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Abstract. Dynamical theories of the Earth's rotation like SMART97 
(Bretagnon et al, 1998) are to be considered in a DGRS (dynamically 
nonrotating geocentric reference system) (Brumberg et al., 1996). Such a 
theory gives the explicit expressions in terms of TCG (Geocentric Coordi
nate Time) of three Euler angles relating a DGRS to the ITRS (Interna
tional Terrestrial Reference System). These angular quantities together 
with their TCG derivatives enable one to get all Earth's rotation param
eters. At the same time, the analysis of observations result in the val
ues for slightly different angles and their TCG derivatives characterizing 
the relationship between the ITRS and a KGRS (kinematically nonro
tating geocentric reference system). The differences between these two 
sets of six quantities represent kinematical relativistic corrections (due 
to geodesic precession, geodesic nutation and luni-planetary terms). The 
paper presents these differences computed by means of the VSOP87 series 
(Bretagnon and Francou, 1988). In particular, in analysing observations 
at the microarcsecond level these expressions will permit an experimen
tal check of geodesic precession in a more direct manner than it is done 
nowadays (Bertotti et al., 1987). 

1. Introduction 

The aim of this paper is to supply numerical values for the quantities involved 
in the relativistic barycenric and geocentric reference systems (RSs) defined in 
Brumberg et a/.(1996) and Brumberg (1997a). Using the VSOP87 series for 
the motion of the major planets (Bretagnon and Francou, 1988) this work was 
started in Brumberg et a/.(1992) by computing the expressions for the geodesic 
rotation vector and its derivative and in Bretagnon et aZ.(1997) by computing 
the differences of the Euler angles for the geocentric rotation matrix relating 
the dynamical and kinematical systems. Our aim is to compute the differences 
of the Euler angles derivatives as well. In anticipating the space astrometry 
projects of microarcsecond accuracy it enables one to consider completely the 
effect of the geodesic rotation on the Earth's rotation parameters. 
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2. Barycentric and geocentric RSs 

In dealing with RSs we use the same notation as in Brumberg et a/.(1996) and 
Brumberg (1997a), i.e. B - barycentric, G - geocentric, V - VLBI, C - ecliptical, 
Q - equatorial, D - dynamical, K - kinematical, + - rotating. At the barycentric 
level we have three systems BRSV, BRSC and BRSQ with timescale <=TCB and 
spatial coordinates x = (x'), xc = (xl

c) and XQ = (zM, respectively. At the 
geocentric level each of these systems generates by means of the BRS—>GRS two 
geocentric RSs, dynamically or kinematically nonrotating ones with respect to 
the generating BRS. As a result, there will be six geocentric RSs, i.e. GRSV, 
GRSC and GRSQ for D and K versions with timescale «=TCG and spatial 
coordinates w = (wl), wc = (w'c) and WQ = (wM, respectively. If necessary, we 
will distinguish D and K versions by writing w' with q = 1 for version D and q = 

0 for version K. One more geocentric system is GRS+ rotating with the Earth and 
having spatial coordinates y = (y'). By identifying BRSV and GRS+ with ICRS 
and ITRS, respectively, the problem is to determine all relationships between 
these systems enabling one to obtain an unambiguous relativistic interpretation 
of Earth's rotation parameters as well as related astronomical concepts. 

At the barycentric level all three RSs are mutually related by the constant 
rotation matrices 

xc = Pcx , XQ - PQX . (2.1) 

Very approximately 

/ l 0 0 \ 
PQ = E, PC = 0 cose sine , (2.2) 

