® ¢f) = pi Eisiy(é) A pj Bisg ().
Proof. The statement is a direct consequence of Propositions 4.6, 4.7 and 4.9. a
4.3 The use of Poincaré duality

This section explains how the Poincaré duality pairing can be used to compute the regulator.
This idea is due to Beilinson [Bei88] (see also [Kin98, 6.1]). Let us start with a general result.

LEMMA 4.11. Let E be a number field and let M be an object of MHS}, ., (Definition 3.10) which
is pure weight w < 0. Let Myr be the sub-E ®g R-module of Mc where the de Rham involution
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acts trivially and let M~ be the submodule of M where F, acts by multiplication by —1. Let
M~(—1) =1/(2mi)M~. Then, there is an exact sequence of E ®g R-modules

0 — F'Mgp — M~ (—1) — Exty o (R(0), M) — 0
R

where the second map is the composite of the natural inclusions
FOMdR —> MdR a— M(C
and of the projections

Mec — M(-1) — M~ (-1)

defined by v —> (v — ) and v —> (v — Fso(v)), respectively.

Proof. Immediate consequence of [Nek94, (2.1) and (2.5)]. O

COROLLARY 4.12. Let W be an irreducible algebraic representation of G of highest weight
Ak, k' ¢), with w =3 — ¢ < 0. Let my be the non-archimedean part of an irreducible cuspidal
automorphic representation w of G whose archimedean component 7., belongs to the discrete
series L-packet P(W'). Then, there is an exact sequence

0 — FOMug(mp, W)g — Mp(r;, W)g(—1) — Extll\/[HSg(R(O),MB(ﬁf,W)R) — 0,

where the second map is as above.

Proof. For any compact open subgroup L of G(Ay), let FOH3, (SL, W)r denote the R-subspace
of FOH%’! (Sr, W)c of vectors which are fixed by the de Rham involution and by FOH(%RJ (S, W)r
the colimit of the FUH, 3}%,!(5 L, W)r over all compact open subgroups L of G(Ay). As filtered

colimits of vector spaces preserve exact sequences, the lemma above implies that we have a
G(Af)-equivariant exact sequence

0 —> O (8, W)s —> H, (5, W)5 (—1) — Bxtly o (R(0), H, (S, W)z) — 0

of R-vector spaces. As 7 is irreducible, applying the functor
X — Homgg(a,)) (Resp(r,) /@ 7s, X)

to the above exact sequence, we still get an exact sequence, which is that of the statement of the
corollary. O

The first term, respectively the second term, of the exact sequence above is obtained applying
®gR to the finite-dimensional E(m)-vector space FOMyg(ms, W), respectively Mp(ms, W)™ (—1)
(see Propositions 3.11 and 3.12). Let FOMgg(ms, W)* be the dual of FOMyg(ms, W). As a
consequence, the one-dimensional F(ry)-vector space

B(Wf, W) = detE(ﬂf)FonROTf, W)* ®E(ﬂ-f) detE(ﬂf)MBOTf, W)Hg(—l)
is an E(7s)-structure of the E(m¢) ® R-module

detE(ﬂ'f) ®gR Ethl\/IHS]E{f (R(0)7 MB (7Tf, W)R)

By definition B(w s, W) is the Beilinson E(7¢)-structure, which occurs in one of the two equivalent
formulations of Beilinson’s conjecture (see [Nek94, 6.1]). Because we are dealing with a partial
L-function, we do not want to use the functional equation in this work. As a consequence, we
prefer to work with the Deligne F(m¢)-structure.
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DEFINITION 4.13. Let 6(ms, W) € (E(nf) ®g C)* be the determinant of the comparison
isomorphism Mp(7s, W)c —> Mgg(ms, W)c computed in basis defined over E(my) on both

sides. The Deligne E(7y)-structure of det g r Extl (R(0), Mp(ms, W)R) is

75) @ MHS

Dy, W) = (2mi) 0 MO 5 W) AB(y, W),
Remark 4.14. Of course, this definition does not depend on the choice of the basis.

The ranks of the E(7;) ®g R-modules of the exact sequence of Corollary 4.12 are related to
multiplicities of automorphic representations in the discrete series L-packet P(W).

LEMMA 4.15. The following equalities hold:
(a) we have rkp(r.)oorMp(7f, W)g(—1) = m(rl @) + m(rl @ 7y);
(b) we have rkp(x,) oo v F*Mar(ms, W)k = m(rll @ ms);

(c) we have rkp(x;)oqr ExtllleSi{ (R(0), Mp(mp, W)R) = m(r¥ @ 7).
Proof. Thanks to the exact sequence of Corollary 4.12, it is enough to prove the first two
statements. Write t = (p+ ¢+ 6 — k — k’)/2. Then, the first statement easily follows from the
Hodge decomposition

3—t,—k—k'—t 2—k'—t,1—k—t 1-k—t,2—k'—t —k—k'—t,3—t
MB(’/Tf,W)(c:MB @MB @MB EBMB ,

where Mg_t’_k_k/_t, M?B_kl_t’l_k_t, Mllg_k_t’Q_kl_t and Mgk_k/—t’g_t are E(my) ® C-modules of
respective ranks m (oo ® 74), M(Too @ f), m(7eh ® 7y) and m(7L @ ;) (Propositions 3.7 and
3.8), and from the fact that F,, exchanges My® and M}". The proof of the second statement
follows from the fact that the conditions on p, g,k and %k’ stated in the introduction imply that
2 — k' —t < 0, hence that

FOMdR(TI'f, W)(C = Mg_t’_k_k _t. O

DEFINITION 4.16. Let E be an irreducible algebraic representation E of G. Let m = mo ® 7y
be an irreducible cuspidal automorphic representation such that m., belongs to the discrete
series L-packet P(E) (Definition 3.5). The automorphic representation 7 is stable at infinity if
m(nl, @ my) = 1 for any 7’ € P(E).

HyPOTHESIS 4.17. In the rest of the paper, we assume that the considered cuspidal automorphic
representation 7 is stable at infinity.

Remark 4.18. Tt follows from Arthur’s classification [Art04] that, for most of 7 whose 7 is a
discrete series, 7 is stable. Specific examples constructed via theta lifts of Hilbert modular forms
over real quadratic fields are discussed in [MT02, 7.3].
Note that Hypothesis 4.17 and Lemma 4.15 imply that EX‘GIIVIHSJr (R(0), Mp(ms, W)r) is a
R
rank-one E(mf) ®g R-module. From now on, we consider integers p,q,k,k’ and a coefficient
system W of highest weight A(k, k', p+ ¢+ 6) as in the statement of Theorem 1.1. Let K(p, g, W)
denote the sub-Q[G (A ¢)]-module of
Ext

vt (
MHS}

R(O)a H'3(57 W)R) = h_r>nEXt11\/[HSDJ£ (R(O)a H'?’(SLv W)R)
L
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generated by the image of Eisg_’[q’w and let (¢, W) be defined as
K(m¢, W) = Homgg(a,) (Resg(x,)q 7f, K(ps g, W)).
This is an E(7f)-submodule of Ext} (R(0), Mp(ms, W)r). We have two E(ms)-submodules of

MHS}

ExtllleSi{ (R(0), Mp(ms, W)r) ‘geometrically defined’. The elementary one, namely D(my, W), is

defined in terms of the de Rham and Betti cohomology. The sophisticated one, namely K(7¢, W),
is defined in terms of the regulator. Of course, whereas D(7¢, W) is non-zero by definition, we
do not know at this point whether IC(m¢, W) is zero or not.

DEFINITION 4.19. If p and ' are two elements of E(ms) ®qg C, denote p ~ p if there exists
A € E(my)* such that p = A/

LEMMA 4.20. Let vp be a non-zero vector of D(ms, W) and vk be a vector of IC(mg, W). Let
vp € Mp(my, W)g(—1), respectively vx, be an element mapped to vp, respectively vi, by the
third map of the exact sequence of Corollary 4.12. Then

P(vk)

K W) = 5

D(va W)

for any E(rmy) ®q R-linear map ¢ : Mp(ny, W)g(—1) — E(7y) ®g C whose kernel contains
FOMap(ms, W)g.

Proof. Trivial. O

Our goal is now to compute ¥ (vx) and ¥ (vp) for a well-chosen v as above. To this end, let us
recall the properties of the Poincaré duality pairing for Siegel threefolds. As the representation
W has highest weight A(k, k', p+q+6), its contragredient has highest weight A(k, k', —p —q—6).
In other words, we have a perfect bilinear pairing W @ W — Q(p + q + 6) where Q(p + ¢ + 6)
denotes the one-dimensional Q-vector space on which G acts by the (p + ¢ + 6)th power of the
multiplier character v. This pairing induces a G(A f)-equivariant pairing

which becomes perfect after restriction to the vectors which are invariant by a compact open

subgroup of G(Ay), when Q(0) is given the action of G(Ay) by |v|™3 (see [Tay93, p. 295]). This
induces a morphism of Hodge structures

Mp(mp, W) © Mp(s|v| =5, W(—p — q — 3)) ~% B(})(0).

Recall that according to Proposition 3.8, we have the Hodge decomposition

Mp(7slv| W (—p—q—3))c

a3t kK —t 2kt 1—k—t' 1—k—t/ 2— k' —t/ —k—k—t' 3t
= Mz @ My S My S Mpg

where t = —(k+ k' +p+q)/2.
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LEMMA 4.21. Let w € Mp(7¢|lv|=2,W(—p —q—3))c. Let

<w7 >B

M (g, W)g(-1) Y2 Brpy o

be defined as the composition of the natural inclusion Mp(my, W)g (=1) = Mp(ms, W)c and of
the pairing with w. Assume that w belongs to Mé_kl_t,’l_k_t/ $3) Mé_k_t,’Q_kl_tl. Then, with the
notation of Lemma 4.20, we have

K(mg, W) = -—=—=D(ms, W).
Proof. According to Lemma 4.20, it is enough to know that the kernel of x — (w, z) g contains
FOMyp(ms, W)g. Write t = (p+ g+ 6 — k — k') /2. We have the Hodge decomposition
M (r, We = Mg—t,—k—k’—t & Mg—k’—t,l—k—t & M}B—k—t,z—k'—t & M];k;—k’—t,3—t

where 3—t=(k+k —p—¢)/2>0and 2 -k —t=(k—k —p—q—2)/2 <0 according
to the inequalities relating p,q, k and k' stated in the introduction. As a consequence, we have
FOMup(me, W)c = D=0 My = Mgﬁtﬁk*k ~!. This implies that the image of the inclusion

FOMyg(mp, W) — Mp(mp, W)z (—1)
of the exact sequence of Corollary 4.12 is included in
3—t,—k—k'—t 3—t,—k—k'—t __ 3—t,—k—k'—t —k—k —t,3—t
Mp S Mp = Mp S Mp -

Hence, the statement follows from the assumption on the Hodge types of w and fact that (,)p
is a morphism of Hodge structures. O

4.4 From the regulator to a global integral

In this section, we shall explain how to associate a class w whose Hodge types are as in
Lemma 4.21 to some cusp forms ¥ on G. When w is associated to ¥, we shall see that the
pairing (w, Ux) g is an integral on G'(Q)Z'(A)\G'(A) of a function of the shape WEjy, where Ey
is an Eisenstein series on G’ related to the Deligne-Beilinson realization Eis%q’w(gb F® gb}) of the

motivic classes Eisﬁ’/‘f’ww F @ @)

Remark 4.22. At several places in this article, we consider a G(Af)-module V and its my-
isotypical component V(7ms) = HOHlG(Af)(TFf,V). Let us choose a vector x € 7y, that will be
fixed until the end. Then, the linear map V(ry) — V,¢ —> ¢(x) is injective because 7y is
irreducible. In what follows, we will often regard V(m¢) as a subspace of V, via the choice of x.

