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Abstract

Human monkeypox (mpox) virus is a viral zoonosis that belongs to the Orthopoxvirus genus of
the Poxviridae family, which presents with similar symptoms as those seen in human smallpox
patients. Mpox is an increasing concern globally, with over 80,000 cases in non-endemic
countries as of December 2022. In this review, we provide a brief history and ecology of mpox,
its basic virology, and the key differences in mpox viral fitness traits before and after 2022. We
summarize and critique current knowledge from epidemiological mathematical models, within-
host models, and between-host transmission models using the One Health approach, where we
distinguish between models that focus on immunity from vaccination, geography, climatic
variables, as well as animal models. We report various epidemiological parameters, such as the
reproduction number, R0, in a condensed format to facilitate comparison between studies. We
focus on how mathematical modelling studies have led to novel mechanistic insight into mpox
transmission and pathogenesis. As mpox is predicted to lead to further infection peaks in many
historically non-endemic countries, mathematical modelling studies of mpox can provide rapid
actionable insights into viral dynamics to guide public healthmeasures andmitigation strategies.

Introduction

Orthopoxviruses are a genus of viruses that include variola, vaccinia, cowpox, and monkeypox
(mpox) viruses. Smallpox, a highly pathogenic orthopoxvirus, is estimated to have claimed the
lives of over 300 million people worldwide but was successfully eradicated in 1977 through an
international vaccine campaign led by theWorldHealthOrganization (WHO).Mpox is endemic
to multiple African countries, including Benin, Cameroon, the Central African Republic, the
Democratic Republic of the Congo, Gabon, Ivory Coast, Liberia, Nigeria, the Republic of the
Congo, Sierra Leone, and South Sudan [1].

Historically, the transmission of mpox in non-endemic regions has been short-lived and
contained within a specific geographic area [2]. However, the increased prevalence of mpox in
humans since the 1980s has been linked to a decrease in vaccine immunity and an increase in
viral fitness traits, making it a significant emerging human threat [2]. In 2022, theWorldHealth
Organization (WHO) reported multiple international mpox outbreaks in 20 non-endemic
European countries, as well as the United States of America, Canada, Mexico, and much of
South America [3]. From May to June 2022, these outbreaks resulted in a total of 780 cases
[4]. As of 28 July 2022, the Centers for Disease Control and Prevention (CDC) reported 4907
confirmed cases in the United States, with the total cumulative cases in non-endemic countries
exceeding 20,800. By December of 2022, the total reported cumulative cases in non-endemic
countries surpassed 80,000 [4]. Figure 1 is a heatmap of global cumulative case counts for the
2022 epidemic as of 17 November 2022. We also include a heatmap of case counts normalized
by total country population, shown in Figure 2. In June of 2022, the emergence of mpox in non-
endemic countries led theWHO to declare the overall risk of further transmission as ‘moderate’
globally and ‘high’ in the European region. It was hypothesized that mpox mutated to find a
new niche in tightly connected sexual networks [5]. As such, mpox now presents a significant
public health threat to non-endemic regions, with some countries, such as the United King-
dom, responding by purchasing large amounts of smallpox vaccines for public distribution.
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Mathematical modelling has proven to be a valuable tool for
understanding epidemics and developing intervention strategies
[6, 7]. Modelling of in-host pathogen dynamics has been critical
in advancing our understanding of many pathogens, including
HIV, HCV, HBV, HSV, influenza, pneumococcus, and SARS-
CoV-2, and has also aided the development of vaccine therapies
[8–16]. This review provides an in-depth examination of the cur-
rent epidemiological understanding of mpox from a modelling
perspective, and investigates how modelling studies contribute to
mechanistic insight into viral fitness and transmission traits. In
Section 2, we briefly cover the history and origins of mpox, and in
Section 3, we provide an overview of the current basic knowledge of
biology and clinical presentation of human mpox. In Section 4, we
critique and review population-level modelling studies, differenti-
ating between studies focused on endemic and non-endemic
regions, those considering prior immunity from smallpox vaccines,
and animal models. We summarize both pre- and post-2022 mod-
elling parameters, including the reproduction number, force of
infection, incubation, and recovery rates, in Table 1.