\ 0 — sin e cos e J 

where E stands for the unit matrix and e is the mean obliquity. This constant 
rotation is conserved at the geocentric level in the relationships between V, C 
and Q GRSs of the same type (with respect to D or K versions). The matrix 
Pc may be determined from the comparison of the VSOP87 planetary theories 
(Bretagnon and Francou, 1988) with observations of the major planets within 
BRSV (ICRS) background. Matrix PQ is to be determined at the geocentric 
level by comparison of the Earth's rotation theory like SMART97 (Bretagnon 
et al., 1998) with observations within GRS+ (ITRS) background (see below). 
The relationship with GRS+ involves the Earth's rotation matrix P(u) 

y = P(u) wc = p(u)Pc w = P(U)PCPQ WQ . (2.3) 
q q q q q q 

The Earth's rotation matrix may be expressed in terms of three Euler angles to 
be determined by some Earth rotation theory. Following the traditional choice 
by Tisserand (1891) and Smart (1953) we will use here 

P{u) = D3(ip)D1(-9)D3(-^), P(u) = 2? 3 (wr) IM-te)03( - l to - ) , .(2-4) 
1 0 

with elementary rotations 

/ l 0 0 
D\(a) = I 0 cos a sin a 

\ 0 - sin a cos a 

/cos/3 0 - s i n / A 
D2(f3) = 0 1 0 

\sin/? 0 cos/?/ 
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( cos 7 sin 7 0 \ 
- s i n 7 cos 7 0 . (2.5) 

0 0 l) 
The relationships between the D and K systems involve the geodesic rotation 
matrix F 

w = (E-c~2F)w, wc = (E-c-2Fc)wc, wQ = (E - C~2FQ) wQ, (2.6) 

and 
P(u) = P(u)(E-c-2Fc), (2.7) 
1 0 

with 
Fc = PcFP$, FQ = PQFP$. (2.8) 

Instead of rotation matrix F one may consider its equivalent vector representa
tion 

F4' = eijkF
k , eijk = \{i - j)(j - k)(k - i), (2.9) 

so that the matrix product in (2.6) may be reduced to 

Fw = -eijkF
jwk . (2.10) 

The components of FQ and FQ have been evaluated in Brumberg et a/.(1992). 
The relationships between barycentric and geocentric RSs are based on the 

BRS—•GRS transformation (Brumberg, 1995 and references therein) 

u = t-c-2[A(t) + vk
Erk

E} + ..., (2.11) 

«,•" = rE + c-2{[\vEvk
E + qFik(t) + Dik(t)]rk

E + Dikm (t)rk
Er%} + ..., (2.12) 

with 
rE = x{ - 4 ; ( 0 , vE = xE{t), (2.13) 

A(t) = \v2
E + ^ B ( X B ) , (2.14) 

and 

Dik(t) = 6ikUE(xE), D^k(t) = i ( ^ a | + 6ika?E - 6jkaE), (2.15) 

where UE(x) stands for the Newtonian potential of all solar system bodies except 
the Earth, xl

E, vE and aE being Earth's BRS position, velocity and acceleration, 
respectively. This transformation is written for V versions of RSs. For C or Q 
versions one should convert all V quantities to C or Q quantities, respectively. 

Let t* be the BRS moment of time corresponding to an event with the GRS 
coordinates (u,w' = 0) (Klioner and Voinov, 1993). Then u and t* are related 
by the time equation 

u = t* - c~2A(f) + ... . (2.16) 

Hence, 
t - t* = c~2vEwk + .... (2.17) 
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Expanding the right-hand member of (2.12) in the vicinity of t* one gets the 
inverse GRS—>BRS transformation 

t = u + c-'[A(u) + zk
Ewk] + ..., (2.18) 

xt = wt + zE(u) + c~2 {{\vEvk
E - qF,k - Dtk)wk - Dlkmwkwm\ +..., (2.19) 

with functions zE = zE(u) characterizing the motion of the geocenter in terms 
of TCG and determined by 

zE(u) = xE(t*). (2.20) 

This inverse transformation is used, for example, to transform GRS space-time 
coordinates of terrestrial ground stations into their BRS space-time coordinates. 

