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Summation formulae of multiplicative
functions over arithmetic progressions
and applications
Yujiao Jiang and Guangshi Lü
Abstract. In this paper, we investigate the asymptotic distribution of a class of multiplicative
functions over arithmetic progressions without the Ramanujan conjecture. We also apply these
results to some interesting arithmetic functions in automorphic context, such as coefficients of
automorphic L-functions, coefficients of their Rankin–Selberg.

1 Introduction

Problems concerning the asymptotic distribution of arithmetic functions in arith-
metic progressions are very classical in analytic number theory, and appear all over
the place. Let q be a positive integer and a be an integer prime to q, and let {an}∞n=1 be
an arithmetic sequence of complex numbers. Define

S(x; a, q) = ∑
n≤x

n≡a (mod q)

an .

One expects the sequence to be generally well distributed in residue classes to modulo
q, namely

S(x; a, q) = 1
φ(q) ∑n≤x

(a ,q)=1

an + small error,(1.1)

where φ is Euler’s function. For example, if an = Λ(n), the von Mangoldt function,
the Siegel–Walfisz theorem says that for any q ≤ logA x

∑
n≤x

n≡a (mod q)

Λ(n) = x
φ(q) + O(x exp(−cA

√
log x)),
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2 Y. Jiang and G. Lü

where A is any real number and cA is some constant depending only on A. If
an = τk(n), the number of representations of n as the product of k factors, (1.1) holds
for q ≤ xθ k−ε with

θ2 =
2
3

, θ3 =
1
2
+ 1

82
, θ4 =

1
2

, . . .

(see the details in [10]). Another example is an = λ f (n), the normalized Fourier
coefficients of a holomorphic cusp form f, Smith [23] showed that (1.1) holds uniformly
for q ≤ x 2

3 . Moreover, Murty gave some interesting remarks on Smith’s work and said
“It is likely that the methods of [23] are applicable for coefficients of Dirichlet series
attached to automorphic representation of higher GL(n,AQ)” at the end of this paper.

Let d ≥ 2 be an integer, and let F(d) be the set of all cuspidal automorphic
representations π of GL(d) over Q with trivial central character. Let qπ denote the
arithmetic conductor of π. For each π ∈ F(d), the corresponding L-function is defined
by absolutely convergent Dirichlet series as

L(s, π) =
∞

∑
n=1

λπ(n)n−s

for Re s > 1. Motivated by the remarks of Murty as above, it is interesting to study the
distribution of Dirichlet coefficients λπ(n) in arithmetic progressions

∑
n≤x

n≡a (mod q)

λπ(n).(1.2)

In general, one needs to replace the congruence n ≡ a (mod q) in (1.2) by a character
sum of additive or multiplicative characters modulo q. Smith [23] chose to use
the additive characters and then investigated the properties of generating series of
λ f (n)e(an/q) including the analytical continuation and functional equation, where
e(x) ∶= exp(2πix) for any x ∈ R. However, for the higher rank case on GL(d), the
functional equation of Dirichlet series

∞
∑
n=1

λπ(n)e(an/q)n−s is complicated and lacks

a little symmetry structure (see [17] for details). Hence, in contrast to the work of
Smith, we shall replace the congruence in (1.2) by a character sum of multiplicative
characters, and can prove the following result.

Theorem 1.1 If π ∈ F(d) with (q, aqπ) = 1, then we have

∑
n≤x

n≡a (mod q)

λπ(n) ≪
⎧⎪⎪⎨⎪⎪⎩

τd(q)x 1− 1
d , ifq ≤ x 1

d ,

τd2(q)x 1− d+1
d2+1 log x , ifq ≤ x

2
d2+1 .

Assume the generalized Ramanujan conjecture holds for π, then we have

∑
n≤x

n≡a (mod q)

λπ(n) ≪ τd(q)(q
d−1

2 log q + x 1− 2
d+1 )

for q ≤ x2/(d+1) . The implied constants all depend on π only.
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Summation formulae of multiplicative functions 3

Another important arithmetic function is the coefficient λπ×π̃(n) of the Rankin–
Selberg L-function L(s, π × π̃), where π̃ denotes the contragredient of π ∈ F(d). This
example is also our motivation for using the multiplicative characters to detect the
congruence.

Theorem 1.2 If π ∈ F(d) with (q, aqπ) = 1, then we have

∑
n≤x

n≡a (mod q)

λπ×π̃(n) =
cπ ,q

φ(q)x + O(τd2(q)q d2−1
2 log q) + O(τd2(q)x

d2−1
d2+1 )

for q ≤ x
2

d2+1 , where cπ ,q is defined by cπ ,q = Res
s=1
(L(s, π × π̃)) ∏

p∣q
L(1, πp × π̃p)−1, and

the implied constant depends on π only.

As in the argument of Theorem 1.1, if the coefficients λπ(n) of L-functions are not
all nonnegative, we can produce a formula for∑n≤x λπ(n) in terms of a sum of λπ(n)
over a short interval. Our next goal is to strengthen Theorem 1.1 for special cases by
improving some related estimates over short intervals.

Let k and N be positive integers with k even and N square-free, and Γ0(N) be

the group of matrices γ = (a b
c d) ∈ SL(2,Z) with the condition c ≡ 0(mod N). Let

H∗k(N) denote the set of arithmetically normalized primitive cusp forms of weight k
for Γ0(N) which are eigenfunctions of all the Hecke operators. Any f ∈ H∗k(N) has a
Fourier expansion at infinity given by

f (z) =
∞

∑
n=1

λ f (n)n
k−1

2 e(nz),

where λ f (1) = 1 and the eigenvalues λ f (n) ∈ R. Deligne’s bound gives

∣λ f (n)∣ ≤ τ(n)(1.3)

for all n ≥ 1, where we put as usual τ2(n) = τ(n). The eigenvalues λ f (n) enjoy the
multiplicative property

λ f (m)λ f (n) = ∑
d ∣(m ,n)
(d ,N)=1

λ f (
mn
d2 )

for all integers m, n ≥ 1. In particular, λ f (n) are multiplicative. The Hecke L-function
L(s, f ) associated with f has the Euler product representation

L(s, f ) = ∑
n≥1

λ f (n)
ns =∏

p
(1 −

λ f (p)
ps + ψ0(p)

p2s )
−1

,

where ψ0 denotes the principal character modulo N. We rewrite the Euler product as

L(s, f ) =∏
p
(1 −

α f (p)
ps )

−1

(1 −
β f (p)

ps )
−1

,
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4 Y. Jiang and G. Lü

where α f (p), β f (p) are complex numbers with

{ α f (p) = εp p− 1
2 , β f (p) = 0, if p∣N ,

α f (p) = β f (p), ∣α f (p)∣ = ∣β f (p)∣ = 1, if p ∤ N ,

and εp ∈ {±1}. For each d ≥ 1, we define the twisted dth symmetric power L-function
by the degree d + 1 Euler product

L(s, symd f ) =∏
p
∏

0≤ j≤d
(1 −

α f (p)d− j β f (p) j

ps )
−1

∶= ∑
n≥1

λsymd f (n)
ns .(1.4)

Note that L(s, sym1 f ) = L(s, f ).
Recently, Newton and Thorne [19, Theorem B] proved that if d ≥ 1, then the dth

symmetric power lift symd f corresponds to a cuspidal automorphic representation
of GL(d + 1,AQ) with trivial central character. Moreover, for each prime p, let
θ p ∈ [0, π] be the unique angel such that λ f (p) = 2 cos θ p . The Sato–Tate conjecture
states that the sequence {θ p} is equidistributed in the interval [0, π] with respect
to the measure dμST ∶= (2/π) sin2 θdθ . Equivalently, for any continuous function
g ∈ C([0, π]), one has

∑
p≤x
p∤N

g(θ p) ∼ (∫
π

0
g(θ)dμST)

x
log x

as x �→∞.(1.5)

This is now a theorem of Barnet-Lamb, Geraghty, Harris, and Taylor [1].
For this special arithmetic function λsymd f (n) on GLd+1, we get the following

result.
Theorem 1.3 Let f ∈ H∗k(N) and λsymd f (n) be the coefficients of L(s, symd f ). For
(q, aN) = 1, we have

∑
n≤x

n≡a (mod q)

λsymd f (n) ≪ τd+1(q)(q
d
2 (log q)1−γd + x

d
d+2 (log x)−γd)

for q ≤ x 2
d+2 , where γd = 1 − 4(d+1)

d(d+2)π cot ( π
2(d+1)) > 0.15, and the implied constant

depends on f and d.
Remark 1.1 For any fixed f ∈ H∗k(N) and (q, aN) = 1, Smith [23] obtained a uniform
estimate

∑
n≤x

n≡a (mod q)

λ f (n) ≪ τ(q)x 1
3 log x

for q ≤ x2/3. Compared this with the case d = 1 in Theorem 1.3, it is obvious that our
result is of a smaller size.