History and ecology of Mpox

A pox-like disease was first reported in 1959 in cynomolgus mon-
keys and was thus named ‘monkeypox’ [17]. The disease was found
to have similar structural features as orthopoxviruses: rectangular

with diameter 200–250 μm [17]. It was also observed to present
similarly to variola-vaccinia viruses and exhibited a similar sero-
logical relationship [17]. Further studies revealed that mpox led to
the formation of intracytoplasmic eosinophilic inclusions (small
whitish lesions) and could pass serially in rabbit skin [18]. Through-
out the 1960s and 1970s, WHO continued to monitor both mpox
and smallpox in non-human primates to determine if an animal
reservoir existed. In the 1960s, four mpox outbreaks were recorded
in animals with no recorded infections in humans [18–20]. In 1966,
an mpox outbreak occurred in a zoo and was believed to have been
caused by two imported anteaters. The 1966 zoo outbreak had a
particularly high mortality rate. Despite containment procedures,
mpox spread to nearby enclosures, resulting in 23 animal infections
and a total of 11 deaths, including 6 out of 10 infected orangutans
[20].

Transmission between humans

The first human mpox case was reported in 1970 in a 9-month-old
baby in the Democratic Republic of Congo [21]. A study of
155 mpox cases in west and central Africa from 1970–1983 esti-
mated only 20% of cases to spread from human-to-human contact,
where human mpox cases were primarily suspected to occur from
contact with monkeys and squirrels [22]. The human-to-human
transmission was noted to ‘stop spontaneously’, with attack rates
suspected to be 15% amongst smallpox-unvaccinated households

Figure 1. Cumulativempox cases for the 2022 epidemic from 1 January 2022, through 17 November 2022. Heatmap constructed from publicly available WHOdata (ref. [3], accessed
17 November 2022).
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and 0.4% amongst vaccinated [22]. These were noted to be com-
parably less than smallpox attack rates amongst the unvaccinated
which ranged from33% to 88% [23–25]. A study conducted in Zaire
between 1980 and 1984 of 214 patients with human mpox found
attack rates for household contacts of 7.2% amongst unvaccinated
and 0.9% amongst vaccinated [26]. In this study, 13% of cases were
found amongst vaccinated individuals leading to the hypothesis
that the immunity gained from smallpox vaccination was waning
[26], and further raised a concern that the virus may later become
endemic [22].

The low attack rates of mpox, and the unchanging secondary
attack rates throughout the 1970s through early 1980s amongst the
unvaccinated, supported the decision from the Global Commission
to cease the smallpox vaccination programme in Central African
countries where mpox was now considered endemic [27]. Multiple
self-containedmpox outbreaks were documented through the early
2000s. Of note, a major outbreak in Nigeria began in September of
2017 and ultimately led to 228 suspected cases [28]. Human mpox
infections in the 2017 Nigeria outbreak were predominantly male,
and the outbreak was ultimately contained [28]. The 2003 mpox
outbreak in the USA appeared to be particularly severe in children,
where a fifth of paediatric patients developed serious complications
resulting in intensive medical intervention, with half of paediatric
patients admitted to the ICU [29]. For a detailed review of all
pre-2018 human mpox outbreaks, we refer to ref. [2]. The 2022
international emergence of human–human transmission of mpox

in multiple non-endemic countries constitutes a significant shift in
viral prevalence.

Pathogenesis, clinical presentation, and longitudinal within-
host dynamics of mpox

The incubation period of humanmpox can range from 5 to 21 days
[30], with a typical incubation period of 7–17 days, followed by a
prodromal period of 1–4 days [31]. Clinical characteristics of mpox
are similar to those of smallpox: enlarged lymph nodes and a rash
period that lasts 14–28 days. Distinct from smallpox, mpox often
presents with cervical or inguinal lymphadenopathy, suggesting
that the immune response to mpox differs from that of smallpox
[31]. A detailed list of clinical characteristics, including changes in
mpox epidemiology as a function of time, is described in the article
by Wilson et al. [31].