3. K - D for Euler angles 

The first of relations (2.3) for the dynamical version q = 1 represents a relation
ship between GRS+ (ITRS) and DGRSC. The Euler angles <p, rp and 9 together 
with their TCG derivatives result from the solution of the Earth's rotation equa
tions written in the DGRSC. This solution may be thought of as consisting of 
two parts, a Newtonian one corresponding to the formal Newtonian equations 
of the Earth's rotation, and relativistic correction terms generated by the rela-
tivistic contributions to the right-hand sides of the Earth's rotation equations. 
These dynamical corrections Sip, Sip and 69 as well as their TCG derivatives are 
neglected here due to their small size in the DGRSC (Brumberg, 1997b, Klioner, 
1997, and references therein). For the Newtonian solution of the Earth's rotation 
problem we choose here the SMART97 theory (Bretagnon et a/., 1998). On the 
other hand astronomical observations of the Earth's rotation may be interpreted 
as performed in KGRSC resulting in the angles ipic, ^K and 9K and their TCG 
derivatives. They differ from their dynamical counterparts due to the geodesic 
rotation vector FK. Using (2.4) and (2.7) it follows that 

_2 

<P-<PK = — r - T [Fc sin V> + Fc c o s V>) , (3-1) 
SlU v * ' 

9-9K = c~2 (F& cos il> - Fl sin v ) , (3.2) 

and 

if) - lj)K = C 2 (3.3) 

In this way the matrix P(u) is known (for both D and K versions) from the 
Earth rotation theory. Having found the constant matrix Pc from the planetary 
motions one may determined the relationship between GRS* and GRSV from 
the second of relations (2.3). The main plane of GRS+ is the equator of date. 
Having determined the mutual orientation of GRS+ and GRSV one may find 
the constant matrix PQ defining the main plane of GRSQ as a fixed plane for 
some definite epoch. The inverse transformation GRSQ—>BRSQ enables one to 
fix the BRSQ. 
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Expressions (3.1)—(3.3) were evaluated first in (Bretagnon et al, 1997) using 
the series of SMART97. The three main RSs considered in (Bretagnon et al, 
1997) are 

Oxyz = GRSC, 0£r?C = GRS+, o£fj( = D3(a)GRS+, 

a being the longitude of the axis associated with the principal moment of inertia 
of the Earth. This means that the system 0£ijC is a terrestrial system with 
principal axes of inertia. Therefore, Bretagnon et a/.(1997) angles u and tp 
are, respectively, -0 and —if) of Brumberg et a/.(1996) and Brumberg (1997a) 
whereas angle <p has the same meaning in these papers. The expression for 
<PK ~ f given in Bretagnon et a/.( 1997) should be taken with the opposite sign. 

4. K-D for Euler angles derivatives 

To evaluate the difference in the values of the Earth's rotation parameters (ERP) 
in dynamical and kinematical RS one should get along with <p — ipx» V> — ^>K an<i 
9 - 0K their derivatives <p — (fix > ^ _ ipK and 0 — 9K- They may be computed 
by means of formulas 

<P ~ PK = ~ 
c-2 

sin0 
Fl sin ^ + Fl cos il> + (0 - 0K)i> + {? - ipK)0 cos o], (4.1) 

c-2 

j>-i>K = c-2F%-^\(Fl;smiP + FZcos'iP)cos0 + (0-0K)iPcos0+(<p-<pK)0 
sin u !• 

(4.2) 
and 

0 - 0K = c-2[f& cos V> - to sin i> + (</> - <pK)i> sin 0], (4.3) 

using (3.1)-(3.3) and SMART97 theory (Bretagnon et al., 1998) for the angles 
ip, 9 and their derivatives. The initial terms of the series for (4.1)-(4.3) are given 
in the Appendix. 

5. Earth's rotation parameters 

Representation (2.4) means splitting P(u) into matrix S of the diurnal rotation 
and matrix N of the precession and nutation, i.e. 