2 The main result

All these results in the theorems above are some specific applications of our technical
formulae in Theorem 2.1. To state this core result, we need to describe the situation
that we consider. Inspired by the series of works [5–8] of Duke and Iwaniec who have
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Summation formulae of multiplicative functions 5

developed several techniques for estimating the coefficients of L-functions that satisfy
standard functional equations, this paper here is to investigate the average order of
a class of multiplicative functions over arithmetic progressions under some similar
conditions.
(A1) Euler product and Dirichlet series. Let A = {Ap} be a sequence of square

complex matrices of order d indexed by primes, with monic characteristic poly-
nomial Pp(x) = PA

p (x) ∈ C[x] and roots α j(p). Then our general L-function
L(s,A) will be given by

L(s,A) =∏
p

d
∏
j=1
(1 −

α j(p)
ps )

−1
=
∞

∑
n=1

an

ns ,(2.1)

where we assume that the product and the series are absolutely convergent for
Re(s) > 1. Note that ∣α j(p)∣ ≤ p for all p, which is implied by the convergence
of the Euler product for Re s > 1.

(A2) Analytic continuation. There is some m = m(A) such that L(s,A) can be
continued analytically over all of C except possibly for a pole of order m at s = 1.

(A3) Functional equation. Let a Gamma factor Δ(s) be defined by

Δ(s) =
d
∏
j=1

ΓR(s + μ j),

where ΓR(s) = π−s/2Γ(s/2), and μ j is an arbitrary complex number with
Re μ j > −1 for each 1 ≤ j ≤ d. The complete L-function

Λ(s,A) ∶= q
s
2
A

Δ(s)L(s,A)

has finite order, and satisfies the functional equation

Λ(1 − s,A) = ωAΛ(1 − s̄,A),

where qA is a positive integer and ωA is a complex number with ∣ωA∣ = 1, which
are called the arithmetic conductor and root number of A, respectively.

(A4) GL(1) twists. Let χ(mod q) be a primitive Dirichlet character with q > 1 and
(q, qA) = 1. The twisted L-function

L(s,A⊗ χ) =∏
p

d
∏
j=1
(1 −

α j(p)χ(p)
ps )

−1
=
∞

∑
n=1

an χ(n)
ns

can be analytically continued to be an entire function. Moreover, the complete
L-function

Λ(s,A⊗ χ) ∶= q
s
2
A⊗χΔ(s + κsgn(χ))L(s,A⊗ χ)

has finite order, and satisfies the functional equation

Λ(s,A⊗ χ) = ωA⊗χΛ(1 − s̄,A⊗ χ),(2.2)

where qA⊗χ > 0 and ωA⊗χ is a complex number with ∣ωA⊗χ ∣ = 1. We emphasize
that the Gamma factor of A⊗ χ depends on the parity of χ, but not on the
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6 Y. Jiang and G. Lü

characters χ. For (q, qA) = 1, we also assume that qA⊗χ = qA qd and the root
number ωA⊗χ is given by

ωA⊗χ = ηA,sgn(χ)χ(qA)(
τ(χ)
√q
)

d
,

where ηA,sgn(χ) with ∣ηA,sgn(χ)∣ = 1 depends on A and the parity of χ only, τ(χ)
is the Gauss sum

τ(χ) = ∑
b (mod q)

χ(b)e(b
q
).

Some hypotheses about the size of the coefficients have to be assumed in order to
prove our result. The Ramanujan conjecture (RC) states that for any ε > 0, an ≪ nε for
all n ≥ 1. As is well known, RC has been proved only for a limited class of functions
(the Hecke L-functions, and the L-functions coming from the cuspidal holomorphic
forms for congruence groups, see Deligne [4]), although it is generally believed that
all the L-functions appearing in number theory should satisfy RC. For example,
it is conjectured to hold for the L-functions associated with cuspidal automorphic
representations on GL(d). In general, only some rather weak estimates for the
coefficients are at our disposal. Hence, it is interesting to consider the possibility of
obtaining some results under some weaker assumptions instead of RC. We introduce
the following notation: s j,A(p) denotes the jth elementary symmetric function of the
roots α1(p), . . . , αd(p), that is,

s j,A(p) = ∑
1≤i1< ⋅ ⋅ ⋅ <i j≤d

α i1(p) . . . α i j(p).(2.3)

Hypothesis H(θd): For all primes p with (p, qA) = 1, one has

∣α j(p)∣ ≤ pθd and s j,A(p) ≪ pmin{ j,d− j}θd for any 1 ≤ j ≤ d .

Hypothesis S: There exists some bA > 0 such that the first moment of absolute values
of the coefficients satisfies the bound

∑
n≤x
∣an ∣ ≪ x(log x)bA−1 .

Our main result states as follows.

Theorem 2.1 Let L(s,A) be an L-function satisfying the conditions (A1)–(A4) with
d ≥ 2, and let (q, aqA) = 1. Then under Hypothesis H(θd)with θd < 1 − 1

d and Hypoth-
esis S, we have

∑
n≤x

n≡a (mod q)

an =M0(x; q) + O( τ(q)
q

y(log x)m−1) + O(τd(q)q
d−1

2 (log q)bA)

+ O(τd(q)(
qx
y
)

d−1
2 (log x)bA−1) + O( ∑

x<n≤x+O(y)
n≡a (mod q)

∣an ∣),

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


Summation formulae of multiplicative functions 7

where y is an arbitrary real number with 0 < y < x, M0(x; q) is defined by

M0(x; q) = 1
φ(q) Res

s=1
( 1

s
L(s,A⊗ χ0)x s).

In addition, if an ≥ 0, we have

∑
n≤x

n≡a (mod q)

an = M0(x; q) + O(τd(q)q
d−1

2 (log q)bA) + O(τd(q)x
d−1
d+1 (log x)max{bA ,m}−1).

We note that the implied constants above depend on A, including the degree d, the
parameters μ j and the arithmetic conductor qA of A.

Under Hypothesis H(θd) with 1 − 1
d ≤ θd < 1 and Hypothesis S, the above two

assertions hold provided that τd(q) is replaced by τd+1(q) in the error terms.

Remark 2.1 Chandrasekharan and Narasimhan [3] established these results for q = 1.
Under some additional assumptions on functional equations for additive twists of
L-functions, Smith [21] investigated the analogous problem as in Theorem 2.1 for
some positive integers q. However, the lack of a good symmetry structure for these
functional equations could increase the difficulty of applications, such as in [21, 22].
We here take full advantage of multiplicative twists of L-function in this aspect.

In the modern sense, one may apply the Voronoï formula of an to study its distribu-
tion over arithmetic progressions. However, the corresponding formulae are intricate
and constrained for most of our interest objects an , such as general divisor functions,
coefficients of automorphic L-functions and their Rankin–Selberg convolutions.

The paper is organized as follows. In Section 3, we state a few background results
we shall need, including a fact in multiplicative number theory, and some properties
about general L-functions. In Sections 4, we prove Theorem 2.1. In order to apply
this theorem to the automorphic context, we introduce some related knowledge on
automorphic L-functions and their Rankin–Selberg in Section 5. Finally, in Section 6,
we explore all various of applications and give the proofs of Theorems 1.1–1.3.

3 Preliminaries

In this section, we present the results and tools needed in our proofs.
The common tool in complex analysis is the method of contour integration, which

could give a direct link between the summation associated with an arithmetic function
and the corresponding Dirichlet series. The following lemma is a standard contour
integration (see, for example, [14, Lemma 1]).