A study on non-human primates longitudinally tracked viral
shedding and cytokines from both intrabronchial exposure (i.b.)
and intravenous inoculation (i.v.) of mpox [32]. Through tracking
mpox viral features over a 36-day window, they found that the time
tomean day of lesion exposure increases as a function of decreasing
mpox dosage. They further found peak viral load to vary signifi-
cantly between nasal and oral swabs. Recent clinical human studies
in France and Spain have longitudinally tracked cohorts of people
over 14 and 57 days [33, 34]. These studies comparempox viral load

Figure 2. Cumulative mpox cases for the 2022 epidemic from 1 January 2022 through 17 November 2022, normalized by country total population. Heatmap constructed from
publicly available WHO data (ref. [3], accessed 17 November 2022). Country population data accessed from WolframAlpha Knowledgebase on 29 November 2022.
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betweenHIV+ andHIV- individuals and findmpox cycle threshold
(Ct) values to decrease significantly for both categories of individ-
uals [33, 34], and further conclude transmission of mpox to pri-
marily occur through direct body contact rather than through a
respiratory route or bodily fluids [33].

Serological features that inform us about immune responses can
also be used by within-host modelling studies to reveal mechanistic
insight into viral traits as well as vaccine dynamics. Interferon-
gamma (IFNg) is a cytokine known to play a pivotal role in host
defence against pathogens [35, 36], and is often used to model
within-host inflammatory responses and infer cellular-mediated
immunity [15, 16]. Immunity from smallpox vaccination has been
shown to elicit IFNg, cytotoxic T cell, and neutralizing protein
responses in humans that can last over 20 years [37]. The inflam-
matory cytokine IFNg has been shown to play an important role in
protection against mpox in mice, whereby inactivation of the IFNg
receptor led to increased sensitivity to mpox [38]. Earl et al. [38]
also report viral titres as a function of time in various major organs,

where lungs were found to contain the highest PFU/g for all time
points. They also track six cytokines, including IFNg and IL6, as a
function of time after injection and find a strong IFNg response in
BALB/c mice but not in other types of mice [38]. Interestingly,
orthopoxvirus have been shown to suppress recognition of viruses
by innate cells through suppressing IFN production [39]. Further,
mpox has been found to suppress T-cell activation by triggering a
state of T-cell non-responsiveness [40]; thus, a within-host model
of mpox should take into account CD4 and CD8 suppression
dynamics. These longitudinal data serve as a useful starting point
for a within-host modelling study of mpox and can be utilized to
guide model predictive power and determine practical identifiabil-
ity in estimated parameters. Lum et al. [30] provide an in-depth
review of the clinical immune features of mpox.

Mpox cross-protective immunity from the smallpox vaccine is
known to occur [30]. For example, prairie dogs vaccinated with the
smallpox vaccine and then challenged with mpox were found to
mount a significant humoral response. Further, vaccinated humans

Table 1. Table of values listing epidemiological parameters for mpox viral dynamics from the literature

Parameter Definition Units Values (range) [ref.]

Epidemiological mpox parameters in humans

R0 Basic reproduction number N/A 2.13(1.46–2.67) [56], 2.53 (average value)a [69], 2.66
(international estimate)a [50],

(1.5–4.3) (Canadian estimate)a [50], 1.5 (high-risk pop.)a [61],
0.01(low-risk pop.)a [61], 2.42–2.88(Spain)a [96], 2.32(UK)a [96],
1.3(international)a [59]

Rvac Disease-free and vaccinated population
reproduction number

N/A 0.32(0.22–0.4) [97]

β Infection rate Days�1 1.68x10�4 (Canadian estimate) [50]a, 9.78x10�7(International
estimate) [50]a

Ps Transmission probability per sexual contact N/A 0.24 [61]a

I Incubation period Days 5–21 [55, 56], 8.5(6.6–10.9) [67]a,
10–14 [98]

P Prodromal Period Days 1–4 [31], 2 [98]

σ Timespan from the appearance of lesions to desquamation Days 14–28 [31], 22–24 [99]

dh Human death rate Days�1 3.12 [55]

Dfrac Human infection mortality percentage % 1–10 [1], 10–17, (from 1970–1989) [98],
1.5 (1997) [98], <0.0005 [100]a

βhh human-human transmission rate Days�1 32.85 [55]

ρh Human recovery rate Days�1 28.08 [55]

Vr Optimal vaccination rate vaccine/yr 0.04 [55]

Veff Cross-vaccine efficacy from smallpox vaccine % (80–95) [101]

Vloss Vaccine efficacy loss %/yr 1.29 [42]

Γ2 Secondary attack rate: ratio of infected household members to
total household members

% 15 (unvaccinated) [22], 0.4 (vaccinated) [22]