P(u) = SN, S = D3(<p), N = D1(-0)D3(-i,) (4.1) 

(ignoring for simplicity the motion of the Earth's poles). This splitting involves 
the representation of the total Earth's rotation velocity u>1 (GRSC components 
of the angular velocity of rotation of GRS+ with respect to GRSC) in two parts 

with 

u{ =u{
N + Njiu's, (4.2) 

— 0 COS 1p' 

uN= ( 0sinV> ) • (4.3) 
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By applying these relations to the D and K versions one gets 

<fs - ws = ( 0 ] , (4.4) 

and 

uN - uN 
1 0 

' (V> - 1>K)0 sin yj,-{e-eK) cosxps 

{4> - i>K)9 cos i> + (9 - 9K) sin ip (4.5) 

Relation (4.4) characterizes the difference of the determination of the sidereal 
time in dynamical and kinematical systems. Relation (4.5) gives the difference of 
precession-nutation contributions in the Earth's angular velocity in dynamical 
and kinematical systems. The initial terms of the series representing the two 
first rows of matrix (4.5) are reproduced in the Appendix. 

6. Conclusion 

Using VSOP87 planetary theories and SMART97 Earth rotation theory we have 
computed the relativistic kinematical differences in the Euler angles and their 
TCG derivatives relating the ITRS and the geocentric ecliptical reference system 
GRSC in dynamical and kinematical versions. For future observations at the 
microarcsecond level it enables one to consider more rigorously the Earth's ro
tation parameters in different reference systems. For the present analysis it was 
sufficient for us at the barycentric level to relate the ICRS with equatorial and 
ecliptical reference systems just by means of simple matrices (2.2). The initial 
terms of the series determined here are given in the Appendix. The complete 
series are available by request to the second author. 

In view of the present analysis it is interesting to consider the possibility 
of checking geodesic precession directly by comparing ERP referred to DGRSC 
and KGRSC. Geodesic precession has been tested only implicitly by analyzing 
the lunar perigee motion with the aid of LLR and VLBI observations (Bertotti 
et a/., 1987). 
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Appendix 

We reproduce below the initial terms of the series for <p - <PK, V> - V'A'* 0 — 6K, 
(p — 'PKi i> — i>K, 9 —OK a n d first two rows of matrix (4.5). The time t is measured 
in Julian years from J2000. These series involve 12 angular variables, i.e. 8 mean 
planetary longitudes with respect to the fixed equinox J2000 A; (1 < i < 8), the 
Delaunay arguments D, F, I of the Moon and the mean angle of rotation of 
the Earth (p. These arguments expressed in radians are represented by linear 
functions of time as follows: 

Ai 

A2 
A3 
A4 
A5 
A6 
A7 
A8 
D 
F 
I 

<P 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

4.40260867435 + 26087.9031415742*, 

3.17614652884 + 10213.2855462110*, 

1.75347029148 + 6283.0758511455*, 

6.20347594486 + 3340.6124266998*, 

0.59954632934 + 529.6909650946*, 

0.87401658845 + 213.2990954380*, 

5.48129370354+74.7815985673*, 

5.31188611871 + 38.1330356378*, 

5.19846640063 + 77713.7714481804*, 

1.62790513602 + 84334.6615717837*, 

2.35555563875 + 83286.9142477147*, 

4.89496121282 + 2301216.7536515365*. 

These values are slightly different from those given in (Bretagnon et ai, 1998). 
The following three series representing the differences <p — ipK, ty — i>K, # — 6K 
are reproduced here with some more terms as compared with (Bretagnon et al., 
1997), their coefficients being expressed in ^as: 