Lemma 3.1 If k is any positive integer and c > 0, then

1
2πi ∫(c)

x s

s(s + 1) . . . (s + k)ds = {
1
k! (1 −

1
x )

k , if x ≥ 1,
0, if 0 ≤ x ≤ 1.

Now we start to recall and show some uniform estimates for various analytic
quantities related to an individual L-function. It turns out that most results for the
L-function are expressed conveniently in terms of the analytic conductor. Put
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8 Y. Jiang and G. Lü

q∞(s) =
d
∏
j=1
(∣s + μ j ∣ + 3).

Then the analytic conductor qA⊗χ(s) is defined by (see, for example, [11, equation
(5.6)])

qA⊗χ(s) = qA⊗χq∞(s) = qA⊗χ
d
∏
j=1
(∣s + μ j ∣ + 3).

We first state the approximate functional equation, which expresses L(s,A⊗ χ) in
the critical strip as a sum of two Dirichlet series.

Lemma 3.2 Let χ(mod q) be a primitive Dirichlet character with q > 1 and
(q, qA) = 1. For 0 ≤ Re s ≤ 1, there exists a smooth function Vs such that

L(s,A⊗ χ) =
∞

∑
n=1

an χ(n)
ns Vs(

n
X√qA⊗χ

) + ωA⊗χ(s)
∞

∑
n=1

an χ(n)
n1−s V1−s(

nX
√qA⊗χ

),

where X is an arbitrary positive real number, and

ωA⊗χ(s) = ωA⊗χq
1
2−s
A⊗χ

Δ(1 − s + κsgn(χ))
Δ(s + κsgn(χ))

.

The function Vs and its partial derivatives V(k)s (k = 1, 2, . . .) satisfy, for any C > 0,
the following uniform growth estimates at 0 and∞:

Vs(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + O(( x
q∞(s))

C)

O((1 + x
q∞(s))

−C),
V(k)s (x) = O((1 + x

q∞(s)
)−C),

where the implied constants depend only on C , k, and d.

Proof This follows from [11, Theorem 5.3 and Proposition 5.4] in the same
manner. ∎

Lemma 3.3 Let χ is any Dirichlet character (mod q) with (q, qA) = 1, and let
s = σ + it. Then we have, for −ε ≤ σ ≤ 1 + ε and ∣t∣ ≥ 1,

L(s,A⊗ χ) ≪A (q∣t∣)d(1−σ)+ε .

Proof Assume χ(mod q) is induced by a primitive character χ1(mod r), then

L(s,A⊗ χ) = L(s,A⊗ χ1)∏
p∣ qr

d
∏
j=1
(1 −

α j(p)χ1(p)
ps ).

Recall that ∣α j(p)∣ ≤ p in Condition (A1). Thus, we have, for −ε ≤ σ ≤ 1 + ε and ∣t∣ ≥ 1,

∏
p∣ qr

d
∏
j=1
(1 −

α j(p)χ1(p)
ps ) ≪∏

p∣ qr

(1 + p1−σ)
d
≤ (q

r
)d(1−σ)+ε .
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Summation formulae of multiplicative functions 9

Moreover, the convexity bound of L(s,A⊗ χ1) states

L(s,A⊗ χ1) ≪ qA⊗χ1(s)
1−σ

2 +ε ≪A (r∣t∣)
d(1−σ)

2 +ε

for−ε ≤ σ ≤ 1 + ε and ∣t∣ ≥ 1 (see [11, equation (5.20)]). Finally, combining these results
above, we conclude Lemma 3.3. ∎

4 Proof of Theorem 2.1

For technical convenience, one usually works with the weighted sum

Aρ(x; q, a) = 1
Γ(ρ + 1) ∑′

n≤x
n≡a (mod q)

an(x − n)ρ ,(4.1)

where (q, aqA) = 1, ρ is a sufficiently large integer, and the symbol ′ indicates that
the last term has to be multiplied by 1/2 if ρ = 0 and x = n. Detecting the congruence
condition in (4.1) by the multiplicative characters χ(mod q), we obtain the identity

∑′
n≤x

n≡a (mod q)

an(x − n)ρ = 1
φ(q) ∑

χ(mod q)
χ(a)∑′

n≤x
an χ(n)(x − n)ρ .

Each character χ(mod q) can be induced by a primitive character χ(mod r) with r∣q.
Note that the character for χ(mod q) with the case r = 1 is principle. Thus, we get

Γ(ρ + 1)Aρ(x; q, a) = 1
φ(q) ∑r∣q

∑∗
χ(mod r)

χ(a) ∑′
n≤x

(n ,q/r)=1

an χ(n)(x − n)ρ

= 1
φ(q) ∑r∣q

∑∗
χ(mod r)

χ(a) ∑
h∣(q/r)

μ(h)χ(h)hρ ∑′
n≤x/h

ahn χ(n)( x
h
− n)

ρ

= 1
φ(q) ∑hr∣q

μ(h)hρ ∑∗
χ(mod r)

χ(a)χ(h) ∑′
n≤x/h

ahn χ(n)( x
h
− n)

ρ
,

where the formula

∑
d ∣n

μ(d) = { 1, ifn = 1,
0, otherwise,

is used to relax the coprimality condition (n, q/r) = 1 above.
The transformation of the innermost sum over n requires factoring the arithmetic

function ahn . To this end, we exploit the Euler product for L(s,A). Write

L(s,A) =∏
p

d
∏
j=1
(1 − α j(p)/ps)−1 ∶= ∏

p
L(s,Ap).

With the notation s j,A(p) as in (2.3), the reciprocal of the local L-function can be
given by

L(s,Ap)−1 = 1 − s1,A(p)p−s + s2,A(p)p−2s + ⋅ ⋅ ⋅ + (−1)d sd ,A(p)p−ds .
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10 Y. Jiang and G. Lü

Thus, we have

(1 − s1,A(p)p−s + s2,A(p)p−2s + ⋅ ⋅ ⋅ + (−1)d sd ,A(p)p−ds)(
∞

∑
ν=0

apν p−νs) = 1.

Hence for all ν ∈ Z, we obtain the recursive relation

apν − s1,A(p)apν−1 + s2,A(p)apν−2 + ⋅ ⋅ ⋅ + (−1)d sd ,A(p)apν−d = δ0ν

subject to the convention that apν = 0 for negative ν. Notice that h is square-free. Now
if we suppose h = ∏ p, we get by the recursion and multiplicativity
∞

∑
n=1

ahn n−s =∏
p∣h
(
∞

∑
ν=0

apν+1 p−νs)∏
p∤h

L(s,Ap)

=L(s,A)∏
p∣h
(L(s,Ap)−1

∞

∑
ν=0

apν+1

pνs )

=L(s,A)∏
p∣h
(s1,A(p) − s2,A(p)p−s + ⋅ ⋅ ⋅ + (−1)d−1sd ,A(p)p−(d−1)s).

Hence, it is clear that ahn factors as follows:

ahn = ∑
cm=n

a(h, c)am ,(4.3)

where a(h, c) is defined for c∣hd−1 by

a(h, c) = ∑
h=h0 h1 ⋅ ⋅ ⋅ hd−1

d−1
∏
j=0
∏
p∣h j

(−1) js j+1,A(p)

with h0 , h1 , . . . , hd−1 mutually coprime such that

c = (∏
p∣h1

p)(∏
p∣h2

p)
2

. . . ( ∏
p∣hd−1

p)
d−1

.

Using the above formulas and Hypothesis H(θd), one can show that

a(h, c) ≪ h
d θd

2 +ε .(4.4)

Inserting the identity (4.3) into the innermost sum over n in the last line of (4.2), we
get

1
Γ(ρ + 1) ∑

′

n≤x/h
ahn χ(n)( x

h
− n)

ρ
= ∑

c∣hd−1

a(h, c)cρ χ(c)Bρ(
x
ch

, χ),

where

Bρ(y, χ) = 1
Γ(ρ + 1)∑

′

m≤y
am χ(m)(y −m)ρ .