According to Theorem 1.1, for any ¢ ® d)’f € B, ®q By, we have the extension class
. pa,W
Elsg-[q (¢f ® ¢;‘) € Ethl\/[Hsﬁg (R<0)7 H%,!(‘Sv W)]R)

whose image in the Deligne-Beilinson cohomology Hz(S/R, W) coincides with the class of the
pair of currents (L*Tpftvq(d)f@(b}),L*TPEaQ(d)f@(b/f)) (Proposition 4.10). Due to the above remark
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and Lemma 4.21, we need to compute a pairing of the shape (w,vx)p where vk is a class in
H%’!(S, W)g (1) which is mapped to Eisg_iq’w(qﬁf ® gb’f) by the surjection

H (8, )5 (—1) — Bxtl i (R(O), H, (5, W),

In the following lemma, whose aim is to describe as explicitly as necessary such a lifting
UK, we use two standard facts. The first is that Betti cohomology can be computed by closed
currents. The second is the so-called Liebermann’s trick: let p: A — S be an abelian scheme
and let W be a sheaf on S which is a direct factor of (R'p.Q(0))®"(m), for some integers m and
n. Then, the cohomology H*(S, W) is a direct factor of H*t"(A"™ Q(t)), for some ¢, where A"
denotes the nth fiber product of A over S. Let r : G —> GL(4) be the standard representation
of G. It follows from Weyl’s invariants theory that any irreducible algebraic representation W
of G of highest weight A(k, k', c) is a direct factor, defined by a certain explicit Schur projector,
of the representation r®*+*) twisted by a power of v (see [FH91, §17.3]). As the variation of
Hodge structure associated to r is R!p,Q(1), the variation of Hodge structure associated to such
a W is a direct factor of a Tate twist of (R'm.Q(0))®*++) where p : A — S is the universal
abelian surface over the Siegel threefold. It is not necessary for us to be more precise. However,
the reader might consult [Ancl5] for much more precise and general statements and their proofs.

LEMMA 4.23. Let ¢5 ® (;3’f € B, ®q By. Let A be the universal abelian surface over S, of infinite

level, and let A¥*% be the (k + k') th-fold fiber product over S . Let AFK be a smooth projective
toroidal compactification of A¥**" such that the complement ARFTE _ ARHK i a normal crossing
divisor. Then, there exists a closed current p € T(AF¥ /R, R(0)), for some integer o, such that:

(i) the restriction of the cohomology class [p] of p to A¥** belongs to H%’!(S, W)g(=1);

(ii) the class [p] is mapped to the extension class Eis%q’w(gbf ® ¢';) by the third map

H (S, W)g (=1) — Exty e (R(0), Hig (S, W)z)

of the exact sequence of the proof of Corollary 4.12;
(ili) the pairs of currents (L*TP%(I((i)f@qS}), L*Tpgvfl((ﬁf@d)/f)) and (p,0) represent the same
cohomology class in H}(S/R, W) (see Proposition 4.10).

Proof. The natural map H*(AF*) — H*(AFF) factors through H*(AFH) — H*(A’fjk/).
Hence, for the first and the second statement, we can take p to be any closed current on AR

representing a lifting of Eisgf’ww f ® ¢;) by the map

H (S, W)r(-1)" — ExtlleSE (R(0), H} (S, W)R).

Note that a current on AFH can be regarded as a current on AFTF 5o that the third statement
is meaningful. As A¥*¥ is smooth and projective, it follows from [Jan88, 4.5.1] that there exists
a natural map Hg(AF R(0))™ — Hi™ (A /R, R(041)). This map is induced by the map
sending a closed current 7 to the pair (7,0) via the description of Deligne—Beilinson homology
classes by pairs of currents (Proposition 4.8) and the isomorphism of the Deligne—Beilinson
cohomology and homology (Proposition 4.9). Composing with the restriction map

Hp(A*¥ /R R(o + 1)) —> Hp (A /R R(o + 1)),
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we obtain the upper map of a commutative diagram

H§+k’+3(gk+k’7R(o))— . H%+k,+4(Ak+k//R, R(o + 1))

| |

H, (5, W)(~1) HA(S/R, W)

where the vertical maps are induced by the Schur projectors defining W. Hence, the third
statement follows from the second. |

To compute the pairing (w, [p]) B, we shall use the notion of rapidly decreasing and slowly
increasing differential form and the fact that the Poincaré duality pairing can be represented by
a pairing between rapidly decreasing and slowly increasing differential forms. For definitions, we
refer the reader to [Har90, 1.3] (see also [Bor81, 3.2]) and for the statement about the Poincaré
duality pairing, we refer the reader to [Har90, Proposition 1.4.4(c)].

The differential forms Eisf;(¢y) and Eisj(¢;) are slowly increasing as explained in [Kin98,
(6.3.1)] and [Kin98, p. 120]. Moreover, according to Proposition 4.10, we have

Py (o5 @ ¢y) = pi Bisy, (¢5) A p5(mq Eisg(})) + (—1)7p (mp Eisy (7)) A p3 Eis, (¢).

Hence, Pz’q(qbf ® qb}) is slowly increasing. On the other hand, according to Proposition 3.4,
the cohomology class w can be computed by cuspidal cohomology. So, let €2 be a cuspidal
differential form representing w. As ) is rapidly decreasing by definition, the differential form
QAN PR (dp @ d)’f), where (*Q) denotes the restriction of Q to M x M, is rapidly decreasing.
This differential form has values in the vector space underlying the algebraic representation

UW(=p —q—3)c @ (Sym? Vy'c W Sym? Vy'¢)

of G'. Recall that the irreducible representation SymP V5 X Sym? V5 occurs in the isotypical
decomposition of (*W (—3) by our choice of p,q,k and k’. Hence, we have the G’-equivariant
pairing
()
VW (=p—q—3)c® (Sym? Ve K Sym? Vy'c) —— C(~p — q)
defined as the composite of the natural projection
UW(=p—q—3) — (Sym” V2\,/<C X Sym? VQ{@

and of the natural pairing
(Sym” Vyle K Sym? Vy'e) @ (Sym? Vy/e K Sym? Vy'e) —— C(—p — q), (14)
which is given by
., , 0 ifr+7r" #pors+s #q,
PR g4 % —
“ s @ “ —1 2¢)7F7 otherwise.
< r sy Ypt s’> r+s pP—q p q h i
r)\s

Let Agr = R} be the identity component of the center of G'(R) and let g’, respectively ¥,
be the Lie algebra of G'(R), respectively of its subgroup Ag/(U(1) xgx U(1)). Then, with the
notation of the beginning of §4.2, we have

ge/te=(rap ) e @ ep).
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Let 1 be the generator of the highest exterior power A\ g¢/tc defined by
1= (v",0)A0,v7)A (v7,0) A (0,07)
where vt = %(ilz f{) € p'*. Evaluating the differential form ¢*Q A Pr(of @ ¢’f) at the tangent
vector 1, we get the rapidly decreasing vector valued function
(PN PLA6p @ ¢))(1) € FW (—p— g — 3)c @ (Sym? Vyle B Sym Vi'e) @ C5(G/(Q\G'(A).

Here C35(G'(Q)\G'(A)) denotes the space of rapidly decreasing functions defined in [Har90,
p. 48]. Composing with the pairing defined above, finally, we get the rapidly decreasing function

(A Pi(or @ ¢7))(1)) € CF(G(Q\G'(A)).

PROPOSITION 4.24. Let w be a vector of Mp(7¢|v|™3, W (—p — q — 3))c satisfying the condition
on Hodge types of Lemma 4.21. Let ) be a cuspidal differential form representing w, let p be a
closed current as in the statement of Lemma 4.23 and let [p] be its cohomology class. Let dg be
the measure on G'(Q)Z'(A)\G'(A) associated to 1 (see § 2.4). Then,

1

(.15 = e ("2 A PLI(65 © ¢))(1)) (g)|det g dy.

/G'<@>Z'<A>\G'<A>

Proof. There exists a rapidly decreasing differential form 7 such that ' = Q — dn is compactly
supported [Bor81, Corollary 5.5]. We claim that the pairing (v*dn, Py (¢ ® ¢;)) is zero. To
prove this, recall that according to the third statement of Lemma 4.23, the classes of the
pairs of currents (L*TP,Z"I(qﬁf@(ﬁ}),L*Tpqu(¢f®¢})) and (p,0) coincide in HA(S/R, W). According

to Proposition 4.8, this implies the existence of a current p’ on the open part AFTF such that
— /
As dp = 0, for any compactly supported differential form 7. of suitable degree on S, we have
tTppas 00, (dne) = (p = dp')(dne) = 0.
The differential form ¢*dn A Pﬁ’q(qb F® QS}) on M x M is rapidly decreasing, hence it extends to

—~—

a differential form on a smooth compactification M x M, which is zero on the boundary. As a
consequence, we can see the pairing (v*dn, Py (¢ ® ¢’f)) as an integral

/N dn NP (dp @ <z5/f)
MxM

over the compactification. To prove that this integral is zero, approximate 1 by a form 7. whose
support is compact in S. We have

/N oy A PE (6 @ 8)
Mx M

:/N L*d’r)c/\Pft’q(qu®¢})+/
MxM

S d(n —ne) APyt (r @ 6).
Mx M

On the one hand, the first integral coincides with ¢.Tpra(4 8 y(dne), hence is equal to zero. On

the other hand, as the manifold M x M is compact, the second integral can be made arbitrarily
small if the support of 7. is sufficiently close to the support of 1. Hence,

(edn, P*(és ® ¢7)) = 0.
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As a consequence,

(w [Pl B = p(2)
= L*Tpﬁ*q(qsfm})(ﬂl) +dp' ()
= 6T ppa(g,09) ()
= (", Py (¢r ® 0%))
= (", PjY(dy @ &)

The second equality follows from the definition of p’, the third from the fact that Q' is closed,
the fourth from the definition of the current associated to a differential form (13), and the last
from the vanishing of (c*dn, Py;*(¢ ® ¢;)). The fact that (:*Q, Py;?(¢; ® ¢';)) is computed by
the integral given in the statement of the proposition follows from [Har90, Proposition 1.4.4(c)].
This completes the proof. O

Our goal is now to give an explicit formula for the integrand in the above integral. The first
step is to explain precisely how to associate differential forms on S to cusp forms on G. Once we
have the results of §3 at our disposal, this association relies on rather elementary representation
theoretic considerations.