f ~ <PK = -2.99* - 54771.03*2 - 802.06*3 + 

+ 3.28 sin(A3 + D - F) - 0.24 sin(2A5 - 5A6) - 0.36 cos(2A5 - 5A6) + 

+ 0.07 sin(8A2 - 13A3) - 0.04 cos(8A2 - 13A3) + 0.02 sin(3A2 - 5A3) + 
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+ 0.07 cos(3A2 - 5A3) - 0.05 sin(A3 + F) - 0.04 sin(A3 - F) + 
+ 0.03 cos2A5 + 0.02 cos2A6 + 0.02 cos A5 - 0.01 cos(A3 + A5) + 
+ t[0.20 sin A3 + 0.85 cos A3 + 0.80 cos(A3 + D - F) - 0.14 sin(2A5 - 5A6) + 
+ 0.05 cos(2A5 - 5A6) - 0.02 sin(8A2 - 13A3) - 0.02 cos(8A2 - 13A3) + 
+ 0.02 sin(3A2 - 5A3) - 0.01 cos(A3 + F)] + 

+ t2[-0.51 sin(A3 + D-F)- 5.64 cos(A3 + D - F) + 0.03 sin 2A3 + 0.34 cos 2A3 + 
+ 0.05 sin A3 - 0.02 cos A3 + 0.06 cos(2A3 + 2D) - 0.06 cos(2A3 + 2D- 2F) + 
+ 0.02 cos(2A5 - 5A6) + 0.01 sin 3A3 - 0.01 cos(A3 + D + F)] + 

+ i3[2.37 sin(A3 + D - F\ - 0.20 cos(A3 + D - F) - 0.24 sin 2A3 + 0.02 cos 2A3 -
- 0.04 sin(2A3 + 2D) + 0.04 sin(2A3 + 2D- 2F) - 0.02 cos A3] + . . . , (A.l) 

^ - i>K = 19198827.44* - 50386.32*2 - 754.09*3 -
- 34.28 sin A3 - 149.22 cos A3 + 3.01 sin(A3 + D - F) - 1.73 sin 2A3 + 
+ 0.84 cos 2A3 - 0.26 sin(2A5 - 5A6) - 0.33 cos(2A5 - 5A6) - 0.37 sin D -
- 0.05 sin(4A3 - 8A4 + 3A5) + 0.17 cos(4A3 - 8A4 + 3A5) + 0.21 sin(A3 - A5) -
- 0.13 sin(2A2 - 2A3) + 0.09 sin(A2 - A3) + 0.09 sin(8A2 - 13A3) + 
+ *[-7.36 sin A3 + 6.47 cos A3 + 0.73 cos(A3 + D - F) + 0.19 sin2A3 + 

+ 0.15 cos2A3 - 0.13 sin(2A5 - 5A6) + 0.04 cos(2A5 - 5A6) -
- 0.02 sin(8A2 - 13A3) - 0.03 cos(8A2 - 13A3) + 0.02 sin(3A2 - 5A3) -
- 0.02 sin(4A3 - 8A4 + 3A5) - 0.01 cos(A3 + F)] + 

+ t2[-0.47sin(A3 + D - F) - 6.15 cos(A3 + D - F) + 0.30 sin A3 + 0.29cos A3 + 
+ 0.04 sin 2A3 + 0.35 cos 2A3 + 0.06 cos(2A3 + 2D) - 0.06 cos(2A3 + 2D - 2F) + 

+ 0.01 cos(2A5 - 5A6) + 0.01 sin 3A3 - 0.01 cos(A3 + D + F)] + 

+ t3[2Al sin(A3 + D - F) - 0.20 cos(A3 + D - F) - 0.25 sin 2A3 + 0.02 cos 2A3 -

- 0.04sin(2A3 + 2D) + 0.04sin(2A3 + 2Z> - 2F) - 0.03cosA3] + . . . , (A.2) 

6 - 6K = 9.55« + 1954.11/2 - 4721.80i3 -
- 1.30 cos(A3 + D-F) + 0.17 sin(2A5 - 5A6) - 0.09 cos(2A5 - 5A6) + 
+ 0.02 sin(8A2 - 13A3) + 0.03 cos(8A2 - 13A3) - 0.03 sin(3A2 - 5A3) + 
+ 0.02 cos(A3 + F) + 0.02 cos(A3 - F) + 0.01 sin 2A5 + 
+ /[0.32 sin(A3 + D - F) - 0.03 sin(2A5 - 5A6) - 0.04 cos(2A5 - 5A6) -