Next, we turn to evaluate the summation Bρ(y, χ). By condition (A1), it is known
that L(s,A⊗ χ) converges absolutely for Re s ≥ 1 + ε. Then it follows from Lemma 3.1
that
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Summation formulae of multiplicative functions 11

Bρ(y, χ) = 1
2πi ∫(1+ε)

Γ(s)
Γ(ρ + 1 + s)L(s,A⊗ χ)yρ+sds,

where ρ is a sufficiently large integer compared to d. Using the analytic properties
(A2), (A5) of L(s,A⊗ χ) and the bound in Lemma 3.3, we could move the line of
integration to Re s = −ε < 0, change the variable from s to 1 − s and apply the functional
equation (2.2) to get

Bρ(y, χ) = δr1 Res
s=1
( Γ(s)

Γ(ρ + 1 + s)L(s,A)yρ+s) + 1
Γ(ρ + 1)L(0,A⊗ χ)yρ + Eρ(y, χ),

(4.5)

where δr1 denotes the diagonal symbol of Kronecker and

Eρ(y, χ) =
ωA⊗χ

2πi ∫(1+ε)

Γ(1 − s)Δ(s + κsgn(χ))
Γ(ρ + 2 − s)Δ(1 − s + κsgn(χ))

yρ+1−s qs− 1
2

A⊗χL(s,A⊗ χ)ds.

Denote the contributions of these three terms on the right-hand side of (4.5) to the
sum Aρ(x; q, a) by Mρ(x; q), Hρ(x; q) and Sρ(x; q), respectively. This is to say

Aρ(x; q, a) = Mρ(x; q) +Hρ(x; q) + Sρ(x; q),(4.6)

where

Mρ(x; q) = 1
φ(q) ∑h∣q

μ(h) ∑
c∣hd−1

a(h, c)Res
s=1
( Γ(s)

Γ(ρ + 1 + s)L(s,A)( x
ch
)

ρ+s
),

Hρ(x; q) = 1
Γ(ρ + 1)φ(q) ∑hr∣q

μ(h) ∑
c∣hd−1

a(h, c) ∑∗
χ(mod r)

χ(ach)L(0,A⊗ χ)xρ ,(4.7)

Sρ(x; q) = 1
φ(q) ∑hr∣q

μ(h) ∑
c∣hd−1

a(h, c)(ch)ρ ∑∗
χ(mod r)

χ(ach)Eρ(
x
ch

, χ).

We introduce the difference operator

Δρ
y F(x) =

ρ

∑
v=0
(−1)ρ−v Cv

ρ F(x + v y),

where y is a positive parameter less than x and Cv
ρ denotes the binomial coefficient. If

F has ρ derivatives, then one has

Δρ
y F(x) = ∫

x+y

x
dt1 ∫

t1+y

t1
dt2 . . .∫

tρ−1+y

tρ−1
F(ρ)(tρ)dtρ ,(4.8)

where F(ρ) is the ρth derivative of F.
We first apply the operator Δρ

y to Aρ(x; q, a) and obtain

Δρ
y Aρ(x; q, a) = ∑′

n≤x
n≡a (mod q)

an
Δρ

y(x − n)ρ

Γ(ρ + 1) +
ρ

∑
v=0
(−1)ρ−v Cv

ρ ∑′
x<n≤x+v y

n≡a (mod q)

an(x + v y − n)ρ .
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12 Y. Jiang and G. Lü

Since
1

Γ(ρ + 1)Δρ
y(x − n)ρ = yρ ,

we get

Δρ
y Aρ(x; q, a) = yρ A0(x; q, a) + Oρ(yρ ∑

x<n≤x+ρ y
n≡a (mod q)

∣an ∣).(4.9)

Furthermore, if an ≥ 0, then A0(x; q, a) is monotone. Thus, it follows from (4.8) that

Δρ
y Aρ(x − ρy; q, a) ≤ yρ A0(x; q, a) ≤ Δρ

y Aρ(x; q, a).(4.10)

Next, we shall apply the operator Δρ
y to Mρ(x; q), Hρ(x; q) and Sρ(x; q), separately.

From now on, we assume that the implied constant in the notation≪ or O is allowed
to depend on A, ρ for convenience.

4.1 Computation of Δρ
y Sρ(x; q)

By the Dirichlet series expression of L(s,A⊗ χ)), we can rewrite Eρ(y, χ) as

Eρ(y, χ) = ωA⊗χqρ+ 1
2

A⊗χ

∞

∑
n=1

an χ(n)
n1+ρ J ( ny

qA⊗χ
) ,(4.11)

where

J(x) = 1
2πi ∫(c)

Γ(1 − s)Δ(s + κsgn(χ))
Γ(ρ + 2 − s)Δ(1 − s + κsgn(χ))

xρ+1−sds.

We shall deal with the integral J(x) by means of the following result (see [3, equations
(4.5) and (4.11)] or [14, Theorem 3]).

Lemma 4.1 With the notation as before, suppose d ≥ 2. Let 0 ≤ ρ ∈ Z and c ∈ R. Then
for suitable choices c and ρ, we have

J(x) = O(x 1
2+(1−

1
d )ρ− 1

2d ) and J(ρ)(x) = O(x 1
2−

1
2d ).

Combining (4.11) with the expression of Sρ(x; q) in (4.7), we conclude

Sρ(x; q) = 1
φ(q) ∑hr∣q

μ(h) ∑
c∣hd−1

a(h, c)(ch)ρ
∞

∑
n=1

an

n1+ρ ∑
∗

χ(mod r)
χ(anch)ωA⊗χ qρ+ 1

2
A⊗χ J ( nx

chqA⊗χ
) .

Recall that

qA⊗χ = qA rd and ωA⊗χ = ηA,sgn(χ)χ(qA)(
τ(χ)√

r
)

d

for (r, qA) = 1. Since the ηA,sgn(χ) and J(x) depend on the parity of χ, but not on
the character itself, we need to break up the sum over χ separately into even and odd
characters. We put
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K±(a, r) = 1
2 ∑

∗

χ(mod r)
(1 ± χ(−1))χ(a)( τ(χ)√

r
)

d
.

Moreover, we display the dependence by writing J+ and J−, respectively, in place of J.
Thus, we have

Sρ(x; q) = 1
φ(q) ∑hr∣q

μ(h) ∑
c∣hd−1

a(h, c) (chqArd)ρ (qArd) 1
2

×∑
±

ηA,sgn(χ)

∞

∑
n=1

an

n1+ρ K±(anchqA , r)J± (
nx

chqArd ) .

Lemma 4.2 Let K±(a, r) be as above with (a, r) = 1. Then we have

∣K±(a, r)∣ ≤ φ(r)r− 1
2 τd(r).

Proof It is clear that

K±(a, r) = 1
2
(K(a, r) ± K(−a, r)) ,(4.12)

where

K(a, r) = ∑∗
χ(mod r)

χ(a)( τ(χ)√
r
)

d
.

In fact, K(a, r) appears in a long list of literature, such as the series works of Duke
and Iwaniec about estimating coefficients of L-functions (see [5–9]), the work of
Luo, Rudnick, and Sarnak on the Selberg conjecture [16] and the work of Luo about
nonvanishing of GL(d)L-functions [15]. It plays a key role in making these remarkable
achievements.

As in the proof of [9], by the definition of Gauss sum, we infer that

r
d
2 K(a, r) = ∑∗

χ(mod r)
χ(a)

⎛
⎝ ∑

b(mod r)
χ(b)e(b

r
)
⎞
⎠

d

.