Γ1 Primary attack rate: proportion of exposed susceptible population
that become ill

% 7.2(unvaccinated) [26], 0.9(vaccinated) [26]

Animal transmission mpox infection parameters

ds Squirrel mpox-related death rate Days�1 17.5 [102]

ρs Squirrel recovery rate Days�1 12 [102]

βss Squirrel–squirrel transmission rate Days�1 40 [55]

βsh Squirrel–human transmission rate Days�1 0.05 [55]

aThese values are 2022 epidemic specific; all other values are determined from pre-2022 mpox outbreaks.
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were found to mount strong cellular and humoral responses as
shown in longitudinal data over a 32-day study period [41]. How-
ever, longer-term studies find efficacy wanes at an approximate rate
of 1.29%/yr [42]. We refer to Lum et al. [30] for an in-depth review
of mpox clinical immune features.

In the next sections, we review epidemiological modelling
efforts of population spread of mpox, distinguishing between
human–human, animal–animal, animal–human, and human–
animal scenarios. We further cover modelling studies incorpor-
ating climate variables, therapeutic strategies (from smallpox
vaccine waning and future vaccination outcomes), contact tra-
cing, and isolation measures. Machine learning is emerging as a
technology with demonstrated capability for early detection of
mpox [43]. However, we do not provide a detailed review of the
application of machine learning to mpox; such work can be found
in refs. [44, 45].

Population-level epidemiological models

SIR/SEIR with no immunity

Compartmental modelling techniques have been used extensively to
describe the population spread of infectious diseases. Among infec-
tious disease models, the most fundamental and classic model is the
Susceptible-Infected-Recovered (SIR) compartmental model devel-
oped by Kermack and McKendrick [46]. In the SIR model, the total
population is divided into three subgroups based on the disease status:
susceptible (S), infected (I), and recovered (R). S represents the
susceptible population that has not yet but may be infected by
the disease, I represents the infected population that can transmit
the disease, and R represents the population recovered from the
infected disease. Two parameters are used in the classic SIR model:
the effective contact rate (β) and the recovery rate (γ). β affects the
transition from S! I, and γ affects the transition from I! R, and the
total population,N, is conserved through timeN(t) = S(t) + I(t) +R(t).
An example schematic of the SIR model is shown in Figure 4a.

The epidemiological model framework for mpox has been
established over the past few decades, and many models capturing
human–human, and animal–human interactions have been
explored [47]. Jezek et al. [48] constructed a stochastic model using
theMonte Carlomethod to simulate the chain of human-to-human
transmission ofmpox. Themodel has been validated and applied to
understand the transmission potential of mpox in unvaccinated
populations [48]. Bhunu and Mushayabasa [49] presented a basic
SIR compartmental model to examine the transmission dynamics
of mpox between humans and non-humans, and Betti et al. [50]
present a SIR model with additional pair-formation dynamics to
account for transmission via prolonged close contact between
individuals.

We summarize parameters determined by mpox epidemio-
logical modelling studies in Table 1. For the non-human popula-
tion, mpox parameters are found to be: 2 yr�1 for the rate of
recruitment for susceptibles, a natural death rate of 1.5 yr�1, the
death rate due tompox is given as 0.4 yr�1, and the rate of immunity
is given as 0.6 yr�1 [51]. Pre-2022, for the human population, mpox
parameters were found to be: 0.029 yr�1 for recruitment rate of
susceptibles, a natural death rate of 0.02 yr�1, the death rate due to
mpox of 0.1–0.17 yr�1, and permanent immunity rate of 0.83–
0.9 yr�1 [51]. The animal-only endemic equilibrium is globally
asymptotically stable when R0n > 1 and R0h < 1. The endemic
equilibrium, where mpox infections exist in both the human and

non-human populations, was shown to be locally asymptotically
stable when R0h > 1, but close to 1 [51].