Let T" be the maximal compact subtorus of Sp(4, R) defined by

T — €T Y =2t y? =1

The Lie algebra of T” is the compact Cartan subalgebra of sp, that we denoted by b in §3.1.
Let Ag = R be the identity component of the center of G(R). For integers n,n/, ¢ such that
n+n' =c (mod 2), let N(n,n’,c) : AgT' —> C* denote the character defined by

— ($+iy>n(l‘,+iy,)n/($2 +y2)(c—n—n’)/2’

and by X (n,n’) the restriction of X' (n,n’, c) to T'. Note that the simple root e; — eq, respectively
2e9, defined in § 3.1, coincides with the differential at the identity matrix of the restriction to 7"
of the character \'(1,—1,0), respectively A(0,2,0).

LEMMA 4.25. Let E be an irreducible algebraic representation of G in a finite dimensional
Q-vector space and let w € E be a vector of weight \(u,u’,c). Let

1 1
o
Sl 1

v 1

€ Sp(4,C).

Let v = Jw € E¢ and let v = Nv, where N € G(R) is defined in Remark 3.2. Then, for the
action of the torus AgT' C G(R), the vector v, respectively v, has weight N (u, v, ¢), respectively
N (=, —u,c).
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Proof. The statement on the weight of v is a straightforward consequence of the fact that for
any z,2’,y,y € R, we have

€r Yy €T Y
/ ’ . ’ /
J! v V1r=7 ! Y1
-y T -y L
—y 2 —y 2
T+ 1y
_ $, _|_ Zy/
o T — 1y
' — 1y

Hence, the statement on the weight of ¥ follows from the identities

x Yy €T Y
/ / / /
* Y1o=NN"! v Y] No
—y x —y T
—y 2 —y/ 2
2 —y/
=N|,* , Yl
Yy x
Yy x
€T Y
’ ! Yy =
= A—u', —u,c) v. O
—y T
Y 2
LEMMA 4.26. Let X1 _1) € €c be defined by
1 —1

1 —1 —1
()17
) 1

7 —

Let 77 and 7¥ € P(W(—p — q — 3)) be as in Lemma 3.6. Let U, € 7}/ be a lowest weight
vector of the minimal K-type T3 _p/—1) of 7 and let U, € ©Y be the vector associated to
U as in Remark 3.2. Let w € W(—p — q — 3) be a vector of weight \(—k, k", —p — q) and let
v, € W(—p — q — 3)c be the vectors associated to w as in Lemma 4.25. Let

2

X200 N X(1,1) ® X(0,-2) € /\P+ Qp,

2
X0,-2) N X(—1,-1) ® X(2,0) € /\ p-@chp’,
where the X, . are the root vectors defined in § 3.1. Then:

(i) there exists a unique non-zero map

2
Q(Vo) € Hompe, </\ pr@cp W(-p—q-3)cc 7f<>m<f>

such that
k+k -1 4 ‘ '
Vo) (X(20) A X1y © Xo,-2) = D (=1)'X{ _pyo @ XG0
1=0
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(ii) for the action of N on the de Rham complex defined in Proposition 3.13, we have

2
NO(T..) € Homrey (A b~ 0 p* W(-p—g -3 e

and

k+k -1

(NQUTo))(X(0,-2) A X (-1,-1) @ X)) = D (F1)'X(y 7@ X(li,rf;J)rL@oo
i=0

Proof. Note that X _y) is a root vector corresponding to the positive compact root and recall
that we have the isotypical decomposition

/\ pt@cp = 7(3,—-1) D T(2,0) D 7(1,1)-

Hence, the vector X5 ) A X(1,1) ® X(o,—2) is a highest weight vector. As a consequence to define
the restriction of a Kg-equivariant map Q : A?pT @cp™ —> W(—p — ¢ —3) @c ¥ to (3,-1)
amounts to give the image of X5 gy A X(1,1)® X(g,_2), under the condition that Q(X(ZO) /\X(Ll)

X(0,—2)) must have the same highest weight as X3, 0) A X(1,1)® X g,—2). For every 0 <i < k+kK +4,

the vector X(kIHC T‘l "W, has weight X (k + 3, k" — 1,¢) — iN'(1,—1,0) where ¢ = p + ¢ + 6.

Similarly, the vector XE jyv has weight N(=k, k', —c) +iN(1,—1,0). As a consequence, the
vector Zk+k “H-1)ixe Xk'H"J'HL "W, has weight \(3,—1,0), which is the weight of

(1,-1"Y (1,-1)
X2,0) N X(1,1) ® X(0,—2)- Furthermore,

kK —1 k4 -1
i i k4K +4—i 1 k+k'+4—1i
X@,-1) Z (—1)ZXZL—1)U®X(1J7r—1J)r Yoo = Z (= )X(Z;r 1) ®X(1T—1J)r oo
i=0 i=0
k+k'—1
o3 e X
k+k’
_ i+1 k+k/+4—i
= Z (— )X(z1 )’U®X(17_1) U
i=0
k+k'—1 ‘
o2 0 e X
=0.

In other terms, Zkﬂg e 1)ZAXZ1 v ® X(kfrkU)rA‘ "W, is a highest weight vector of the Kq-

module W (—p—q—3)®c 7. As a consequence, there exists a unique non-zero Kg-equivariant
map 73 _1) — W(-p—q—3)®c 7V sending X2,00NX(1,1)®X(0,—2) to Zf:é“ 71(—1)ZX21’_1)U®

X é‘“‘lJrf/l‘)M_i\Iloo. Thanks to Proposition 3.7, this proves the first statement. Let us prove the second:

by definition of the action of N on the de Rham complex (Proposition 3.13), we have

(NQ(V o)) (X(0,—2) A X(—1,-1) @ X(2,0)) = N(Q2Poo)(Ady—1(X(9,—2) N X(—1,-1) ® X(2,0))))-
An easy computation shows that

Ady-1(Xo,—2) A X(—1,-1) ® X(2,0)) = X2,0) N X(1,1) @ X(0,—2)-
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Hence,
(NQ(V o)) (X(0,—2) N X(—1,-1) @ X(2,0)) = N (Voo (X2,0) N X(1,1) ® X(0,—2)))
krk/—1
_ ktk/+4—i
= ( Z DX,y ® XG5 v >
k+k:’— o
= > (X _ppe X T
=0

The last identity follows from the fact that, by definition of a (g, K )-module V, we have
EXv = Adg(X)kv
for any k € K, X € g and v € V and from the equality Ady(X(1,—1)) = X(1,-1)- a

LEMMA 4.27. Let ¢y ® <Z>’ € B, ®q By. Let ¥ = ¥, ® Uy be a factorizable cusp form on G.
Assume that U sat1sﬁes the Cond1t1ons of Lemma 4.26. Let Ay ; j, By ; and Cy v ; denote
the integers

(k+KE +4—149) G+ (E+E —i+j)
(k+K+4—(G+))N0GE—5) (K+k -0
Biwi=(G+1)(k+k +4—1),

Ck,k’,i = ’L(k + K —i + 1).

Ak i =

Then,
(L (QAUTo) @ Tp) A P05 @ ¢))(1)
3 (2miprat? E S i3 ket k' +4—(i+5) i—j
i i X ]Zo(_l) j)AeriiXamy YO Xa oy
p
® Z S dPeal @y (dh,_, @ 0 (6,0 ® O))
0 (v7)€B (Q\C'(Q)
. k+k'—1
_ (=DP2miyprat? kR 4= (i+1)
8(q+1) > (OB Xy T X v
=0
q
® Z Yo aP@a @y (¢, ® e ($h, © O
0 (v//)€B (Q\G'(@)
. k+k'—1
( 1)P (27”)p+q+2 k+k/ +4—i i—1
8(q+1) Z} (D) i X 2y T @ X Ly
q
@Y Y aP@d? ey (08, ® e (85, © B,
=0 (v/)€B (Q\G'(Q)
and

(" Foo (U(Woo) ® W p) A Py (b5 @ ¢)) (1)

. k+k'—1 3
_ 3 Chr@myrr 3 R o x5
S 160 (g+1) E% ,Z;(_) AvwigXo oy T OX )
1= 1=
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2 Y a0 e (e oW, 5 )
5=0 (v,7)eB'(Q\G'(Q)
(2miypat2 KT

i SRR =) _
—1)"'By ki )\ X

X0,
=0
P
® ) > ol @ ) @ 4" (8h,_,, ® &)Y (D512 ® 0)
=0 (y7)€B'(Q\G'(Q)
(2mi)prat2 FE

S S _1)¢ L kK i [
8<q + 1) ; ( 1) Ck7k ’ZX(lvfl) \IJ ® X(lvfl)v

p
® Z Z a7("p) ® CLglq) ® ’Y*( grfp ® gbf)’)/*( Z+2 ® (;S/f)

r=0 (v,y)eB'(Q\G'(Q)

Proof. Let € denote Q(¥) ® ¥ and

er = (vT,0),
es = (0,v7),
es = (v,0),
es = (0,v7),

which are vectors of gi-/€ = (p'* & p’~)% Let Sy be the symmetric group on four elements. For
o € Sy, let €(o) denote the signature of o. Then,

QA PHUor @ 1)) (1) = D e(0)Qtulen(r) A eo(z) A €as)) @ PHUSs @ ¢)(eoa)).
g€Sy

By definition, we have Q(t«(e,1) A €q(2) A €g(3))) = 0 whenever e, (1) A €5(2) A €4(3) is not +(v+,0)
A(0,vT) A (0,v7) or £(vt,0) A (0,vF) A (v™,0). So we have to compute Q( t.(v,0) A (0,07)
A (0,v7)) and Q(e(v,0) A (0, v*) A (v7,0)). Recall the decomposition

/\P+®P = T(3,-1) D 7(2,0) D T(1,1)

into irreducible C[K]-modules. By construction (Lemma 4.26), €2 factors through the projection
/\2 pTep — 7(3,—1) and sends the highest weight vector X5 0) A X(1,1) ® X (9, —2) of 7(3 _1) to

k+k'—1

i kK +4—i i
Z (DXGEIT e X e
=0

Hence, we need to compute the image of t.(vt,0) A (0,vF) A (0,07) by the projection above.
The identities

L (v5,0) = X1 (00),
1 (0,0%) = X1 (02)

imply
L*(U+, 0) VAN (O, ’U+) VAN (O, ’U_) == X(270) AN X(O,Q) ® X(O,—?)’

which has weight (2,0) = (3,—1) 4+ (—1,1). Let us write
L (0F,0) A (0,07) A (0,07) = axg 1) + Br(a,0) 7711
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where x(3 _1) € T(3._1), (2,00 € T(2,0)sZ(1,1) € T(1,1) are weight vectors and «, 5,7 € C. Because
weights of T” in irreducible representations of K are multiplicity free, we can assume that
T(3,_1) = adX(_1,1)(X(2,O) AN X1y ® X(o,—2)) where ad denotes the adjoint representation
gc —> End(gc). As 7(1,1) does not contain vectors of weight (2, 0), we have v = 0. Furthermore,
as T(2,0) has highest weight (2,0), we have

adX(l,_l) (L*(U—i_’ 0) A (O? U+) A (O? U_)) = adX(l,_l) (I(3,—1))a
that is,
adX(L_l)(X(gyo) A X(O,?) & X(O,—2)) = O[adX(L_l)(X(ZO) A\ X(l,l) X X(O,—?))'