Changing the order of summation and using the relation [11, equation (3.8)]

∑∗
χ mod r

χ(m) = ∑
l ∣(m−1,r)

φ(l)μ ( r
l
)

when (r, m) = 1, we get

r
d
2 K(a, r) = ∑

l k=r
φ(l)μ(k) ∑∗

b1 , . . . ,bd(mod r)
b1 ⋅ ⋅ ⋅ bd≡a(mod l)

e(b1 + ⋅ ⋅ ⋅ + bd

r
)

= ∑
l k=r
(l ,k)=1

φ(l)μ(k)d+1 ∑∗
b1 , . . . ,bd(mod l)

b1 ⋅ ⋅ ⋅ bd≡a(mod l)

e((b1 + ⋅ ⋅ ⋅ + bd)k
r

) .
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14 Y. Jiang and G. Lü

Note that the innermost sum is the generalized Kloosterman sum for which Deligne
[4] has established the bound τd(l)l

d−1
2 . Employing Deligne’s bound, we directly have

∣r d
2 K(a, r)∣ ≤ ∑

l k=r
φ(l)τd(l)l

d−1
2 ≤ φ(r)r d−1

2 τd(r)∑
k∣r

1
φ(k)k d−1

2
≪ φ(r)r d−1

2 τd(r),

which implies this lemma from (4.12). ∎

We continue to compute Δρ
y Sρ(x; q). Now we apply the operator Δρ

y to Sρ(x; q)
and obtain from Lemma 4.2 that

Δρ
y Sρ(x; q) ≪ 1

φ(q) ∑hr∣q
∣μ(h)∣ ∑

c∣hd−1

∣a(h, c)∣(chrd)ρr
d
2

×∑
±

∞

∑
n=1

∣an ∣
n1+ρ ∣K±(anchqA , r)∣ ∣Δρ

y J± (
nx

chqArd )∣

≪ 1
φ(q) ∑hr∣q

∣μ(h)∣ ∑
c∣hd−1

∣a(h, c)∣(chrd)ρ φ(r)r d−1
2 τd(r)

×∑
±

∞

∑
n=1

∣an ∣
n1+ρ ∣Δ

ρ
y J± (

nx
chqArd )∣ .

(4.13)

By definition of the operator Δρ
y and Lemma 4.1, one easily has

Δρ
y J±(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣J±(x)∣) = O(x 1
2+(1−

1
d )ρ− 1

2d ),
O(yρ ∣J(ρ)± (x)∣) = O(yρ x 1

2−
1

2d ).

Thus, we have

Δρ
y J± (

nx
chqArd ) ≪A min

⎧⎪⎪⎨⎪⎪⎩
( nx

chrd )
1
2+(1−

1
d )ρ− 1

2d

, ( ny
chrd )

ρ
( nx

chrd )
1
2−

1
2d
⎫⎪⎪⎬⎪⎪⎭

.

We divide the innermost summation in (4.13) into two parts by the parameter z > 0,
which shall be chosen later. For any ε > 0, under Hypothesis S, we get

∑
n>z

∣an ∣
n1+ρ ∣Δ

ρ
y J± (

nx
chqArd )∣ ≪∑

n>z

∣an ∣
n1+ρ (

nx
chrd )

1
2+(1−

1
d )ρ− 1

2d

≪( x
chrd )

1
2+(1−

1
d )ρ− 1

2d

z
1
2−

ρ
d −

1
2d (log z)bA−1 ,

and

∑
n≤z

∣an ∣
n1+ρ ∣Δ

ρ
y J± (

nx
chqArd )∣ ≪∑

n≤z

∣an ∣
n1+ρ (

ny
chrd )

ρ
( nx

chrd )
1
2−

1
2d

≪( y
chrd )

ρ
( xz

chrd )
1
2−

1
2d

(log z)bA−1 .
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On taking z = chrd xd−1

yd , we have

∞

∑
n=1

∣an ∣
n1+ρ ∣Δ

ρ
y J± (

nx
chqArd )∣ ≪ (

y
chrd )

ρ
(x

y
)

d−1
2

(log x)bA−1 .

Inserting this into (4.13) and applying the estimate (4.4) yield

Δρ
y Sρ(x; q) ≪(x

y
)

d−1
2 yρ(log x)bA−1

φ(q) ∑
hr∣q
∣μ(h)∣ ∑

c∣hd−1

∣a(h, c)∣φ(r)r d−1
2 τd(r)

≪(x
y
)

d−1
2 yρ(log x)bA−1

φ(q) ∑
hr=q

h
d θd

2 +εφ(r)r d−1
2 τd(r).

(4.14)

It is easy to deduce

Δρ
y Sρ(x; q) ≪ (qx

y
)

d−1
2

yρ(log x)bA−1τd(q)

when θd < 1 − 1
d , and

Δρ
y Sρ(x; q) ≪ (qx

y
)

d−1
2

yρ(log x)bA−1τd+1(q)

when 1 − 1
d ≤ θd < 1.

4.2 Computation of Δρ
y Hρ(x; q)

Lemma 4.3 Let (r, aqA) = 1. Then we have

∑∗
χ(mod r)

χ(a)L(0,A⊗ χ) ≪ φ(r)r d−1
2 τd(r)(log r)bA .

Proof By the approximate functional equation in Lemma 3.2 with X = r−d/3, we have

L(0,A⊗ χ) = ∑
n≤rd/6+ε

an χ(n)V0(
n

q1/2
A

rd/6
) + ωA⊗χ(0) ∑

n≤r5d/6+ε

an χ(n)
n

V1(
n

q1/2
A

r5d/6
) + O(r−2020).

We average the approximate functional equation over all primitive characters
(mod r). Thus, the sum

∑∗
χ(mod r)

χ(a)L(0,A⊗ χ)

is decomposed into two parts T1 and T2 with negligible error O(r−2019). Since L(s,A)
is absolutely convergent for Re s > 1, we get

T1 = r ∑
n≤rd/6+ε

∣an ∣ ≪ r
d
6 +1+ε .(4.15)
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16 Y. Jiang and G. Lü

To treat the contribution of T2, we first note that ωA⊗χ(s) and Vs depend on the
parity of χ, but not on the characters χ. Similar to the previous argument for Sρ(x; q),
we break up the sum T2 over χ separately into even and odd characters, and then get

T2 = ∑
n≤r5d/6+ε

(n ,r)=1

an

n ∑∗
χ(mod r)

χ(an)ωA⊗χ(0)V1(
n

q1/2
A

r5d/6
)

≪r
d
2 ∑
±
∑

n≤r5d/6+ε

(n ,r)=1

∣an ∣
n
∣K±(naqA , r)∣.

Using Hypothesis S and Lemma 4.2, we therefore have

T2 ≪ φ(r)r d−1
2 τd(r)(log r)bA .(4.16)

Collecting (4.15) and (4.16), Lemma 4.3 immediately follows. ∎

If the operator Δρ
y acts on Hρ(x; q), then we obtain from Lemma 4.3 that

Δρ
y Hρ(x; q) = 1

Γ(ρ + 1)φ(q) ∑hr∣q
μ(h) ∑

c∣hd−1

a(h, c)yρ ∑∗
χ(mod r)

χ(ach)L(0,A⊗ χ)

≪ yρ

φ(q) ∑hr∣q
∣μ(h)∣ ∑

c∣hd−1

∣a(h, c)∣φ(r)r d−1
2 τd(r)(log r)bA .

Similar to the previous estimate for (4.14), we get

Δρ
y Hρ(x; q) ≪ yρ q

d−1
2 τd(q)(log q)bA

when θd < 1 − 1
d , and

Δρ
y Hρ(x; q) ≪ yρ q

d−1
2 τd+1(q)(log q)bA

when 1 − 1
d ≤ θd < 1.

4.3 Computation of Δρ
y Mρ(x; q)

By the relation (4.3), we have

Mρ(x; q) = 1
φ(q) Res

s=1
( Γ(s)

Γ(ρ + 1 + s)L(s,A⊗ χ0)xρ+s),

where χ0 is the principle character (mod q). Let Cε be a cycle with a center at s = 1 and
a radius of ε. Then Mρ(x; q) can also be written as

Mρ(x; q) = 1
φ(q)

1
2πi ∫Cε

Γ(s)
Γ(ρ + 1 + s)L(s,A⊗ χ0)xρ+sds.
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In dealing with Δρ
y Mρ(x; q), the identity (4.8) immediately implies

Δρ
y Mρ(x; q) = ∫

x+y

x
dt1 ∫

t1+y

t1
dt2 ⋅ ⋅ ⋅ ∫

tρ−1+y

tρ−1
M0(tρ ; q)dtρ .