Models with vaccination

The SIR model often oversimplifies complex disease transmission
dynamics. For example, the SIR model does not consider the
incubation duration, defined as the span of time between when
an individual is exposed to a disease and when that individual
becomes infected. We refer to Tolles and Luong [52] who highlight
limitations of the traditional SIR model, including that it results in
often over-simplified assumptions about the population dynamics.
Thus, most epidemiological work involves SIR-inspired models
with more mathematical complexity to account for complex popu-
lation dynamics. The Susceptible-Exposed-Infected-Recovered
(SEIR) model has been widely used to study infectious disease
dynamics. In the SEIR model, an exposed compartment (E) is
added to the fundamental SIR model, representing individuals
who are exposed but have not yet been contagious, such that they
experience an incubation period. Mitigation strategies such as
vaccination can also be considered. For example, Usman et al.
[53] developed an SVEIR model (including a vaccinated compo-
nent) that accounts for a varied incubation period and individual
vaccination status. They found that adequate vaccination and
treatment policies could dramatically reduce the spread of mpox
among humans. Based onmpox parameters prior to year 2017, they
conclude that an increase in vaccination control parameters leads to
a decrease in the basic reproduction number. Emeka et al. [54] also
incorporate a vaccine compartment in a population of mpox-
susceptible individuals and generally find that mpox outbreaks do
not occur in populations of vaccinated individuals.

Building on the work of Usman and Adamu [53], Bankuru et al.
[55] introduced a simplified SIR model of the mpox dynamics,
providing closed-form formulas for equilibrium states of this dis-
ease dynamics, allowing for direct calculations of the semi-endemic
equilibrium (Figure 3). They showed there exists a semi-endemic
equilibrium in which there is no infection in the squirrel popula-
tion, while the disease still persists in the human population. They
found that the optimal vaccination rate amongst humans is about
0.04 vaccine/year, meaning that individuals should be advised to
vaccinate approximately once every 25 years. They also found the
optimal vaccination rate is about 10 times more sensitive to param-
eters related to animal hosts than to a corresponding parameter
related to humans, thus concluding that more precise information
about reservoir hosts is needed [55].

As countries such as the UK are purchasing large quantities of
vaccines for public dissemination, given that vaccine efficacy has
been found to drop at a rate of 1.29% per year [42], mathematical
modelling studies such as that done by Bankuru et al. [55] can be
used to inform vaccination rates, as well as which proportion of the
population needs to be vaccinated to achieve herd immunity.
Another important factor explored by Bankuru et al. [55] is the
cost of vaccination.Where cost is defined in a game-theoretic sense,
the cost of not vaccinating is given by the product of the cost of
infection with the probability of becoming infected. In Figure 3, we
include plots of cost as a function of vaccination rate when the
human–human transmission rate is high, where Bankuru et al. [55]
find that the overall cost of vaccinating is much lower compared to
not-vaccinating for most epidemic scenarios.

A combination of historical data and epidemiological modelling
was used to estimate the basic reproduction number, R0, of mpox in
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the Democratic Republic of the Congo during 1966–1984 to be
between 1.46 and 2.17 [56].MpoxR0 was thus significantly less than
smallpox which had an estimated range of R0 of 3.2–6.9 [57,
58]. Due to the lasting immunity from the smallpox vaccine, mpox
was deemed not self-sustainable in human populations in the DRC
from 1980–1984 [56]. However, by the year 2011 estimates show
that the immunity from smallpox vaccination against mpox had
fallen to 60% in non-endemic countries [56]. Hence, mpox has long

been hypothesized to have increasing potential to emerge as an
epidemic in humans in historically non-endemic countries.

Epidemiological modelling studies on the 2022 global outbreak

Population-level human-to-human models of mpox throughout
the 2022 epidemic have been largely based on SIR and SEIR
frameworks. These modelling studies consider public health

Figure 3. Costs versus vaccination rate with a high rate of the effective human-to-human transmission (βhh = 60). (a) Fully endemic equilibrium and (b) Semi-endemic equilibrium.
Reprinted by permission from PeerJ from ref. [55]. Copyright 2020.

Figure 4. (a) Schematic of basic SIR model with standard incidence, similar as used to model mpox dynamics for the 2022 pandemic [50, 59]. (b) Global reported mpox cases as a
function of weeks for the year 2022. Data accessed from publicly available WHO data (ref. [3], accessed 17 November2022).
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mitigation strategies (e.g., quarantine and vaccines), contact tra-
cing, and sexual mixing models. For reference, the current scenario
of global cumulative mpox cases by country is shown in Figure 1,
and with cases normalized by country population shown in
Figure 2. We further include the current global trend as a function
of time for 2022, as shown in Figure 4b.We next go through current
modelling literature on the 2022 epidemic, and how modelling is
bringing further mechanistic insight into mpox dynamics.

