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Abstract. We give two new sufficient conditions for unbounded Hilbert space
operators to be subnormal. The first assumes that the sequence || 7"f]|> on a suitable
subset of the domain is completely monotonic, the second is similar to the one given
by Lambert in [3] for bounded operators and involves the sequence of binomial
expansion of the real part of the operator.

1991 Mathematics Subject Classification. 47B20.

Suppose that 7 is a closed, densely defined operator in a Hilbert space H. T is
said to be subnormal if there are another Hilbert space £ D H (isometrically) and a
normal operator N in it such that D(S) € H N D(N) and Sf = Nf for f € D(S).

Unbounded subnormals play an important role in modern quantum physics.
The most famous example of such an operator is the creation operator defined by
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The theory of unbounded subnormal operators has been extensively studied in
the last two decades and in particular in the series of papers [4],[5],[6]. The unboun-
ded case is, as usual, more complicated than that of bounded operators. Except for
shifts the known conditions for subnormality like those of Halmos and Bram are
not sufficient in themselves (there are known counterexamples). One needs to add
some other requirements, usually density of some class of C*°-vectors. This can also
be done by relating the subnormality to the problem of moments (as in the recent
papers [7] and [5]); these two problems are closely related. The solutions of one give
solutions for the other.

Usually such additional conditions happen not to be necessary conditions.
There are subnormal operators not fulfilling them; examples can be found in [5].
This justifies the continuous effort to search for suitable requirements. We shall fol-
low that line of procedure in this paper.

We now continue with some notation commonly used when dealing with
unbounded subnormal operators.

A subset £ is a core for a closed operator A if and only if 4 is equal to the clo-
sure of its restriction to &; thatis 4 = (A|g)~.

By D*°(T) we understand the intersection of domains of all powers of 7. The
vectors from D*(T) are customarily called the C*-vectors for T.

Among the C*-vectors are distinguished other subclasses of bounded, analytic
and quasi-analytic vectors.
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A bounded vector for T is a vector f € D*(T) for which there are ¢, M > 0 such
that || T"f]] < cM" foranyn =0, 1,2... . Denote the set of all bounded vectors for T
by B(T).

A vector f'e D*°(T) is said to be analytic for T if there is a ¢ > 0 such that

oo Sn
S o
n!
n=1
We denote the set of analytic vectors for T by A(T).
The set of quasi-analytic vectors for T, denoted by O(T), is the set

AN = {fe DT : Y T = +oo}.
n=1

Any bounded vector for T is obviously analytic for 7" and any analytic vector can be
shown to be quasi-analytic.

In what follows we will need two more, less common conditions on C*-vectors.
The first, stating the existence of a representing measure for a certain moment
sequence, appeared in [5]. The other one is a requirement that this sequence is
completely monotonic.

We say that T fulfils the (S) condition at f if and only if f € D*(T) and there
exists a finite non-negative Radon measure pu on [0, co) such that

00
IT"fF1* = /o " u(dt) for any n > 0.

Now define a cm-vector for T as a vector fin D*°(T) such that there is a constant
ay > 0 which for any n, m > 0 gives

Z(—l)"q’f@) 17" f )12 = 0.
k=0

The various subclasses of C*°-vectors play a special role in sufficiency conditions
for an unbounded operator to be subnormal. Usually such conditions take the form
of some positive-definiteness requirement, analogous to the bounded case, plus a
requirement for a certain subclass of C*-vectors to be dense in the Hilbert space H.
Our theorems will follow this pattern.

In what follows we shall demand that a certain set is a core for the considered
operator. Such requirement is necessary as the regarded conditions make sense only
on a subspace of C*-vectors, and thus any result obtained is valid only for the clo-
sure of the part of our operator acting on this subspace. When the subspace is a
core, the closure equals the original operator, as required.

THEOREM 1. Let T be a closed Hilbert space operator. Suppose that there exists a
dense linear subspace € that is a core for T and consists of cm-vectors for T. Then T is

subnormal.

Proof. Take any c¢m-vector f for T. Then from the defining condition on f it
easily follows that the sequence {a7l] T'f ||2},j’°=0 is completely monotonic.

https://doi.org/10.1017/5S0017089501010035 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501010035

SUBNORMALITY OF UNBOUNDED OPERATORS 25

(Recall that a sequence {c,}oo, is called completely monotonic if and only if
¢y > 0 and

(=1 Ake, >0 forany n,k=0,1,2,...,

where
a k
Akcn = m§70(_ l)m <ﬂ’l >Cn+k—m.

See the definitions in [8].)

We use [8, Theorem 4a, p. 108] to infer that our completely monotonic sequence
constitutes a moment sequence on the interval [0, 1]. By changing variable we can
get rid of ar and obtain a nonnegative regular Radon measure pu,, with compact
support (equal to [0, a;l]), such that for any n > 0 there is

T /0 ' do);

i.e. T fulfils the (S) condition at f.