By introducing the change of variables t j ↦ y v j + t j−1 for 1 ≤ j ≤ ρ with t0 = x, we
have

Δρ
y Mρ(x; q) = yρ ∫

1

0
⋅ ⋅ ⋅ ∫

1

0
M0(x + y(v1 + ⋅ ⋅ ⋅ + vρ); q)dv1 ⋅ ⋅ ⋅dvρ .

Then the first mean value theorem for integrals implies that

Δρ
y Mρ(x; q) = yρ M0(x + ξy; q)

for some 0 < ξ < ρ. From the differential form of the mean value theorem, we have

Δρ
y Mρ(x; q) = yρ M0(x; q) + ξyρ+1M

′

0(x + ξ1 y; q)

for some 0 < ξ1 < ξ, where M
′

0(x; q) is the derivative of M0(x; q) given by

M
′

0(x; q) = 1
φ(q)

1
2πi ∫Cε

L(s,A⊗ χ0)x s−1ds.

We can rewrite L(s,A⊗ χ0) as

L(s,A⊗ χ0) = Gq(s,A)L(s,A),

where

Gq(s,A) =∏
p∣q

d
∏
j=1
(1 −

α j(p)
ps ).

For any j ≥ 0, we obtain from general Leibniz rule that

q
φ(q)G( j)

q (1,A) ≪ (log q) j∏
p∣q
(1 + 1

p1−θd
)

d
(1 − 1

p
)
−1
≪ τ(q)(log q) j

if θd < 1. The residue theorem then yields

M
′

0(x; q) = 1
φ(q) Res

s=1
(Gq(s,A)L(s,A)x s−1)

≪ 1
q
(∣G(m−1)

q (1,A)∣ + ∣Gq(1,A)∣(log qx)m−1)

≪ τ(q)(log qx)m−1

q
.

Thus, we have

Δρ
y Mρ(x; q) = yρ (M0(x; q) + O ( τ(q)

q
y(log x)m−1)) .

At last, we just note that these terms do not exist when the pole order m of L(s,A) at
s = 1 equals zero, which means that L(s,A) is an entire function.
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18 Y. Jiang and G. Lü

4.4 The finishing touches

We first assume θd < 1 − 1
d . Applying the operator Δρ

y to both sides of (4.6), we have

Δρ
y Aρ(x; q, a) = Δρ

y Mρ(x; q) + Δρ
y Hρ(x; q) + Δρ

y Sρ(x; q).

Collecting these estimates of Δρ
y Mρ(x; q), Δρ

y Hρ(x; q) and Δρ
y Sρ(x; q) as in Sections

4.1–4.3, it follows that

Δρ
y Aρ(x; q, a)

yρ =M0(x; q) + O ( τ(q)
q

y(log qx)m−1) + O (q d−1
2 τd(q)(log q)bA)

+ O
⎛
⎜
⎝

τd(q)(
qx
y
)

d−1
2

(log x)bA−1
⎞
⎟
⎠

.(4.17)

Thus, we conclude the first assertion of Theorem 2.1 from (4.9).
In addition an ≥ 0, the differential form of the mean value theorem gives

M0(x; q) −M0(x − ρy; q) ≪y max
ξ≪1
∣M

′

0(x + ξy; q)∣

≪ τ(q)
q

y(log qx)m−1 .

From the estimates (4.17), it is easy to derive that

Δρ
y Aρ(x − ρy; q, a) and Δρ

y Aρ(x; q, a)

are equal to

M0(x; q) + O ( τ(q)
q

y(log qx)m−1) + O (q d−1
2 τd(q)(log q)bA)

+ O
⎛
⎜
⎝

τd(q)(
qx
y
)

d−1
2

(log x)bA−1
⎞
⎟
⎠

.(4.18)

Using the inequalities (4.10), we then infer A0(x; q, a) also asymptotically equals
(4.18). On taking y = qx d−1

d+1 , we finally derive

A0(x; q, a)

= M0(x; q) + O (q d−1
2 τd(q)(log q)bA) + O (τd(q)x

d−1
d+1 (log x)max{bA ,m}−1) ,

which completes the proof of the second assertion in Theorem 2.1.
If 1 − 1

d ≤ θd < 1, we get analogous conclusions, where the only difference is that
the divisor function τd(q) in the error terms is replaced by τd+1(q).
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5 Background on automorphic L-functions and their
Rankin–Selberg

We are mainly interested in some arithmetic functions arising from cuspidal automor-
phic representations. So we recall and show some standard facts about L-functions
related to cuspidal automorphic representations in this section. We refer the reader to
[24, Section 2] for a more detailed overview.

5.1 Standard L-functions

For π = ⊗pπp ∈ F(d) with d ≥ 2, the standard L-function L(s, π) associated with π is
of the form

L(s, π) = ∏
p<∞

L(s, πp) =
∞

∑
n=1

λπ(n)
ns .

The Euler product and Dirichlet series converge absolutely for Re(s) > 1. For each
(finite) prime p, the inverse of the local factor L(s, πp) is a polynomial in p−s of degree
≤ d

L(s, πp)−1 =
d
∏
j=1
(1 −

α j,π(p)
ps )

for suitable complex numbers α j,π(p). With this convention, we have α j,π(p) ≠ 0 for
all j whenever p ∤ qπ , and it might be the case that α j,π(p) = 0 for some j when p ∣ qπ ,
where qπ is the arithmetic conductor of π. At the archimedean place of Q, there are d
complex Langlands parameters μ j,π from which we define

L(s, π∞) =
d
∏
j=1

ΓR(s + μ j,π).

For all primes p, it is known that there exists a constant

θd ∈ [0, 1
2
− 1

d2 + 1
](5.1)

such that

∣α j,π(p)∣ ≤ pθd and Re(μ j,π) ≥ −θd

for all j. Furthermore, for any unramified prime p and any 1 ≤ j ≤ d, one has

p−θd ≤ ∣α j,π(p)∣ ≤ pθd and ∣Re(μ j,π)∣ ≤ θd .(5.2)

The generalized Ramanujan conjectures assert that θd may be taken as 0.
With all the local factors defined as above, we can turn to the functional equation.

The contragredient π̃ of π ∈ F(d) is also an irreducible cuspidal automorphic repre-
sentation in F(d). Thus, we have

{α j,π̃(p) ∶ 1 ≤ j ≤ d} = {α j,π(p) ∶ 1 ≤ j ≤ d}
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for each p < ∞, and

{μ j,π̃ ∶ 1 ≤ j ≤ d} = {μ j,π ∶ 1 ≤ j ≤ d}.

Define the completed L-function

Λ(s, π) = qs/2
π L(s, π)L(s, π∞).

Thus, Λ(s, π) extends to an entire function. Moreover, Λ(s, π) is bounded in vertical
strips and satisfies a functional equation of the form

Λ(s, π) = ωπ Λ(1 − s, π̃),

where ωπ is a complex number of modulus 1.

5.2 Rankin–Selberg L-functions

Now we turn to the Rankin–Selberg L-functions. Let π = ⊗pπp ∈ F(d) and
π′ = ⊗pπ′p ∈ F(d′). The Rankin–Selberg L-function L(s, π × π′) associated with π
and π′ is of the form

L(s, π × π′) =∏
p

L(s, πp × π′p) =
∞

∑
n=1

λπ×π′(n)
ns .

The Euler product and Dirichlet series converge absolutely for Re(s) > 1. For each
(finite) prime p, the inverse of the local factor L(s, πp × π′p) is a polynomial in p−s

of degree ≤ dd′

L(s, πp × π′p)−1 =
d
∏
j=1

d′

∏
j′=1
(1 −

α j, j′ ,π×π′(p)
ps )(5.3)

for suitable complex numbers α j, j′ ,π×π′(p). With θd as in (5.1), we have the pointwise
bound

∣α j, j′ ,π×π′(p)∣ ≤ pθd+θd′ .(5.4)

If p ∤ qπ or p ∤ qπ′ , then we have the equality of sets

{α j, j′ ,π×π′(p) ∶ j ≤ d , j′ ≤ d′} = {α j,π(p)α j′ ,π′(p) ∶ j ≤ d , j′ ≤ d′}.(5.5)

At the archimedean place of Q, there are dd′ complex Langlands parameters μ j, j′ ,π×π′

from which we define

L(s, π∞ × π′∞) = π−
dd′ s

2

d
∏
j=1

d′

∏
j′=1

Γ(
s + μ j, j′ ,π×π′

2
).