The increase in cases from the 2022 mpox global outbreak has
been shown to be strongly associated with close intimate sexual
contact [33]. For the 2022 epidemic, mpox spread has been pre-
dominantly transmitted betweenmen who have sex with men, with
one study of 528 diagnosed infections finding 98% of infected
persons to be gay or bisexual males [60]. Data-driven individual-
level and population-level modelling studies can be used to outline
the importance of public health policies and various mitigation
strategies. For example, the model presented by Betti et al. [50]
presents a novel framework that includes pair formation (account-
ing for prolonged close contact between individuals) to describe
mpox transmission. They show their pair-formation model cap-
tures population trends in data with an estimatedR0 of 2.3, and they
further predict the occurrence of future waves of infection.
Similarly, Bragazzi et al. [61] develop a SEIQR model that includes
the sexual behaviour of high-risk individuals and find that R0
amongst the high-risk population to be �1.5, whereas amongst
the low-risk population to be as low as 0.007 [61]. Modelling has
also been used to disentangle themany factors leading the decline of
mpox in the 2022 outbreak. For example, through examining
changes in sexual behavioural activity versus vaccination cam-
paigns, studies have found the initial downturn in cases during
the 2022 epidemic was largely due to changes in sexual behaviour
[62, 63].

Network models have also demonstrated utility towards under-
standing mpox transmission dynamics. Bisanzio et al. [64] utilize a
recently developed individual-based modelling framework [65]
whereby they simulate the spread of mpox in a network of 50 mil-
lion susceptible individuals distributed across N cells to represent a
population density characteristic of a typical European country of
land mass similar to France or Spain. With spread amongst the
population driven by an SEIR model, they predict mpox outbreaks
lasting 23–37 weeks where mitigation strategies such as contact
tracing with isolation followed by vaccination could reduce the
median duration of a mpox outbreak by as much as 75%. Another
networkmodel byVanDijck et al. [66] explores the ramifications of
undiagnosed mpox cases and predict that if 10% of mpox contacts
abstain from sexual activity, this could result in a 35% reduction in
cases. Another contact tracing study on the transmission dynamics
in theUKpredicted the epidemic peak to occur in early July of 2022,
and further found that a significant number of cases were caused by
pre-symptomatic transmission and determined a mean incubation
period of 8.5 days [67].

Compartmental and game-theoretic modelling, as well as mod-
elling infection curves with comparably simple logistic functions,
has also proven to be beneficial towards revealing mpox population
dynamics and the consequences of various mitigation strategies.
Mingione et al. [68] apply the generalized logistic curve to country-
wide data from the top 10 non-endemic countries experiencing
mpox outbreaks and find agreement with the literature that con-
tainment of the outbreak is feasible over the short term if mitigation
strategies are employed. Building on previous work similar to ref.
[55], Augsburger et al. [69] employ an SVEIR-based model to the
2022 global pandemic and further explore vaccination in a game-

theoretic frameworkwhere individuals consider cost and benefits to
vaccination. They find without vaccination mpox prevalence is
predicted to be approximately 3.5 cases per 104 individuals, while
with optimal voluntary vaccination, prevalence is predicted to be
approximately 0.5 cases per 104 individuals. Thus, vaccination is
predicted to be a strong mitigative factor in reducing mpox preva-
lence and minimizing the chances of mpox becoming endemic is
historically non-endemic countries. Savinkina et al. [70] employ an
SEIR-based model, utilizing previously published assumptions on
low-risk and high-risk population-level reproduction numbers, and
simulate the spread of mpox on college campuses. In their hypo-
thetical analysis, they find the absence of mitigation leads to an 83%
chance of sustained transmission.

The populationmodelling studies of the 2022 global outbreak all
agree, based on current data on mpox trends, that the outbreaks
occurring in non-endemic countries are generally under control
and on a declining trend. This is of course supported by the current
global trend in cases; a histogram of global case counts up to
29 November 2022 is shown in Figure 4b. A summary of 2022
mpox mathematical modelling population parameters is provided
in Table 1.

Epidemiological modelling studies are important for policy
decision-makers when deciding which mitigation strategy or con-
trol measures (such as isolation and lockdown measures) to
employ. Predictive modelling for futurempox peaks will be import-
ant in aiding policy decision-makers. For example, modelling tech-
niques on mpox have been developed to estimate the true number
of unreported cases, and further, have shown promise to accurately
predict infection cycles [71].