The set £ we assumed to be a dense linear subspace such that any f'€ £ is a cm-
vector for 7. Each f € £ is also a bounded vector. Indeed | 7"f|| < cM", where M is
such that the support of ji/ is contained in [0, M] and ¢ = u/[0, M]). The definition
of a cm-vector implies that £ is invariant for T (take m + 1 instead of m in the defi-
nition of £ to get the required inequality for 7f). The operator S = T|s has an
invariant domain consisting of analytic (even bounded) vectors, each of them ful-
filling the (S) condition. Theorem 7 from [5] states that this is equivalent to S being
subnormal. As the set £ is a core for T the latter is subnormal too. O

THEOREM 2. Let T be a closed densely defined Hilbert space operator. Suppose
that the linear span (denote it by £) of the set Q(T) of quasi-analytic vectors for T is a
core for T and that

Z(T’”f, T"*fy > 0 for any x € &, n > 0.
k=0

Then T is subnormal.

This theorem is an analogue of the one in the paper of Lambert [3] given for the
bounded case. Thanks to the characterisation of subnormals by the condition (S)
from [6] the proof is shorter, although follows similar lines to the original. We
needed an additional assumption about the set £ to deal with the unbounded case
and thus have lost the necessity part of the theorem.

Proof. The condition put on T gives, for n =1

(Tx, x) + {x, Tx) > 0 for any x € &.
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As T'is a closure of T restricted to £ the inequality above can be extended onto all
x € D(T). This means that —T7 is dissipative. We assumed that it has a total set of
quasi-analytic vectors and so, by the result of Hasegawa from [1], we infer that — T is
a generator of some strongly continuous contraction semigroup, denoted by G(¢).

The set £ is invariant under each G(¢). Indeed the G(¢) are contractive and com-
mute with 7. [ T"G(O)f | = IG(OT"f1| < IT"f ]I so that

SNTGOF I = > NT I = 400
n=1 n=1

Thus, the quasi-analytic vectors for T are preserved by the G(f).
For x € H define f(f) = |G(t)x||>. Then for any x € &,n > 0 and 0 < ¢ < oo we
have

d n . k n—k
(0 =(=1) ;(T G(H)x, T"*G(0)x).

Taking into account the condition we put on 7, we see that for each f,, n > 0
and 0 < ¢ < oo we have

d'
(=1 /(0= 0.

This is the defining condition for f; to be a completely monotonic function on
[0, 00), in the sense of Widder. (See [8, p. 145].) From the Bernstein theorem (see [8,
p. 160)) it follows that for any x € £ there exists a positive measure [, on [0, c0)
such that

Am=A ¢S T (ds).

Take now nt instead of ¢ and fix it. Substitute the measure ity by u, , replacing
u = ¢~ " in the integral above. As G(nr) = G(¢)" we get, for any x in &, u € [0, 00) and
n > 0, the following representation:

1
wm%ﬁ=ﬂummwa

with positive Radon measures ., on [0, 1]. Once more, we use Theorem 7 of [S]. We
can do that as G(¢), being bounded, has the set of bounded vectors equal to H, and
the set £ is invariant under G(7). By the theorem mentioned G(f)|¢ (and then also
G(1)) is subnormal, for any ¢ € [0, 00).

By the work of 1t6 [2] the semigroup G(¢) has a normal semigroup extension, say
N(7). Let N be the generator of A/(¢). It is normal and extends — T, the generator of
G(t). Thus —T is subnormal, which concludes the proof. O

In the third paper of a series on subnormal operators [6] the authors introduced

the notion of minimal normal extension for unbounded subnormal operators. The
concept seems to be well understood in general for bounded operators. As it
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happens, not everything is that obvious in the case of unbounded operators. There
exist two types of minimal normal extensions: of spectral type and of cyclic type. In
both cases the space K in which the normal extension acts is somehow generated by
the original space and the subnormal operator S. The first type involves the spectral
measure of the normal extension, the second powers of its adjoint taken on vectors
from the original space.

From the two the cyclic type is more important, as then we have the uniqueness
of the minimal normal extension, as one would expect. (There can exist several
minimal normal extensions of the spectral type, not unitarily equivalent.) Moreover,
each minimal extension of cyclic type is also of spectral type. On the other hand, the
spectral type minimal extensions always exist, while the cyclic type ones need not.
Hence the positive answer to the question of existence of the latter is of some
importance.

The definitions we speak of are as follows.

N is a minimal normal extension of spectral type of the operator S if and only if
N is a normal extension of S and the only closed subspace containing H and redu-
cing N is the whole space C, in which acts N.

N is a minimal normal extension of cyclic type of the operator S (we assume here
that S has an invariant domain) if and only if the linear span (in the space K in
which acts N) of the set

{N"f: fe D(S),n > 0}

is the core for N.
It is easily seen that the normal extension, which exists by our theorems, hap-
pens to be minimal of cyclic type.

COROLLARY 3. The subnormal operators considered in Theorem 1 and Theorem 2
have minimal normal extensions of cyclic type.

Proof. Luckily, Theorem 4 of [6] is applicable in our case. It says that a formally
subnormal operator (and the subnormal operator is formally subnormal) with
invariant domain has a minimal normal extension of cyclic type if its domain is lin-
early spanned by the quasi-analytic vectors.

The set £ appearing in both our theorems was invariant under the operator 7'
considered and was linearly spanned by quasi-analytic (even bounded in the first
theorem) vectors for 7. We apply the cited theorem to T|s and notice that any
normal extension of T'|¢ is necessarily an extension of 7. The set £ is assumed to be
a core for T. O
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