These parameters satisfy the equality

{μ j, j′ ,π̃×π̃′} = {μ j, j′ ,π×π′}

for 1 ≤ j ≤ d , 1 ≤ j′ ≤ d′ and the pointwise bound

Re(μ j, j′ ,π×π′) ≥ −θd − θd′ .(5.6)
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The complete L-function

Λ(s, π × π′) = qs/2
π×π′L(s, π × π′)L(s, π∞ × π′∞)

has a meromorphic continuation and is bounded (away from its poles) in vertical
strips. Under our normalization on the central characters, Λ(s, π × π′) is entire if and
only if π̃ /= π′. Moreover, Λ(s, π × π′) satisfies the functional equation

Λ(s, π × π′) = ωπ×π′Λ(1 − s, π̃ × π̃′),

where ωπ×π′ is a complex number of modulus 1.
Finally, we recall some estimates for π′ = π̃. It is known from [13, Lemma 3.1] that

∣λπ(n)∣2 ≤ λπ×π̃(n)(5.7)

hold for all positive integer n. Moreover, L(s, π × π̃) extends to the complex plane with
a simple pole at s = 1. Hence, Landau’s lemma [2, Theorem 3.2] gives

∑
n≤x

λπ×π̃(n) = cπ x + Oπ(x
d2−1
d2+1 )(5.8)

for some constant cπ > 0.

5.3 Twists

Let χ(mod q) be a primitive Dirichlet character with (q, qπ) = 1. As is well known, χ
corresponds to a Hecke character of the idele class group A×/Q× trivial on R×+, so χ is
of the form χ = ⊗p χp .

We apply the Rankin–Selberg theory described above to the following situation:
Fix π in F(d) with m ≥ 2, and let χ be a primitive Dirichlet character modulo q. Take
π′ = χ. The twisted L-function is given by

L(s, π ⊗ χ) =
∞

∑
n=1

λπ(n)χ(n)
ns .

The corresponding complete L-function

Λ(s, π ⊗ χ) = (qπ qd)s/2L(s, π∞ × χ∞)L(s, π ⊗ χ)

has an analytic continuation to the whole complex plane and satisfies the following
functional equation:

Λ(s, π ⊗ χ) = ωπ⊗χΛ(1 − s, π̃ ⊗ χ),

where L(s, π∞ × χ∞) is given by

L(s, π∞ ⊗ χ∞) =
d
∏
j=1

ΓR(s + μ j,π⊗χ).

Similarly, if we take π′ = π̃(χ) ∶= π̃ ⊗ χ, then we have

L(s, π × π̃(χ)) =
∞

∑
n=1

λπ×π̃(n)χ(n)
ns .
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The complete L-function

Λ(s, π × π̃(χ)) = (qπ×π̃ q2d)s/2L(s, π∞(χ∞) × π̃∞)L(s, π × π̃(χ))

has an analytic continuation to the whole complex plane and satisfies the following
functional equation:

Λ(s, π × π̃(χ)) = ωπ×π̃(χ)Λ(1 − s, π × π̃(χ)),

where

L(s, π∞ × π̃∞(χ∞)) =
d
∏
j=1

d
∏
j′=1

ΓR(s + μ j, j′ ,π×π̃(χ)).

Due to the work of Müller and Speh [18, proof of Lemma 3.1], all local Langlands
parameters μ j,π⊗χ and μ j, j′ ,π×π̃(χ) depend on π and the parity of χ at most (see
also [24, proof of Lemma 2.1]). Moreover, the relatively explicit expressions of ωπ⊗χ
and ωπ×π̃(χ) are required. We adopt the argument of Barthel–Ramakrishnan [2,
Proposition 4.1] or Luo–Rudnick–Sarnak [16, Lemma 2.1] and show the following
result.

Lemma 5.1 Let π ∈ F(d), and let χ(mod q) be a primitive Dirichlet character with
(q, qπ) = 1. Then we have

ωπ⊗χ = ηπ ,sgn(χ)χ(qπ)τ(χ)d q−
d
2 ,

where ηπ ,sgn(χ) depends on π and the parity of χ only, and ∣ηπ ,sgn(χ)∣ = 1.

Proof Let the ε-factor be defined by

L(s, π∞ ⊗ χ∞)L(s, π ⊗ χ) = ε(s, π ⊗ χ)L(1 − s, π∞ ⊗ χ∞)L(1 − s, π ⊗ χ).

By the functional equation, the relation between the ε-factor and the root number is

ε(s, π ⊗ χ) = (qπ qd) 1
2−s ωπ⊗χ .

Moreover, it can be written as a product of local factors by fixing an additive character
ψ = ∏p≤∞ ψp :

ε(s, π ⊗ χ) = ∏
p≤∞

ε(s, πp ⊗ χp , ψp).(5.9)

If p ∤ qπ q, where πp and χp are both unramified, then

ε(s, πp ⊗ χp , ψp) = 1.(5.10)

Suppose that pr(χp) ∥ q, in which case χp is ramified with conductor pr(χp). By
assumption, πp is the canonical component of πq = Ind (GLd , B; μ1 , . . . , μd) where
B is the Borel subgroup of GLm and μ j(x) = ∣x∣u j are unramified characters. Then
πq ⊗ χp = Ind (GLd , B; χμ1 , . . . , χμd). Thus, we have
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ε(s, πp ⊗ χp , ψp) =
d
∏
j=1

ε(s, μ j ⊗ χp , ψp)

=
d
∏

j
ε (s, μ j χp , ψp)

=
d
∏

j
ε (s + u j , χp , ψp) ,

where the abelian ε-factor (for χ primitive) is given by

ε (s, χ, ψq) = τ(χ)p−r(χp)s .

Since ε(s, πp , ψp) = 1 and the central character of π is trivial, which means that
∑m

j=1 u j = 0, we have

ε(s, πp ⊗ χp , ψp) =
d
∏

j
τ(χ)p−r(χp)(s+u j)

= τ (χ, ψp)
d p−dr(χp)s ε(s, πp , ψp).

(5.11)

Suppose that pr(πp) ∥ qπ , in which case χp is unramified given by χp(x) = ∣x∣vp .
With this given, we have

ε(s, πp ⊗ χp , ψp) = ε(s + vp , πp , ψp)
= ωπp pr(πp)( 1

2−s−vp)

= χ (pr(πp)) ε(s, πp , ψp),
(5.12)

Consider the archimedean place. It is known from [12] that ε(s, π∞ , ψ∞) and
ε(s, π∞ ⊗ χ∞ , ψ∞) are constants, hence equal to the corresponding values at s = 1/2.
Since χ∞(x) = sgn(x)∣x∣v∞ , the constant ε(s, πp ⊗ χp , ψp) depends only on π and the
parity of χ.

Finally, inserting (5.10), (5.11) and (5.12) into (5.9), we get

ε(s, π ⊗ χ) =
⎛
⎝∏p∣q

τ (χ, ψp)
d p−dr(χp)s ε(s, πp , ψp)

⎞
⎠
⎛
⎝ ∏p∣qπ

χ (pr(πp)) ε(s, πp , ψp)
⎞
⎠

×
ε∞( 1

2 , π∞ ⊗ χ∞ , ψ∞)
ε∞( 1

2 , π∞, ψ∞)
ε∞(s, π∞ , ψ∞)

=cπ ,sgn(χ)χ(qπ)τ(χ)m q−ds ε(s, π),

(5.13)

where cπ ,sgn(χ) ∶= ε∞(1/2, π∞ ⊗ χ∞ , ψ∞)/ε∞(1/2, π∞, ψ∞) is a constant depending
on π and the parity of χ only. Thus, the relation (5.13) of ε-factors gives
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ωπ⊗χ =
⎛
⎝∏p∣q

τ (χ, ψp)
d p−dr(χp)s ε(s, πp , ψp)

⎞
⎠
⎛
⎝ ∏p∣qπ

χ (pr(πp)) ε(s, πp , ψp)
⎞
⎠

×
ε∞( 1

2 , π∞ ⊗ χ∞ , ψ∞)
ε∞( 1

2 , π∞, ψ∞)
ε∞(s, π∞ , ψ∞)

=cπ ,sgn(χ)χ(qπ)τ(χ)d q−
d
2 ωπ ,

which implies ∣cπ ,sgn(χ)∣ = 1 in turn. On putting ηπ ,sgn(χ) = cπ ,sgn(χ)ωπ , we complete
the proof of this lemma. ∎

Similar to Lemma 5.1, we can also show the following lemma.