Modelling studies clearly highlight the important of mitigation
strategies. For example, vaccination campaigns should be organized
to reduce population infectivity and further reduce the probability
of allowing a more virulent and transmissive mpox strain to
emerge. Yuan et al. [72] consider an SEIR model whereby the
population is divided into high and low risk and focus their study
on mass gathering scenarios. They find that a broad vaccination
campaign is less effective in curbing the spread of mpox than
compared to contact tracing, isolation, and vaccination of close
contacts. They further posit that the ring vaccination strategy may
be inadequate in preventing an outbreak from occurring; however,
it does still result in fewer case counts [72]. They follow up their
work with a study to consider the mpox threat to the low-risk
population if viral transmissibility increases [73]. They conclude
that isolation, contact tracing, and quarantine are key mitigation
strategies to prevent infection in the event of increased viral trans-
mission into low-risk populations [73]. Predictive modelling for
future mpox peaks can be an important factor in aiding policy
decision-makers. For example, based on Canadian mpox trends,
there are predicted to be further peaks occurring on an approxi-
mately annual basis [50].

As noted, the 2022-mpox strain is predominantly spreading
through close intimate contacts [33]. However, orthopoxviruses,
such as smallpox, are known to transmit via a respiratory route
[74]. Currently, a respiratory transmission mode is not found to
play a major role in the 2022 outbreak [33, 34]. Thus, modelling
studies, such as bottleneck studies [75], that aim to predict muta-
tion lineages and probabilities of mutant transmission, can play an
important role in predicting the potential severity of future mpox
mutants. The concern that mpox could mutate to find a respiratory
transmission route is warranted. The cost and benefit of mitigation
strategies, including the details of how they can be disseminated to
the public, can be readily explored throughmodelling studies to aid
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public health campaigns should the virus emerge with a more
infectious mutant.

Immunity decline hypothesis

The recent 2022 emergence and outbreaks of mpox are still under
investigation. One hypothesis for the increase in cases relates to the
decline in population cross-immunity provided by the smallpox
vaccine [76, 77]. In 1980, the WHO declared the eradication of
smallpox. Soon afterwards, routine smallpox immunization ended
worldwide [78]. Smallpox vaccine has proven to induce humoral
and cell-mediated responses against orthopoxviruses [79, 80], cre-
ating a heterotypic immunity composed of a wide array of antigen
receptors [81] and estimated to have an efficacy of 85% in prevent-
ingmpox infection in humans [56]. Thus, it has been suggested that
younger generations not vaccinated against smallpox are vulner-
able to mpox infection. This section will discuss the current evi-
dence from mathematical models testing the declining immunity
from vaccination in increasing susceptibility to mpox. Data from
the Democratic Republic of the Congo (DRC) revealed that indi-
viduals born before the official vaccination cessation had a 5.21-fold
lower risk of mpox infection than unvaccinated persons [76,
82]. Nguyen et al. [83] modelled the declining immunity in Nigeria,
accounting for individual-level declining immunity at a rate of
1.29% per year, as well as country-wide declining immunity using
weighted regional estimates of smallpox vaccination coverage. They
found the increase in unvaccinated and immunologically naive
population (90.7% of the total population in Nigeria in 2018),
and together with the decline from 85% to 23.1% in efficacy from
cross-immunity protection provided by smallpox vaccination, and
that the overall population immunity was estimated to be only 2.2%
as of 2018 [42]. Shown in Figure 5a, we include an example of their
findings.

The declining immunity from vaccination to smallpox repre-
sents an epidemiological threat by increasing the mpox reproduc-
tion number. The basic reproduction number, R0, of any infectious
disease is dynamic and depends on many variables, including
characteristics of the pathogen characteristics and the host. Grant
et al. [56] modelled this relationship with data from the DRC. They
determine an mpox reproduction number, R. R is given by

R = R0(1 � ϵp), where ϵ represents the vaccine efficacy, and p the
vaccination coverage. Given a current immunity estimate, they
determine R could be higher than 2.5 [56]. We include a plot of
their results for R as a function immunity in Figure 5b.