An easy computation shows that o = %. As a consequence, we have

_ 1
Q(L*(’UJ'_’ 0) A (0”[}+) AN (0,’1] )) = Q(4 adX(_l’l)(X(Zo) A\ X(l,l) X X(07_2))>

1 k4K —1 ‘ 4 '
= Xy Yo DX e X e
i=0
It follows from the definition of standard basis (§3.1) that

n! (k—l—k:'—|—4—n—|—m)!Xn_m\Ij
(n—m)! (k+k +4—n) 1,-1) =
n! (k+k —n+m)

X(@lvl)X(nlﬂ_l)‘lloo -

XCinXa-nv = (n—m)! (k+k —n)! (-1
Hence,
Qea(v7,0) A (0,07) A (0,07))
_! Hﬁzl(—l)i(k FH A 4— )+ D)Xy o xi
4 A (1,-1) (1,-1)Y
=0
1 ktk'—1 . . .
+ Z (—D)"i(k+ K —i+ 1)X(’€1ffl§4*@\11 ® Xgljil)v.
i=1

To compute Q(tx(vt,0) A (0,vF) A (v,0)), note that the vector
L*(U+,O) A (0,U+) A(v7,0) = X(Q,O) A X(O’g) ® X(*ZO)

has weight (0,2) = (3,—1) + 3(—1,1). A computation as above shows that the image of the
vector ¢.(v+,0) A (0,0%) A (v™,0) by the natural projection A”p* ® p~ —> 73 1) is equal to
% adg((fm) (X(ZO) A\ X(l,l) (4 X(07_2)). Hence,

_ 3
00,00 A 00 A (07.0) = 0 ad |, (Xiao) A Xiay @ K02

3 iy k+k'+4—i %
= 7X(3_1,1) Z(—l) )((1—‘:_71—)"_4 1\ X X(L_l)v

k+k' -1 3 3 ek ( )
, i »
~ 80 - (_1)Z(J>A’“”“"i’jX(1,1> YR Xy
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To finish the proof, we have to compute P;?(¢; @ ¢;)(v™,0) and Py*(ér @ ¢4)(0,v7). The
differential form P54 (¢; @ <z5’f) is defined in Proposition 4.10. Unraveling the definitions, we get

Py ¢y @ ¢y)(v™,0) = (—1)F > YV p(wy ® ¢5) (07 )" (0g ® ¢).
(v¥)EB'(Q\G'(Q)
According to Lemma 4.5, we have wp(w; ®¢pf) = %(w;' +w, ) ® ¢y. Hence,
Py ¢y @ ¢y)(v™,0)

—1)P(2mi)Pt (271t &
_ (=D)P(2mi)PT (2mi) 3 T

- 4(g+1) (p)®a(q DY (o ® Gp)Y" (d35_g @ FF).-

5=0 (v7)eB (Q\G'(Q)
Similarly,

Py(ér @ ¢7)(0,v7)
(2711 pHl 27m atl &

= 3 S dP el @y (dh,_, @ 07 (6,0 © 0.

r=0 (v»")eB' (@Q\&'(Q)

The proof of the first statement follows by putting the previous computations together. The
proof of the second statement is a direct consequence of the first, of the identities

Ady-1 (v, 0) = (0,0T),

Ady-1(0,v%) = (vF,0)
and of the formula for P?(¢; ® ¢;)(v*,0) and Py?(¢y ® ¢4)(0,0") deduced as above from
Proposition 4.9. O

According to Lemma 4.27; to compute the integral
/ (U Too) @ Pp) AP (05 @ ¢7))(1))(g)|det g dyg,
G(QZ'(M\G'(A)

we need to compute pairings of the shape <X(1 _)Y a7(n P a(q)> <X("1 R a(()p) ® a£Q)> and of the

shape (X(Z1 1) CLI(7 )®a(q)> <X("1 Vs a&p) ®a§ )>. In fact, a lot of these pairings vanish for weight

reasons.

LEMMA 4.28. Let i,r,s be integers such that i > 0,p > r > 0,q > s > 0. Then, the following
statements hold

(i) i (X{,_pyv, Lo @aly #0, theni =K +q,7r=(~k+k +p+q)/2
(i) if (X E UCLO ®a§q> 0, theni=k—p, s=(—k+k +p+q)/2;
(iii) if (X g Mp @Dy £0, theni=k +p, s=(—k+k +p+q)/2;
(iv) if < 110 ar > 0, theni=k+q,r=(-k+k +p—q)/2.

Proof. The vector o’ ®al? has weight N (p—2r, ¢—2s) for the action of U(1)? = T’ (Lemma 4.4),
the vector X( 1)V respectively Xgl,—l)i’ has weight \'(—k, k") +iXN (1, —1), respectively X (—k/,
k) + i) (1,—1). Hence, the statement follows from the fact that, if two weight vectors pair
non-trivially, they have opposite weights. O
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COROLLARY 4.29. Let ¥V = V¥, ® ¥y be as above, let w € W(—p — q — 3) be a vector of weight
A=k, k', —p—q) and let w be the vector in MB(Wf|V| =3 W(—p—q—3))c associated to ¥ and w
by Lemma 4.26. Let ¢5 @ ¢ 7€ B, ®q By and let p be a closed current lifting the extension class
Eis’;{’q’k’klwf ® ¢;) as in Lemma 4.23. Let =y, 5(d5, ¢;) and Ey, . 5(df, @) denote the functions
on G'(A) defined by

Ens(0f, ¢;‘) = X("L_l)q; Z T @ ¢f)7,*(¢g ® ¢})a
(v
Enrs(85,81) = X0 )T Y (88 @ 6y (88 @ ¢)

(")
where the sums are indexed by all (v,7") € B'(Q)\G'(Q). Let

Xk: +q (Q)>

l)v,a(p ® a0

)

—1)7

Xk P v,a? @ >
Xk+p 7,alP) ®a(q>,
)-

= {

=

< 1) » Yp
Cy = < 1)Uva(p ® al®

Then, the pairing (w, [p])p equals

3

3 Waori (3 _
Clm jz%(—l) o < j>Ak,k',k'+q+j,j / Ek—q—2j+4,~k+k+q,—g—2(Pf, )

(-n*

_C
2(+1

)(Bk,k:',k—p — Cri/ k—p+1) /Ek'+p+3,—p—2,—k+k'+p(¢f7<f>lf)
3

+C! 3T~ 160 Z k +Jj ( )Ak: k' k' +p+j,j /Ekp2j+4,p+2,k+k/+p(¢f’ (b/f)

_]ZO
(_1)k’+p+1

~—————(Brp' k'tp — Crokl e /
8(q +1) (Bl k' +p kK k p+1)/ k—p+3,— k-t —qqr2(Pp, D),

— 0y

where the numbers Ay, 3 ; j, By i and Cy, s ; are defined in Lemma 4.27 and where the integrals
are over G'(Q)Z'(A)\G'(A).

Proof. Direct consequence of Proposition 4.24, Lemmas 4.27 and 4.28. O

To compute the constants Cy, Co, C3 and Cy, let us start with a trivial remark. The family
0P ® agq))ogrgp,ogsgq is a weight basis of Sym? V,w B Sym? V. for the action of U(1)* and,
by definition, the vector v is a weight vector for the maximal compact torus 77 C G(R). Hence,
the vector X(1 v E W (—p — q — 3) is again a weight vector and, because U(1)? = T", its image

under the U(1)2-equivariant projection
0 : W (=p—q—3) — Sym? Vo'c K Sym? V,'¢

is equal to A;(v )a%’ 'K ag) for some complex number \;(v) and some integers r;, ;.

Given 14, is \;j(v) zero or not? Note that we have the liberty to multiply the vector w which
enters the definition of the cohomology class w associated to the cusp form ¥ (Lemma 4.26)
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by any non-zero complex number. Of course, this has the effect to multiply w by a scalar, but
does not change the ratio (w,vx)p/{(w,vp)p that has to be computed (see Lemma 4.21). If
Xi(v) # 0, we can replace the vector w by \;(v) 'w. This has the effect of replacing the vector
v = Jw by \;(v)~!v. For this choice, Q(X(il’_l)v) = a%’) X agg) and so the computation of the
pairing follows (see (14)).

LEMMA 4.30. Let p =k —1 and q = k' — 1. Then, for any non-zero vector v € W(—p —q—3) of
weight N'(—k, k', —p — q), the image of X, _yv under the G’'-equivariant projection

0: U*W(—p—q—3) — Sym? Vo'c K Sym? V¢
is non-zero.

Proof. Thanks to the explanations preceding Lemma 4.26 and by symmetry under the Weyl
group, we are reduced to prove the following statement. If X_(, ,,) € g is a root vector associated
to —(p1 + p2) and if v € W(—p — ¢ — 3) is a highest weight vector for the action of the diagonal
maximal torus 7', then p(X_(, 4,,)v) # 0. Let X_,,, X_,, € g be root vectors associated to the
simple negative roots. We can assume that X_,, € ¢’ and that X_(, ;) = [X_p,, X ,,]. The

vector X_,, v is a highest weight vector of the representation Sym*~! 1, Sym* ! Vy'c which
is a subrepresentation of .*W(—k — k' — 1). Hence, we have Q(X,pQX,p;U) = 0. It is well known
that W(—k — k' — 1) is generated by applying monomials in the variables X_, and X_,, to v.
Furthermore, X ,,X_, and X_, X_,, are the only two such monomials whose application to
v gives weight A\(k — 1,k' — 1,—k — k¥’ — 2), which is the highest weight of the representation
Sym*~1 Vy'e ® Sym* 1 Vy'c- So, the fact that (X, X, v) = 0 implies that o(X_p, X p,v) # 0
which implies o(X_(,,4p,)v) # 0. O

Remark 4.31. In [Mol07, Theorem 9.6.2], Molev constructs a basis of irreducible representations
W of G and is able to derive explicit formulas for the action of generators of the Lie algebra of
G on the vectors of the basis. The non-vanishing of A;(v) can be derived from his result at the
price of a very lengthy (but elementary) calculation. Thanks to a program implementing Molev’s
result and written in Python by Molin, the author verified numerically the non-vanishing of A;(v)
for some small values of p, q, k and k'

COROLLARY 4.32. Assume p =4k — 1 and ¢ = k' — 1. There exists v € W(—p — ¢ — 3) of weight
N(—=k,k',—p — q) such that (X(l,_l)v,a(()p) X afIQ)> = (—1)P(2)FH -2,

5. Computation of the integral

Given a cuspidal automorphic representation m of G, the spinor L-function is defined as the
partial Euler product

Ly(s,m,r) = H L(s,my,r)
vV

where V' denotes the set of places where 7 is ramified and where 7 : “G® ~ G — GL(4) is the
natural inclusion. This Euler product is absolutely convergent for Re s big enough. In [Pia97],
the analytic continuation and a functional equation of Ly (s, 7, r) are deduced from the analytic
continuation and a functional equation of a family of Eisenstein series E®, via an integral
representation. In this section, as a direct consequence of Proposition 5.3, we show that for
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suitable choice of data, the integrals that appear in the statement of Corollary 4.29 coincide with a
special value of such an integral representation. Via Bessel models, the integrals of [Pia97] expand
into Euler products and we perform the relevant local unramified computation in Proposition 5.9.
The ramified non-archimedean integrals are considered in Proposition 5.11. The archimedean
integral is computed in Proposition 5.12.