Lemma 5.2 Let π ∈ F(d) be a cuspidal automorphic representation of GL(d) of
conductor qπ with trivial central character, and χ(mod q) be a primitive Dirichlet
character with (q, qπ) = 1. Then we have

ωπ×π̃(χ) = ηπ×π̃ ,sgn(χ)χ(qπ×π̃)τ(χ)d2
q−

d2
2 ,

where ηπ×π̃ ,sgn(χ) depends on π and the parity of χ only, and ∣ηπ×π̃ ,sgn(χ)∣ = 1.

6 Applications of Theorems 2.1

6.1 Proof of Theorem 1.2

From the discussion in Section 5, we see that the Rankin–Selberg L-function
L(s, π × π̃) satisfies Conditions (A1)–(A3) with m = 1, and its twisted L-function
L(s, π ⊗ χ) satisfies Condition (A4), where the later follows from Lemma 5.2.

Next, we discuss the sizes of various types for the coefficients λπ×π̃(n). The
asymptotic formula (5.8) yields Hypothesis S with bπ×π̃ = 1. Since the central character
of π is trivial, one has

sd ,π(p) = α1,π(p)α2,π(p) ⋅ ⋅ ⋅ αd ,π(p) = 1

for all primes p with (p, qπ) = 1. Then it follows from (5.2) and (5.5) that

∣α j, j′ ,π×π′(p)∣ ≤ p2θd , s j,π×π̃(p) ≪ p2 min{ j,d2− j}θd

for any prime p with (p, qπ) = 1 and any 1 ≤ j ≤ d2, which implies Hypothesis H(θd2)
with θd2 = 2θd ≤ 1 − 2

d2+1 < 1 − 1
d2 . Therefore, we can apply Theorem 2.1 to the non-

negative coefficients λπ×π̃(n), and then obtain

∑
n≤x

n≡a (mod q)

λπ×π̃(n) =M0(x; q) + Oπ(τd2(q)q d2−1
2 log q) + Oπ(τd2(q)x

d2−1
d2+1 ),

where the main term is given by

M0(x; q) = 1
φ(q) Res

s=1
( 1

s
L(s, π × π̃(χ0))x s).
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Since

L(s, π × π̃(χ0)) = L(s, π × π̃)∏
p∣q

L(s, πp × π̃p)−1

and L(s, π × π̃) has a simple pole at s = 1, we have

M0(x; q) = 1
φ(q) Res

s=1
(L(s, π × π̃))∏

p∣q
L(1, πp × π̃p)−1x .

This completes the proof of Theorem 1.2.

6.2 Proof of Theorem 1.1

Similar to the argument in Section 6.1, we can apply Theorem 2.1 to the coefficients
λπ(n). By applying the Cauchy–Schwarz inequality, (5.7) and (5.8), we get

∑
x<n≤x+y

n≡a (mod q)

∣λπ(n)∣ ≪π (
x y
q
)

1/2
(6.1)

for any q ≤ y ≤ x, which yields Hypothesis S with bπ = 1. Since L(s, π) is entire, the
main term and the first error term do not exist when applying Theorem 2.1. Thus, we
obtain

∑
n≤x

n≡a (mod q)

λπ(n) ≪π τd(q)q
d−1

2 log q + τd(q)(
qx
y
)

d−1
2 + ∑

x<n≤x+O(y)
n≡a (mod q)

∣λπ(n)∣.(6.2)

Inserting the bound (6.1) and taking y = qx 1− 2
d , we get the first bound

∑
n≤x

n≡a (mod q)

λπ(n) ≪π τd(q)x 1− 1
d

for q ≤ x 1
d .

Moreover, it follows from Theorem 1.2 that

∑
x<n≤x+y

n≡a (mod q)

λπ×π̃(n) ≪π
cπ ,q

φ(q) y + O(τd2(q)q d2−1
2 log q) + O(τd2(q)x

d2−1
d2+1 )

for q ≤ x
2

d2+1 . By (5.3) and (5.4), the constant cπ ,q satisfies

cπ ,q ≪π ∏
p∣q
(1 + p−

2
d2+1+ε)d2

≪ τ(q).

Note that q/φ(q) ≪ log q. Further, we get from (5.7) that

∑
x<n≤x+y

n≡a (mod q)

∣λπ(n)∣ ≪ τd2(q) log x ( y
q
+
√

y
q
⋅ x

1
2−

1
d2+1 )

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


26 Y. Jiang and G. Lü

for q ≤ x
2

d2+1 . On taking y = qx 1− 2d
d2+1 , the estimate (6.2) gives the second bound

∑
n≤x

n≡a (mod q)

λπ(n) ≪ τd2(q)x 1− d+1
d2+1 log x

for q ≤ x
2

d2+1 .
Assume the Ramanujan conjecture holds for π, the Brun–Titchmarsh inequality

(see Shiu [20, Theorem 1]) yields

∑
x<n≤x+y

n≡a (mod q)

∣λπ(n)∣ ≤
y

φ(q) log x
exp ( ∑

p≤x
p∤q

∣λπ(p)∣
p
)(6.3)

provided that q ≤ y1−ε and x ε ≤ y ≤ x. By Mertens’ theorem and the prime number
theorem for Rankin–Selberg L-function L(s, π × π̃) (see [13, p. 630]), one has

∑
p≤x

∣λπ(p)∣
p

≪ (∑
p≤x

1
p
)

1
2 ( ∑

p≤x

λπ×π̃(p)
p

)
1
2 ≪ log log x .

Inserting this estimate into (6.3), we obtain

∑
x<n≤x+y

n≡a (mod q)

∣λπ(n)∣ ≪
y

φ(q)

provided that q ≤ y1−ε and x ε ≤ y ≤ x. Substitute this into (6.2) and taking y = qx 1− 2
d+1 ,

the last assertion follows.

6.3 Proof of Theorem 1.3

We begin with evaluating the summation about λsymd f (n) in a short interval.

Lemma 6.1 Let f ∈ H∗k(N) and λsymd f (n) be the coefficients of L(s, symd f ). For
(q, aN) = 1, we have

∑
x<n≤x+y

n≡a (mod q)

∣λsymd f (n)∣ ≪
y

φ(q)(log x)γd

provided that q ≤ y1−ε and x ε ≤ y ≤ x, where γd = 1 − 4(d+1)
d(d+2)π cot( π

2(d+1)) and
0.15 < γd < 0.19.

Proof Let

Ud(cos θ p) =
sin((d + 1)θ p)

sin θ p

be the d-th Chebyshev polynomial of the second type. One can easily check via (1.4)
that

λsymd f (p) = Ud(cos θ p), p ∤ N .
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By the Sato–Tate conjecture (1.5) and a straightforward calculation of Maple, we get

∑
p≤x
p∤q

∣λsymd f (p)∣ ≤ ∑
p≤x
p∤N

∣λsymd f (p)∣ + O(1)

∼(∫
π

0

∣ sin((d + 1)θ)∣
sin θ

dμST)
x

log x

∼ 4(d + 1)
d(d + 2)π cot( π

2(d + 1))
x

log x
.

Hence, we derive by partial summation and substituting this into (6.3) that

∑
x<n≤x+y

n≡a (mod q)

∣λsymd f (n)∣ ≪
y

φ(q)(log x)γd
,

where γd = 1 − 4(d+1)
d(d+2)π cot( π

2(d+1)). It is clear that γd is strictly increasing. Thus, for
any d ≥ 1, we have

0.15 < 1 − 8
3π
= γ1 ≤ γd ≤ lim

d→∞
γd = 1 − 8

π2 < 0.19. ∎

Finally, the proof of Theorem 1.3 is completed if we combine the first assertion of
Theorem 2.1 with Lemma 6.1, the choice y = qx d

d+2 and the fact q/φ(q) ≤ τ(q).

Acknowledgments The authors are grateful to the referee for careful comments and
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