- 0.03cosA3] + 

+ f2[-1.82 sin(A3 + D - F) + 0.04 cos(A3 + D - F) + 0.14sin2A3 + 0.02sin A3 + 
+ 0.08 cos A3 + 0.02 sin(2A3 + 2D) - 0.02 sin(2A3 + 2D- 2F)] + 

+ t3[-0.04sin(A3 + D - F) - 0.45 cos(A3 + D - F) + 0.07 cos2A3 + 

+ 0.01 cos(2A3 + 27J>) - 0.01 cos(2A3 + 27J> - 2F)] + • • • • (A.3) 

The derivatives <p - <PK, ty - i>Ki Q — 0K could be obtained by differentiating 
(A.1)-(A.3). But we give below their expressions resulting directly from (4.1)-
(4.3). Differentiation of (A.1)-(A.3) was used only for checking purposes. The 
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series for the differences tp — <j>x, tp — ipK, 9-9K multiplied by 106 are as follows: 

106(y> - (pK) = -0.53* - 0.01*2 + 0.03*3 -
- 0.02 cos(A3 + F) + 0.01 cos(X3-F) -
- 0.03* sin A 3 -
- *2[0.05sin(2A3 + 2D) + 0.02 sin 2A3] -

- *3[0.03 cos(2A3 + 2D) + 0.01 cos2A3] + 

+ 0.01*4sin(2A3 + 2 D ) + . . . , (A.4) 

106(^ - j>K) = 93.08 - 0.49* - 0.01*2 + 0.02*3 + 
+ 4.55 sin A3 - 1.04cos A3 - 0.05 sin2A3 - 0.11 cos2A3 - 0.14cosD -
- 0.02 cos(A3 + F)- 0.02 cos(D + /) + 0.01 cos(A3 - F) + 
+ *[-0.20 sin A 3 -0 .22 cos A3 +0.01 cos 2A3] + 

+ <2[-0.05 sin(2A3 + 2D) - 0.02 sin2A3 + 0.01 sin(A3 + D + F) -

- 0.01 sin(2A3 + 2D + 1)- 0.01 sin(A3 + D-F)]-

- *3[0.03 cos(2A3 + 2D) + 0.02 cos 2A3] + 

+ 0.01*4 sin(2A3 + 2D) + ..., (A.5) 

106(9 - 9K) = 0.02* - 0.07*2 + 0.02*2 cos(2A3 + 2D) + . . . . (A.6) 

Finally, we reproduce the series representing the first two rows of matrix (4.5) 
multiplied by 106: 

106(wjv - wjy) = -0.02* + 0.07*2 + 

+*2[-1.76 sin(2A3 + 2D) - 0.02 cos(2A3 + 2D) - 0.77sin2A3 + 
+0.36 sin(A3 + D + F) - 0.35 sin(2A3 + 2D + /) - 0.34 sin(A3 + D - F) + 
+0.07 sin(A3 + D + F + /) - 0.07 sin(2A3 + 4D - /) - 0.06 sin(2A3 + 4D) + 
+0.04 cos 3A3 - 0.05 sin(2A3 + 2D + 21) + 0.05 sin(2A3 + 2D - /) -
-0.03 sin(A3 + D - F + /) - 0.03 sin(A3 + D - F - I) - 0.01 sin(2A3 + 4D + /) + 
+0.01 sin(A3 + W + F-l) + 0.01 sin(2A3 + /) + 0.01 sin(A3 + 3D + F)] + 

+*3[0.03 sin(2A3 + 2D) - 0.86 cos(2A3 + 2D) + 0.01 sin2A3 - 0.37 cos2A3 -
-0.17 cos(2A3 + 2D + /) + 0.09 cos(A3 + D + F) - 0.08 cos(A3 + D - F)-
-0.03 cos(2A3 + 4D - /) - 0.03 cos(2A3 + 4D) - 0.02 cos(2A3 + 2D + 2/) + 
+0.02 cos(2A3 + 2D - /) - 0.02 sin 3A3 + 0.02 cos(A3 + D + F + /)] + 