5.1 Comparison with Piatetski-Shapiro’s integral

Let dt, be the Lebesgue measure on the additive group R. If v is a non-archimedean place of
Q, let dt, be the measure for which Z, has volume one. Following [Tat67], let d*¢, be the Haar
measure on Q) defined by

dt
- if v is archimedean,
x, _ ) It]
d"t, =
p dt, . . .
——— if v is p-adic.
p— 1 |tv’

Let dt, respectively d*t, denote the product measure [[, dt, on A, respectively the product
measure [ [, d*t, on A*.

PROPOSITION 5.1. Let p,vy,v5 : Q*\A* — C* be continuous characters and let s € C. Let
Xpi,v0,s be the character of B'(A) defined by

a; b as b s _ _
Xpa1 02,5 (< ! di) ; ( 2 dZ)) = u(ar/da)|ar /do| 207 (dr)vy H(da).
Then, for any Schwartz—Bruhat function ® on A*, the following statements hold:
(i) the function on G'(A) defined by

(91792) — fq)(glvg%:u’a V17V278)
= p(det g1)|det g1 |*+1/2

></ / D((0,t1)g1, (0, ta)ga) trta]* TV 2 u(trta) vy (t1)va(te) d*ty ¥ty
AX Jax

. .G'(A
belongs to mdB/EA; Xp,v1,v2,85

(ii) the Eisenstein series

E(I)(glagQ?}UJvVl?V%S): Z f¢(79177,927%7/17’/2a5)
(v¥)EB(Q\G'(Q)

is absolutely convergent for Re s big enough and satisfies a functional equation.

Proof. The first statement follows from a trivial computation and the second from [Pia97,
Theorem 5.1]. O

When p is the trivial character, we denote X, v, 0,5 DY Xuy 00,5 for simplicity.

Let us recall that for d = ¢ (mod 2), the algebraic character A(d, ¢) of the diagonal maximal
torus of GLo is defined by

Au¢y<acxw>H»a%wwn
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LEMMA 5.2. Let 1 and 1§ be two finite-order Hecke characters of respective signs (—1)P and
(—=1)4. Let v1 denote the Hecke character | |~9/9 and vy denote the Hecke character | |~PvY. Then,
the following statements are satisfied:

(i) the restriction of the archimedean part of X, 1, ptq+3 /2 to the identity component of the
diagonal maximal torus of G'(R) is A(p + 2,p) K A(¢ + 2, q);

(ii) the non-archimedean part Xy of Xy, u, pyq+3/2 Vverifies

aio b agQ b = - - -
Xf << o d1151> ’< o dsz)) -4 (pﬂ)dlag (qﬂ)d?’/?(él) 1g(02) 7

for any a1,dq,as,dy € QT, 1,01, 9,52 € 7% such that a1dia101 = asdociady and any by,

by € Ay.
(") ) <em

Because a;d; = asds, we have the identities

ar b as b _ _
Xul,ug,p+q+3/2 << ! di) ; < 2 di)) = ‘Gl/d2’p+q+2’d1’q‘d2‘pl/j?(d1) 1V(2)(d2) !

= |a1[P*2ardy| v (dv) " az|T? aada| T 9 (da) T

(") (7 ) eoer

we have a1dy = aado > 0, hence

a a _ _
Xvi,v2,p+q+3/2 (( ! d1> ) < 2 d2)> = |a1\p+2|a1d1! 1sgn(d1)p’a2|q+2!a2d2\ 1sgn(d2)q

= |a1|P*?(ardr) " sgn(a1)?|az|9 (azda) " sgn(az)?
— a€+2(a1d1)7lag+2(a2d2)fl

=(A(10+2,p)@A(c1+2,q))<<a1 d1>,<a2 d2>>.

This proves the first statement. Let X denote the archimedean part of x,, ,, p+q+3/2- Then, the
second statement follows from the equalities

w((mm ) ()
() () (7 750) (7 75)
() () (e ) ()

= (ay(ardr) " tag T (azda) ™) 1 (61) TR (62) 7 O

Proof. Let

For a diagonal element

The following result obviously implies that, for a suitable choice of data, the Eisenstein series
appearing in the integrals of Corollary 4.29 coincide with a special value of that defined above.
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PROPOSITION 5.3. Let 1 and v be two finite-order Hecke characters of respective signs (—1)P
and (—1)4. Let vy denote the Hecke character ||~9) and vs denote the Hecke character | |~PuS.
Let @1 5 =[], o0 1,0 and @2y = [[, oo P20 be factorizable Schwartz-Bruhat functions on A?
such that for j = 1,2 and any v, the function ®;, is Q-valued. Let S; be the set of places where v;
and ®; r are ramified. Then, there exist ¢ € B g and ¢> € B such that the following statement
is verified. For any integers r = p (mod 2) and s=q (mod 2) let ® be the Schwartz—Bruhat
function on A* defined by

(_1)p+q+r+s(2@)p+q+2ﬂ2(p+q)
((P+q—1)N2Ls, (p+q+2,01)Ls,(p+q+ 2,02

Here we denote by ®; and ®, the factorizable Schwartz—Bruhat functions ®; = [[, ®1,, and
=[I, ®2,, on A2 where

O (21, Y1, %2, Y2) = )‘51(95173/1)‘1’2@2,1/2)-

(o) /2 =@ +u?)

(q+5)/2g—m(23+y3)

Dy ooz, 1) = (i1 + y1) P 2 (i) —
D9 (T2, Y2) = (iz2 + y2) ™I 2 (i — yo)

Then, for any (g1, g2) € G'(A), we have
(68 @ o) (g1)(8% @ &) (92) = f*((91,92), 1,11, v2,p + q + 3/2).

Proof. For any place v and any g, € GL2(Q,) let

(o2
Zy” (gv,ujﬂ,,s) :/ (I)J',U((Ovt)gv)|t‘s+1/2yj,v(t) d*t.
QX

v

Then, we have the following factorization into an Euler product of local Tate integrals
< (_1)p+q+r+s(Qi)p+q+2ﬂ-2(p+q)
(p+a—1)D)Ls,(p+a+2,v1)Ls,(p+ g+ 2,12

|detg1’p+Q+2H<HZ g],v,V;v,p+Q+3/2)>

-1
)) f(b(glagQa17”15”27p+q+3/2)

At the archimedean place, we have
Za ™ (1, 01,00, 0 + 4 + 3/2) 25 (1, a0, p + q + 3/2) = (—1)PHOFTH3) 202040 (4 g2

where T is the gamma function. The function ®,, has weight \'(r,s) for the action of U(1)2,
which is the same weight as ¢ ¢¢. The Iwasawa decomposition for G'(R) implies that the weights

for U(1)? in 1ndB,ER;()\(p +2,p) K A(q + 2,q)) are multiplicity free. Hence, it follows from the

first statement of Proposition 5.1 and from Lemma 5.2 that the archimedean part
(—1)ptatrts (22-)p+q+2 r2(p+a)
(p+q—11)?2

of f® is proportional to ¢¥¢?. By the choice of our normalization factor, the two are in fact equal.
We claim that the non-archimedean part f®f belongs to B o® B . To prove this, let v be a
non-archimedean place. By the first statement of Proposmon 5 1 and the Iwasawa decomposition
GL2(Qy) = B2(Q,)GL2(Z,), the function

D1,00
Z (glooaylooap+q+3/2) (92,007V2,007P+Q+3/2)

[OF
g— Zy""(g,Vjw,p+q+3/2)
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is determined by its restriction to GLa(Z,). Assume that v does not belong to S; U So, in other
words, for j = 1,2, the character v; is unramified at v and ®;, is the indicator function of 72.

Let us show that g — Z3 (9,Vjv,p+ g+ 3/2) is constant on GL2(Z,) and let us compute its
value. Let g = (f:” 3) € GLa(Z,). As c is coprime to d, for any non-negative integer n and any
t € QF, we have

(0,t) € Z2 < (tcy,td,) € Z2

and this implies ®;,((0,t)g) = ®;.(tc,td) = ®;,(0,t). Hence, by a standard computation, for
any j = 1,2, any non-archimedean v ¢ S1 U Se and any g € GLa(Z,), we have

D,
Zy (g, Vju,p+q+3/2) = Ly(p+ q + 2,v5)

where L,(s,v;) is the local L-factor (see [Tat67, 2.5, p. 320]). Moreover, it follows from the
computations of [Tat67, 2.5, p. 321] that, for any non-archimedean v € S; U Sy and any g €
GL2(Z,), we have

D, _
Zy" (9, vjw,p+q+3/2) € Q.

Hence, by our choice of the normalization factor 1/(Ls,(p + q¢ + 2,v1)Ls,(p + q + 2,1v2)), the
non-archimedean part f®f of f® is @—Value(Ai. Furthermore, it is obviously invariant by right
translation by the subgroup (zx 1) of GLo(Z). As a consequence, it follows from Lemma 4.3
and from the second statement of Lemma 5.2 that f®f belongs to Bp@ ® B .0 The conclusion
follows. .

5.2 Bessel models and local computations
The previous result shows that the integrals of Corollary 4.29, which compute the regulator,
coincide with special values of integrals of the shape

/ \Ij(g)E@(gal‘LaylaVQ,S) dg

G(Q)Z'(A\G'(A)

for some specific choices of ¥ and ®. The properties of these integrals rely on the Fourier
expansion of the cusp form ¥ along the Siegel parabolic subgroup

P= {(O‘A f_ﬁ) a€Gy,Ac GLQ,tS:S}

of G. More precisely, they rely on the existence of Bessel models for cuspidal automorphic
representations of G. Let us remark that some authors use the terminology ‘generalized Whittaker
model’ rather than ‘Bessel model’. As a motivation for the study of such objects, the reader might
find the first section of [Mor11] very interesting. To introduce Bessel models, let  : Q\A — C*
be a fixed additive character, let U denote the unipotent radical of P and let A : U(Q)\U(A) —
C* denote the character defined by

1 r
1 t s
A 1 =n(t).
1
Introduce the following subgroups of G:
dy
da
D=<¢d= d ,dl,dQEGm s
2
dy
930
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1 r
N: n =

R =DU.

DEFINITION 5.4. Let v1,v9 : Q*\A* — C* be continuous characters. Let a,, be the character
of R(A) defined by
oy (du) = v (dy)va(d2)A(u).

A cuspidal automorphic representation 7 of G has a split Bessel model associated to (v, 1) if
its central character w, coincides with 119 and if there exists ¥ € 7 such that the function on
G(A) defined by

g Wa(g) = / U(rg)ay (r) dr
(Z(A)R(Q)\R(A)

is not identically zero.

Remark 5.5. Obviously, 7 has a split Bessel model associated to (v, v2) if and only if the function
g —> Wy(g) is non-zero for any non-zero ¥ € 7.

The connection between the integral we are interested in and split Bessel models is given by
the following result.

LEMMA 5.6. Let w be a cuspidal automorphic representation of G and let ¥ € m. Let

Z(\If7(1)7u71/171/2,5) :/ \Ij(g)Eq)(.gv/L>V17V27s) dg
(Z(A)G'(Q)N\G'(4)
Then
Z(‘I’,(I)HU,,VMIJQ,S) :/ Wq/(g)f(b(g,,u, Vlv”ZaS)dg
(D(A)N(A\G'(A))

for Re s big enough.

Proof. Note that we are in the setting of [Pia97, 2|, for the choice

=1y ) cv@.

Hence, the statement follows from the proof of [Pia97, Theorem 5.2]. O

Remark 5.7. The lemma shows that if 7 does not have a split Bessel model associated to (v1, 1),
then the integrals Z (W, ®, u, 11,12, ) are identically zero.

The global definition above has a local analog. Roughly speaking, given an irreducible
representation (my,, Vz,) of G(Q,), a local Bessel model of m, is a G(Q,) equivariant map from
Vi, to a space of functions W : G(Q,) —> C such that W (rg) = a(r)W(g), for some character
a of R(Q,). For a precise definition, in particular at the archimedean place, we refer the reader
to [Morll, 1.5]. Assume that 7 has split Bessel model associated to (v1,v2). If ¥ = @ ¥, is
factorizable, it follows from the unicity of local Bessel models [Pia97, Theorem 3.1] that the
function Wy factors into a restricted product Wy = H; Wy, of local Bessel functions.
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COROLLARY 5.8. Assume that ® = [[| ®, and ¥ = @/ U,, are factorizable. Then, for Re s big
enough, we have the Fuler product expansion

Z(‘l}, (I)nua n, V2, S) = H ZU(W\I’v? (I)Uaﬂva Viw, V2,0, 5)
v

where

ZU(W‘I/U ) (I)Ua Mo, Vl,v: V2 v, 5) = / W\I/v (gv)fcpv (gva Mo, Vl,v: V2 v, 5) dgv
(D(Qu)N(Qu)\G'(Quv))

for all places v.

The end of §5 is devoted to the computation of some of the local integrals above, under the
assumption that 7 has a split Bessel model associated to (v, v2).

PROPOSITION 5.9. Let p be a non-archimedean place where 7, v1 and vy are unramified. Let ¥,
be the standard unramified vector of m, and let ®, be the indicator function of Z;l,. Normalize
Wy, in such a way that Wy, (1) = 1. Then,

Zp(Wa,,, @p, 1, v1p,12p,8) = L(s +1/2,v15) L(s + 1/2,v9p) L(s + 2, mp, 1)
for Re s big enough.

Proof. The representation 7, is a subquotient of an unramified principal series representation

indggg” ; Xp (see [Cas80, Proposition 2.6]), where y, is an unramified character of T(Q,) and
P

where ind denotes normalized induction. As explained in [AS01, 3.2], the Satake parameters are

1
1
by = ,
0 = Xp D
p
p
1
b1 = _ ,
1= Xp p1
1
1
b2 = Xp P 1
p!
and the Langlands Euler factor is
1

H T ) = a1 )3~ s ) (1~ aap )

where we introduced the convenient notation oy = bgb1ba, as = bgb1, ag = by and ay = bgbsy. It

follows from the first statement of Proposition 5.1 that the function g — f®(g, 1,1, 12, 5)

belongs to indg,ggzg X1 povap,s- Furthermore, it is easy to see that with our choice of ®,, for

932

https://doi.org/10.1112/50010437X16008320 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16008320

ON HIGHER REGULATORS OF SIEGEL THREEFOLDS II

is constant on G'(Z,). As a consequence, according to the Iwasawa decomposition G'(Q,) =
B'(Qp)G'(Zyp), the local integral Z,(Wy,, ®p,1,v1,, 12, 5) equals

X
£ prages) [ Ll W, [0
Q5
1
xr
L4120 L 12my) [ e, [T | |
Q5

1

As the Bessel function Wy, satisfies Wy, (ugk) = A, (u)Wy, (g) for any u € U(Qy), any g € G(Q,)
and k € G(Z,), we have

p~ ™ p~ ™ 1 1
= W\Ilp
1 1 1

W, .

For any integer m > 0, we have n(p~"") # 1. Hence,

p—m
p™ _
Wy, 1 =0
1
As a consequence,
Zp(Vp, Pp, 1,1 p, V2, S)
+o00 pm m
= L(s+1/2,v1,)L(s +1/2,0,) 3 p ™D, Py
m=0

1

Let 51 = v1,5(p) and B2 = v ,(p). Because we assume that 7 has a split Bessel model associated to
(v1,1v2), 119 coincides with the central character of m, hence we have ajag = oy = 1 82. The
Weyl group W acts on the «; through all permutations which preserve the relation ajas = agay.
More precisely, with the notation of §2.3, we have sja; = s, s12 = aq, S1a3 = Qu, S1Q4 = Q3
and soa1 = aq, Soan = Qu, S9r3 = a3, Soay = (. Let A denote Zwew(—l)l(w)w, seen as an
element of the group algebra C[W], where {(w) denotes the length of w. According to [BFF97,
Theorem 1.6 and Corollary 1.9(2)], the following explicit formula
pm
+2 _—1

p™ 1 —ampAlag oy )

e D e v
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is true for any integer m > 0. As a consequence, using Wy, (1) = 1, we have

Zy(Ww,, ®p, Lvip,v2p,8) = L(s +1/2,01p)L(s + 1/2, 1)
x A(afos) " A(afag (1 — asp™ )

which can be rewritten as

L(s+1/2,v1)L(s+1/2,v9,)L(s + 2, 7p,7)
x A(afas) " A(afar ! (1 — arp” D)1 — agp~ ) (1 — agp )

because the local L-factor L(s + 2, m,,) is invariant under W. We claim that
A(afa; ! (1= arp™ )1 = asp™ D)1 — aup™*?)) = A(ada ).
Indeed, using the relation, ajas = asay, we find

adart (1 — ap ) (1 — ap~ )1 — agp~ 1)

2 1 2 1 2y, —(s+2
= o0, — (eag + azaizoy +a3)p( )

+ (oqozg + ozgoz% + a%ag)p_2(5+2) — alagagp_g(s'ﬂ).

But, as agas is fixed by sps1sy € W, which has odd length, we have A(agazp=(512) = 0.

Similarly, note that OQO(%O(Zl is fixed by sos1s2 because of the relation ajas = asay. So

A(OQOégOéle_(SH)) = 0. Similarly we find that
A(a3p™ ) = A(afarp ) = A(aragadp?T?) = 0.

As (s25159)(03a2) = a3ag, we have A((aga? 4 adaz)p~25t2) = 0. This proves our claim. As a
consequence, we have the equality

Zy(Wy,, @p, 1,01 p,v2.p,8) = L(s + 1/2,v1,)L(s +1/2,v9 ) L(s + 2, 7p, 7). O
Remark 5.10. A similar result is stated without proof in [Pia97, Theorem 4.4].
Let us consider the ramified non-archimedean integrals.

PROPOSITION 5.11 [Har04, Lemma 3.5.4]. Let p be a_non-archimedean place. Then, if the
Schwartz function ®, and the Bessel function Wy, are Q-valued, we have

Zp(W\IJpa (bpv 17 Vl,pv V2,p7p + q + 2) € @

Furthermore, if ¥,, has a split Bessel model associated to (v1p, v2,p), then there exists a Q-valued
function ®, such that

Zp(W\I/pa q)pv 17 Vip,V2p,P + q + 2) € @X'

The archimedean computation below is a direct application of [Morll, Theorem 7.1] and of
the Mellin inversion formula.

PROPOSITION 5.12. Let 7y, be a discrete series representation of G(R)' with minimal K-type
T(AiAe)- Let V1 oo, V2,00 : R* —> C* be the characters defined by

V1,00() = |2 sgn(z)?,
Va.00() = [P sgn(e)".
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Let (vt)o<t<r,—x, be a standard basis of 7y, \,) and for any integer 0 < t < A; — A, let
Weot : G(R)Y — C denote a Bessel function corresponding to v in the sense of [Morll, 3.1].
Let r = p (mod 2) and s = q (mod 2) be two integers. Assume that ®, is of the shape

(1,91, 22,Y2) —> Poo(@1,Y1,22,Y2) = Poo,1(21, Y1) Poo 2(22, Y2)

where

)

so2(22,y2) = (iza + yQ)(qu)/2(ix2 _ y2>(q+8)/2677r(w§+y§)_

)

Do 1 (1, 1) = (i1 4+ y1) P~ 2 (i — yl)(p+r)/2€_7r($%+y%)7
)

Then, the following statements are satisfied.
(i) Ift+Xa+7r#0or —t+ A + s #0, then

Zoo(Woo,ta D, 1, V1,00, V2,00,0 1+ q + 3/2) =0.
(ii) Otherwise, let

_t=X—(¢—p)/2+2

al
2
a 2)\1+)\2—t+(q—p)/2+2
2 = 5
2
A+ +4
AT
A — Ay +4
QT Ty
A+ A2+2
ST Ty
A — Ay +2
C4:f.

Then,

Zoo(Woo,ta @007 17 V1,009 V2,005 P + q + 3/2)
_ (1) 27r(3(p+q)+6)/2/ Per — 8)l(e2 — s)P(cs — 5)T'(eca — 8) o5 ds -
oot I I'(a; — s)I'(ag — s) 271
Der + MPPER ¢ + MO (¢ - AR (e, o 2R

T(a; + 3(p+4q)+6)r(a2 + 3(P+4Q)+6)

where I' denotes the gamma function and where the path L is a loop starting and ending at +00
and encircling all the poles of I'(c; — s) for 1 < j < 4 once, in the negative direction.