+*4[0.23 sin(2A3 + 2D) + 0.02 cos(2A3 + 2D) + 0.10 sin2A3 + 
+0.05 sin(2A3 + 2D + I) - 0.01 sin(A3 + D + F) + 0.01 sin(A3 + D-F)] + 

+*5[0.04 cos(2A3 + 2D) + 0.02 cos 2A3] + . . . , (A.6) 
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106(ujj, - u%) = -0.03*3 + 

+*[-7.20sin(2A3 + 2D) - 3.14sin(2A3) + 1.47sin(A3 + D + F) -
-1.43 sin(2A3 + 2D + 1)- 1.41 sin(A3 + D - F) + 0.29 sin(A3 + D + F + /) -

-0.27 sin(2A3 + 4D - I) - 0.24 sin(2A3 + 4D) + 0.04 sin 3A3 + 0.18 cos 3A3 -
-0.20 sin(2A3 + 2D + 2/) + 0.20 sin(2A3 + 2D - I) - 0.12 sin(A3 + D - F + /) -

-0.11 sin(A3 + D - F - I) - 0.06 sin(2A3 + 4D + /) + 0.06 sin(A3 + 3D + F - I) + 
+0.05 sin(2A3 + 0 + 0.05 sin(A3 + 3D + F) + 0.03 sin 2<p - 0.02 cos 2<p + 
+0.04 sin(A3 + D + F + 2/) - 0.04 sin(A3 + D + F - I)} + 

+t2[0.06sin(2A3 + 2D) - 3.51 cos(2A3 + 2D) + 0.02 sin 2A3 - 1.53 cos 2A3 + 

+0.01 sin(2A3 + 2D + I) - 0.70 cos(2A3 + 2D + /) + 0.36 cos(A3 + D + F) -
-0.34 cos(A3 + D - F) - 0.13 cos(2A3 + 4D - /) - 0.12 cos(2A3 + 4D) -

-0.10 cos(2A3 + 2D + 2/) + 0.10 cos(2A3 + 2D - /) - 0.08 sin 3A3 + 0.01 cos 3A3 + 
+0.07 cos(A3 + D + F + 0 - 0.03 cos(2A3 + 4D + /) - 0.03 cos(A3 + D - F + /) -
-0.03 cos(A3 + D- F-l) + 0.03 cos(2A3 + /) - 0.01 sin A3 + 0.01 sin(A3 + 2D) -
-0.01 cos(2A3 + 2D - 2F) + 0.01 cos(A3 + 3D + F - I)] + 

+f3[1.07sin(2A3 + 2D) + 0.08cos(2A3 + 2D) + 0.47 sin 2A3 + 0.01 cos2A3 + 
+0.21 sin(2A3 + 2D + 0 - 0.09 sin(A3 + D + F) - 0.02 cos(A3 + D + F) + 
+0.08 sin(A3 + D - F) + 0.04 sin(2A3 + 4D - /) + 0.04 sin(2A3 + 4D) -
-0.03 sin(2A3 + 2D - /) + 0.03 sin(2A3 + 2D + 21) - 0.02 cos 3A3 -
-0.02 sin(A3 + D + F + 0] + 

+<4[-0.04sin(2A3 + 2D) + 0.24cos(2A3 + 2D) + 0.11 cos2A3 + 

+0.05 cos(2A3 + 2D + /) - 0.01 cos(A3 + D + F) + 0.01 cos(A3 + D- F)]-

-t5[0.04 sin(2A3 + 2D) + 0.01 cos(2A3 + 2D) + 0.02 sin2A3] + . . . . (A.7) 

The coefficients of the series (A.4)-(A.8) are expressed in radians. 
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