Proof. The vector vy has weight X' (t + A2, —t + A1) and the function @, has weight X' (r, s) for
T" = U(1)2. Hence, Woo + has weight N (t+ A2, —t+ A1) and f®> has weight ) (r, s). The Iwasawa
decomposition G'(R) = B'(R)U(1)? implies that Zoo(Weo t, Poo, 1, V1,00 V2,00, §) €quals

x x

/ / Woo,t r 1 k f<I>oo x . k‘,l,Vl,ooaVQ,ooaS d*x dk.
RY JU(1)?
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So,if t+ Ao +r#0o0or —t+ A\ + s #0, we have

X X
/ W t k| poe t by 1,1 oos Vaoos 8 | dk =0
U(1
1 1

for all x because the integral of a non-trivial character on a group is zero. In the case where
t+ Xo+1r=—t+ A1 + s =0, the integral equals

X

x x
/ Weo t 1 foee 1 1100y V2,00, 8 | dF .
Ry 1 1

The Meijer G-function Gg:g(z, ai,az,c1,c2,c3,c4) is defined for any non-zero complex number z
by
ca—s)'(es —s)I'(ca—s) 4 ds
25—
I(a; — s)'(ag — s) 27i

4,0 Cl — S
G2:4(zva17a27017027c3ac4 /
L

It follows from [Morll, Theorem 7.1(ii)] that for any positive real number z, we have

x
4,0
(p+q)/2 G2:4((7Tx)27 ai, ag, c1,C2,C3,C4)

Woo,t = Woo,t(l):z

4,0
1 G2,4(7T2>a1>a2701702,c3,c4)

It is well known and explained in [BS13, p. 870], for example, that the contour L can be replaced
by a path L' from —ico to +ico such that for 1 < j < 4, the poles of I'(¢; — s) are on the right
of L. Furthermore, we have

X

fo= Tl | b e vaers | = ()R 2p 20t (g g - 1)) 2gPEa

1

for any = € Rfr. Hence, we need to compute

/ x(3(p+Q)/2)+2/ L(er — 5)l(c2 — s)D(e3 — s)I'(cs — 5) ()2 ds dx
RX / I'(a; — s)I'(ag — s) 2

which equals

A1 +A2+3(p+q)+10 A1 —Xo+3(p+q)+10 A+ Ao+3(p+q)+8 A —Agt-3(pq) 48
1 —Gero+e2 (T ot 10 p( M=Aet3ptg) H0) p AtAetBpra) 48 p et Bpra) 8

2(t—A2)+4p+2q+10\ 1/ 2(2X1 + Ao —t)+4g+2p+10
I( I )T( 1 )

by the Mellin inversion formula. This completes the proof. O

6. Periods

In this section, we compute the pairing (w,vp)p (see Lemma 4.21) and we introduce Harris’
occult period invariant, which plays a crucial role in the present work.
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The E(ms)-module Mp(ms, W)~ (—1) has rank two and the E(rf)-module FOMyg(ms, W)
has rank one (Lemma 4.15 and Hypothesis 4.17). Let us fix a basis (vi,v2) of Mp(ms, W)™ (—1)
and let 0 be a non-zero vector of FOMyp(ms, W). This vector can be regarded as a vector of
Mp(mp, W)g(—1) via the second arrow of the exact sequence of Lemma 4.12. Let A\j, A2 €
E(m¢) ® R be its coordinates in the basis (v1,v2).

LEMMA 6.1. Let pi1, 2 € E(my) @ R. Then pivy + pove is mapped to a generator of B(my, W)
by the surjection

Mp(mp, W)g(—1) — Exti/[HSi{ (R(0), Mp(ms, W)R)

of Corollary 4.12 if and only if Ao — Aopi1 € E(ms)*.
Proof. The map

ON: Mp(mp, W)g(=1) — detE(,,f)®RMB(7rf,W)I§(—1)
is part of the following commutative diagram with exact lines

0—— FOMupp —= Mp (~1) —"—det My 3(~1) ——=0

|

0 —— F'Mypr — Mg p(~1) — ExtiAHSIig (R(0), M) — 0.

Moreover, via the isomorphism B(ms, W) =~ det () Mp(ms, W)™ (—1) induced by the choice of
6, the vector p1v1 + pove is mapped to a generator of B(wy, W) if and only if A (puiv1 4 pov2) =
pv1 A vy for some p € E(my)*. As O A (piv1 + pova) = (Ape — Aopir)v1 A vg, the statement is
proven. O

We need to recall the definition of the Deligne periods Ci(ﬂf, W) of the ‘motive’
M(m¢, W) from [Del79, 1.7]. Let t denote the integer t = (p+ g+ 6 — k — k’)/2. We have the
Hodge decomposition

3—t,—k—k' —t 2—k'—t,1—k—t 1—k—t2—k' —t —k—k' —t,3—t
Mg(ns, W)e = My @ My, @ M}, & My

where each My’ is an E(mf) ® C-module of rank one (Propositions 3.7 and 3.8 and Hypothesis
4.16). Furthermore, the involution F., exchanges Myz® and MJ". This implies that the E(my)-
subspaces Mp(mp, W)* of Mp(mp, W) where Fo, acts by multiplication by #1 both have
dimension two. Let I : Mp(ms, W)c —> Mgr(ms, W)c denote the comparison isomorphism.
The subspaces F£(ms, W) of the de Rham filtration of Myg(ms, W) defined in [Del79, 1.7] are
equal and characterized by the fact that their complexification is mapped isomorphically to
Mgﬁtﬁk*k/*t @ Mgﬁkl*t’lfkft by IZ!. The determinant of the isomorphism

IE : Mp(np, W)E — (Mag(mp, W)/ F* (7, W))c,

computed in basis defined over E(7f), is by definition the Deligne period ct (g, W). Its
equivalence class modulo the relation ~ of Definition 4.19 does not depend on the chosen basis.
The Deligne periods ¢*(7t¢|v| =3, W(—p — ¢ — 3)) are defined similarly.
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PROPOSITION 6.2. Let w € Mp(7t¢|v|™3, W (—p—q—3))c satisfying the condition of Lemma 4.21.
Assume that w belongs to Mp(#s|lv|™, W(—p — ¢ — 3)){ and that the image of w by the
comparison isomorphism

];ro : MB(ﬁ'f’VFB, W(—p —q— 3))2’;— — (MdR(ﬁ'f‘V‘igv W(—p —q— 3))/F+)C

belongs to the E(my)-structure Myg(#f|v|=2, W (—p—q—3))/FT. Let vp be a lift of a generator
of D(my, W) by the surjection
Mp(mp, W)g(—1) — Extll\/[HSE (R(0), Mp(ms, W)R)
of Corollary 4.12. Then,
(w,op)p ~ (2mi)c (mp, W)L,

Proof. Recall that the Deligne and Beilinson E(7f)-structures are related by the identity
D(mp, W) = (2m0)%8(mp, W) 1 B(m s, W).

Let p1, pg € E(7rf) ® R such that Ajuo — Agu; = 1. Then, according to Lemma 6.1, the vector
v = p1v1 + pgve is a lift of a generator of B(wy, W) by the surjection

Mp(mp, W)g(—1) — Extll\/[HSE(R(O),MB(ﬂf,W)R).
For any other lift w of any other generator of B(ws, W), we have (w,v)p ~ (w, w)p. Hence, we
need to compute (w,vp)p = (2mi)%d(ws, W) Hw,v)p. Let (,)4r denote the Poincaré duality
pairing in de Rham cohomology. Its complexification is part of the following commutative
diagram

<7>B

Mp(mp,W)e @ Mp(7ts|v| ™3, W(—p — ¢ — 3))c —— E(7;)(0)B,c

lzoo iJw
Mar(mp, W)e @ Mag(7slv| 2, W(—p —q—3))c E(ms)(0)ar,c

where the vertical maps are the comparison isomorphisms. Let 15 and 13z be generators of
E(mf)(0)g and E(7s)(0)4r, respectively. We can assume that J(1g) = 14g. Let 6 be an element
of Myr(7¢|v|=3,W(—p — q — 3)) such that (0,6') = 14, where § € FOMyg(ms, W) is as above.
Let ' denote If(w). It follows easily from the consideration of Hodge types that (w',6) is a
basis of Myg(7¢|lv|=2, W (—p — ¢ — 3))/F~. By definition (v1,vs) is a basis of the E(rs)-vector
space Mp(myp, W)~ (—1). As a consequence, (27iv1, 2mive) is a basis of Mp(mp, W)T. Let wy, wo
be vectors of Mp(7¢|lv|™, W (—p — ¢ — 3))T such that (2mivi,w1)p = (2mive, wa)p = 1p and
(2mivy, wa)p = (2mive, w1)p = 0. Hence, (wq,ws) is a basis of Mp(7s|v|™3, W(—p — ¢ — 3))".
Let a1, ag, B1, 2 € E(my) ® C be such that 11 (w1) = oqw’ + 516" and I (w2) = asw’ + 20 By
definition, we have

<7>dR

t (gl P W (=p — g —3)) = a1y — aaf
and this implies the identity
w = ¢t (iplv| 73 W (—p — ¢ = 3)) " (Bawr — Brwa).
Hence,

(w,v)p = T (7p|v| 2, W(=p — ¢ — 3)) "1 {Bowy — Brwa, privy + povs)
= ct(7slv| 3 W (—p—q—3)) 182 — p2B).
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To finish the proof, note that the pairing (f, )4r vanishes on F* because the Hodge types do not
match. So (6,w’)4r is meaningful, and in fact equal to zero, again because of the Hodge types.
As a consequence, we have

Bilar = (0, 1L (w1))ar = Joo({A1v1 + A2v2,w1) ) = A 14g.

Hence, 81 = A;. Similarly B2 = Ao. Hence, (w,v)p = —cT (7 ¢|v| 72, W(—p — ¢ — 3)) L. It follows
from [Del79, (5.1.7) and (5.1.1)] that ¢™ (7 ¢|v| =2, W(—p —q—3)) ~ 0(msp, W) "Le™ (s, W). As a
consequence, (w,v)p ~ d(mg, W)c™ (mp, W)~L. This completes the proof. O

In the paper [Har04], Harris defines the occult period invariant and relates it to critical
values of the spinor L-function. Roughly speaking, the occult period invariant measures the
difference between the rational structure on m; defined in terms of de Rham cohomology
with that defined in terms of the Bessel model. To give a precise definition, let us fix ¥ =
Q, ¥V, € © = 7|v|73 a factorizable vector whose archimedean component W, is a lowest
weight vector of the minimal K-type of the discrete series 7YY € P(W(—p — q — 3)) (see
Definition 3.5). This defines a cuspidal differential form (¥, ) belonging to Homg . (A% pT&cp~,
W(-p—q—3)®c7Y) (Lemma 4.26) and hence an element (Q(¥o0))o:E(rp)—>C € Mé_k/_t/’l_k_t,
(Propositions 3.7 and 3.8). As F,, exchanges Mé_k/_t,’l_k_tl and Mé_k_t/’Q_k’_t/, the class
w(¥oo) = $((2(Pe))o + Foo (A Vso))s)) satisfies the conditions of Lemma 4.21 and belongs to
Mp(7glv| =5, W(=p = q - 3))¢

DEFINITION 6.3. A vector ¥y € ﬂ'} is arithmetic if it is the non-archimedean component of a
factorizable cusp form ¥ = ¥, ® ¥y € 7’ such that the image of w(¥.) by the comparison
isomorphism

I Mp(#glv| 7 W(—p — ¢ = 3))§ —> (Mar(7y|v| >, W(—p —q—3))/F*)c
belongs to the E(r¢)-structure Myg(#f|v| =2, W(—p —q—3))/FT.
The following proposition is a reformulation of [Har04, Proposition 3.5.2].

PROPOSITION 6.4. Assume that m has a split Bessel model associated to (v1,v2). Then, there
exists a(m, v1,v2) € C* such that the functional V¢ — a(m, vy, Z/Q)W\I/f sends the ¥y which are
arithmetic to functions Wy, ; which are Q-valued.

7. The main result

THEOREM 7.1. Let k > k' > 0 be two integers. Let W be an irreducible algebraic
representation of G of highest weight \(k,k',k + k' +4). Let m = 7o, ® 7y be a cuspidal
automorphic representation of G whose central character has infinity type —k — k' —4 and whose
archimedean component 7o, is a discrete series of Harish-Chandra parameter (k + 2,k" + 1).
Let 19 be a finite-order Hecke character of sign(—1)*~! and let v, denote the Hecke character
| |'=%'19. Let 1 be a finite-order Hecke character of sign(—1)¥ =1 and let vy denote the Hecke
character | |'7*19. Let V' be the finite set of places where 7,11 or vy is ramified, together with
the archimedean place. Assume that:

(i) we have k > k' > 0;
(ii) we have k+ 1=k =0 (mod 2);
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(iii) the automorphic representation m is stable at infinity;
(iv) the automorphic representation ' = 7|v|™ has a split Bessel model associated to (vi,vs).

Then,
IC(TFf’ W) = 7'('_2(1(71', Vi, VQ)C_(Wfa W)LV(k + kK - 1/2> 7VT),D(T‘-f? W)

Proof. The assumptions on k and &’ imply that if we take p = k — 1 and ¢ = k¥’ — 1, then
p, q, k, k' satisfy the assumptions of Theorem 1.1. Let ¥ = @, ¥, € 7’ = #|v| 3 be a factorizable
cusp form whose archimedean component ¥, is a lowest weight vector of the minimal K-type
T(kt3,—k'—1) of the element 7 of P(W(—p — q — 3)). Via a vector v given by Corollary 4.32,
and as explained above the statement of Definition 6.3, we associate to W the Betti cohomology
class w € Mp(7f|v| ™3, W(—p — q — 3)){ satisfying the Hodge types conditions of Lemma 4.21.
Note that multiplying w by a scalar, we can assume that the image of w by the comparison

isomorphism
I3 Mp(7s || 7 W (=p — ¢ = 3))§ — (Mar(7slv|™*, W (=p—q—3))/F")c

belongs to Mg (7 ¢|v|™3, W (—p — ¢ — 3))/FT. Let Eislit_l’kl_l’w(qﬁf ® ¢s) € K(my, W). Let p

be a current given by Lemma 4.23. According to the first statement of Lemma 4.23, the Betti

cohomology class [p] of p is a lift of Eisl;_[_l’kl_l’w(gb ® qb’f) by the natural surjection

Mg(mp, W)g(—1) — Extll\/[HSi{ (R(0), Mp(mp, W)R)

of Lemma 4.12. Hence, Lemma 4.21 implies that

<w7 [p]>B
K(re, W)= ——=—D(ms, W).
(s, W) .55 (s, W)
According to Proposition 6.2, we have
(w,Up)p ~ (2mi)?e™ (s, W)~

With the notation of Corollary 4.29, the pairing (w, [p]) 5 is equal to
3

3 / (3
Cy—°" _ 1)k et A s 1 H/E__A _ S ’/
'1600p 7 1) jz;( ) j Ak | Sheq-2it ek e, 2(df, )
—CQﬂ(Bk K k—p — Ch i’ k- +1)/Ek’+ +3,—p—2,—ktki+p(OF, D)
8(q+1) sy p sy D P Py 4 ) P ’ f
3
+C3LZ(_1)MH %) A K +ptj ‘/Ek— —2j 4t 2~k ke +p(Pf BF)
160(q+1) = ] P T2 pP—4] sPT4, P f
c (_1)k’+p+1 B c _ ,
O T (Brk' k' +p — k,k’,k’—p+1)/—'k—p+3,—k+k’—q,q+2(¢f7Qbf)-

According to Proposition 5.3, if we choose ¢, and qb’f properly, we have

/En,r,s(qbfaqblf) = /X(nl,—l)\IIEq)
where the archimedean component of the Schwartz—Bruhat function ® is defined by

oo (21, Y1, w2, y2) = (iw1 + 1) P2 (iwy — y1) P2 (imy + o) 9702
X (iag — yo)aT9)/2=(@d+yi+ad+u3)
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This has weight \'(r,s) for the action of U(1)2. Moreover, the archimedean component of ¥
is chosen to be a lowest weight vector of the minimal K-type 7(;4.3 _p/_1) of 7V Hence X[ )\Il is
the nth vector of a standard basis of 7343 _1/—1). The integrals above expand into Euler products
of v-adic integrals (Corollary 5.8) and we have

/Ek—q—2j+4,—k+k’+q,—q—2(¢f7 ¢f) =0
because the identities
k—q—2j+4—K -1+ (—k+Kk +q) =-2j+3#0,

imply the vanishing of its archimedean factor (see the first statement of Proposition 5.12).
Similarly,

— / — /
/:kp2j+4,p+2,k+k/+p(¢fa¢f) = /:kp+3,k+k’q,q+2(¢f7¢f) =0.
As a consequence,

1)* -
(w, [p))p = —Cs Eq +)1)(Bk,k/,kp_Ck7k/,kp+1)/:k’+p+3,p2,k+k/+p(¢f’¢})

NCQ /( (lirp;?)\I,)E

For this integral, with the notation of Proposition 5.12, we have A\ = k + 3, Ay = -k’ — 1 and
t=n=k +p+3hencet+ \y+r=—t+ A\ +s =0, which means that we can apply the second
result of Proposition 5.12. Normalize the Bessel functional Wy = H; Wy, in such a way that for
any place p ¢ V, we have Wy (1) =1, and that

I(c1 — s)I'(ca — s)'(cg — $)['(cqa — 9) ds
1:2®@wwmm/ 25 ds
W (1) = 27 L I'(a; — s)'(ag — s) " omi

where the notation is the same as in Proposition 5.12. Combining the statements in Corollary 4.32
and Propositions 5.9, 5.11, 5.12 and 6.4, we obtain

I(cr + 3(p+4q)+6)r(c2 + 3(p+4q)+6)r(63 + 3(p+4q)+6)r(c4 + 3(p+4q)+6)
T(a; + 3(p+4q)+6)r(a2 + 3(p+4q)+6)
X CL(7T, vy, VQ)LV(p +q+ 7/2a T, T)‘

{w; [} B ~

We have

3(p+q)+6 K
q+<pz?:k+2+L
3 6 4
@+@ﬁ?+:k+ﬁ+2

3(p+4q) +6 K
RSV S |
c3 + 1 k 2—|-,
3 6 3
(VA
4 2
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By our assumption ¥’ = 0 (mod 2), the numbers c1, c2 and c3 are integers and ¢4 is a half-integer.
By well-known formulas for the positive integral and half-integral values of the gamma function,

for ¢ = ]., 2, 3, we have

F<C4 + 73(]9 +4q) +6> ~ /2,

Similarly, using the assumption k£ + 1= k" =0 (mod 2), we show

3 6
F<a1_|_(p+4q)+> ~ 1

TR LN

Then, we obtain

% ~ 7 2a(m, v, v)c (g, W)Ls(k + k' — 1/2, 7). O
<w7 U'D>B
In the case we are interested in, the existence of a split Bessel model follows from some
results of Moriyama and Takloo-Bighash.

PROPOSITION 7.2. Let k, k', 7, v1,v5 be as above. If k # 3,k' # 2 and 7’ is generic, then ' has
a split Bessel model associated to (v1,v2).

Proof. With the notation of Definition 5.4, we see that

1
1
Wy (1) :/ / )\
X\AX J(Q\A)3

This is the central value Z(1/2,¥ ® ;') of the integral representation Z(s, ¥ ® v;!) of the
spinor L-function of ¥ twisted by v; !, as defined by Novodvorsky (see [Tak00]). Let us mention
that Novodvorsky’s expression for this integral is obtained from ours after an easy change of
variables. To show that this central value is non-zero, it is enough to show that Z(1/2, ¥V ® vy D)
expands into an Euler product where each factor is non-zero. Note that the central character
U@y ! has infinity type weo = k -+ 2k’ — 3 and that, for integers k, k' satisfying our assumptions,
we have k + 2k > 7. Hence, excluding the case K = 3 and k¥’ = 2, we have the inequality
1/2 > (5 —wso)/2, and so it follows from [Mor04, Proposition 4], that the above integral expands
into an Euler product

0 [y
y 1 vi(y) ()t dr ds dt d*y.

—_ - 3

Y

Z(1/2, ¥ @) = sz(1/2, Tt

indexed by all places of Q. The archimedean factor is a gamma factor, hence does not vanish. As a
consequence, the computations of the local non-archimedean factors Z,(1/2, V®@v; 1) performed
in [Tak00] show that

Z(1/2, 9 @) #0.

This shows that 7’ has a split Bessel model associated to (v1, v2). O
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As we work with a stable L-packet, which always contains a generic member, Theorem 7.1
and Proposition 7.2 directly imply the following result.

THEOREM 7.3. Let k > k' > 0 be two integers. Let W be an irreducible algebraic representation
of G of highest weight \(k,k',k + k' + 4). Let 7 = noc ® s be a cuspidal automorphic
representation of G whose central character has infinity type —k — k' — 4 and whose archimedean
component T, is a discrete series of Harish-Chandra parameter (k + 2,k" + 1). Let 1 be a
finite-order Hecke character of sign(—1)*~1 and let v, denote the Hecke character | ]kklug. Let
19 be a finite-order Hecke character of sign(—1)¥ =1 and let v denote the Hecke character | ['=%1.
Let V' be the finite set of places where 7,1 or Vo Is ramified, together with the archimedean
place. Assume that:

(i) we have k > k' > 0;
(ii) we have k+1=Fk =0 (mod 2);
(iii) we have k # 3, k' # 2;
(iv) the automorphic representation m is stable at infinity.
Then,

K(rp, W) = n%a(m,v1,v)c (np, W)Ly (k + K — 1/2,7%)D(7p, W).

COROLLARY 7.4. Let n be an integer. Let A —> S be the universal abelian surface of infinite
level over the Siegel threefold and let A™ be the nth-fold fiber product over S. If n is odd and
n > 7, then the motivic cohomology space H}\Tj‘l(A"7 Q(n + 2)) is non-zero.

Proof. Let k and k' be two integers satisfying the assumptions of Theorem 7.3 and such that
n =k -+ k. Let t denote the integer (k+ k' + p+ g+ 6)/2. The target of the map Eisﬁ’/’f’w is the
motivic cohomology group H jlvt(S, W), for W as above, which is a subspace of H /]ij k/+4(Ak+k/,
Q(t)) according to Proposition 4.1. Assume that p = k—1 and ¢ = k¥’ — 1. Tt follows from [Mor04,
Proposition 4] that the value k + k' — 1/2 is in the absolute convergence region of the spinor
L-function, hence that the special value Ly (k + k' — 1/2,%,r) is non-zero. As a consequence,
Theorem 7.3 implies that the vector space KC(my, W) is non-zero. Via Beilinson’s regulator, the
image of Eisﬁ’ft]’w surjects on K(m¢, W) for any m¢ which is the non-archimedean part of a
cuspidal automorphic representation satisfying the conditions of Theorem 7.3. Hence, the motivic
cohomology group H\*(A", Q(n + 2)) is non-zero. O
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