The increase in attack rate over time may be evidence for the
immunity decline hypothesis as well. Mpox household attack rates
amongst the unvaccinated and vaccinated were reported as 15%
and 0.4%, respectively, in 1985 [22]. The 2013 outbreak in the DRC,
which represented a 600-fold increase in annual infections, was
found to have a household attack rate of 50%, where many people
who contracted mpox were previous smallpox vaccine recipients
[84].

The loss of immunity hypothesis is not mutually exclusive from
other re-emergence theories, such as the increased exposure to
wildlife, reservoir expansion, globalization, and mutations to mpox
fitness traits. These factors represent critical barriers to consider for
mpox spillover opportunity [85]. An increase in thempox immune-
naive population and the risk of exposure create a niche for con-
tinued mpox animal-to-human and human-to-human transmis-
sion, longer chains of infection, and thus an opportunity for
mutation in mpox viral transmission traits. Pre-2022, human-to-
human transmission chains have been relatively short-lived, and
stochastic models performed in the 1980s based on historical data
found mpox to have a low probability to be established in human
populations [48]. However, more recent models have shown that
sustained human-to-human transmissions could favour pathogen
evolution, creating a potential existence of semi-endemic or fully
endemic equilibrium [56, 86].

A clustered epidemiological differential model developed by Ali
et al. [87] considered human behavioural dynamics such as vac-
cination and drug hesitancy, cooperation, and mobility rate and
showed how opination dynamics have a tremendous impact on
fatality rates. Furthermore, models on voluntary vaccination have
shown the potential control of mpox outbreaks in a semi-endemic
equilibrium but not in a fully endemic one [55]. In an endemic
equilibrium scenario, deterministic compartmental models showed
that isolation of infected individuals, in combination with adequate
treatment and vaccination, plays an essential role in the control and
eradication of mpox [53, 88]. Modelling efforts show vaccination
remains a high-potential primary mpox mitigation strategy and

Figure 5. (a) Visualization of the relationship between smallpox vaccination and cross-immunity conferred to mpox virus rates at a population (blue) and individual level (red) in
Nigeria from 1970 to 2018. Reprinted by permission fromCenters for Disease Control and Prevention from ref. [42]. Copyright 2021. (b) Predicted change of the reproduction number
R for MPX as a function of immunity in a population to orthopoxvirus species (provided by smallpox vaccine). Blue circles show a scenario where the vaccination percentage is high,
most of the population presents high-level cross-immunity against orthopoxvirus species, and the mpox R value is low. Yellow circles show the scenario where vaccination and
cross-immunity rates are low, and mpox R-value increases to >2.5. Reprinted by permission from the World Health Organization from ref. [56]. Copyright 2020.
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should continue to be prioritized in endemic regions [76]. However,
to achieve effective mpox management, a combination of counter-
measures needs to be considered. Novelmpox-specific vaccines [89,
90], treatments [91–93], and prophylaxis public health measures
[87, 94, 95] are all under development to mitigate mpox spread.

Effect of reservoirs and wildlife control measures

A report by the WHO in 1968 concluded that mpox transmission
between monkeys is ‘infrequent’ and that most likely another
animal reservoir existed [18]. A definitive mpox virus reservoir
host is still unknown and under study. Currently, giant-pouched
rats, rope squirrels, and African dormice are posited as the most
likely candidates [55, 103]. Throughout the 1980s, the animal–
animal spread was found with particular prevalence in squirrels
of the Funisciurus anerythrus species, where it was shown they
sustain mpox viral transmission in areas near human settlements
[104]. Squirrel mpox-related death rates and recovery rates were
later found to be approximately 17.5 and 12 days, respectively [102]
(see Table 1).

During the 2022 global mpox outbreak, it was discovered that
human-to-dog transmission is possible, thus raising concerns
about further dog-to-dog and dog-to-human transmission
[105]. Culling, the reduction in wild animal populations through
selective slaughter, has been employed as a method for wildlife
reservoir management and to mitigate the potential of further
animal-to-human transmission [106]. For example, culling has
been employed recently during the SARS-CoV-2 pandemic to
mitigate further animal-to-animal transmission amongst farmed
minks [107]. Culling to prevent further mpox spread has been
explored through transmission modelling approaches, where it
has been found to be ineffective and can lead to the counter-
productive outcome of increasing mpox infection. This is because
culling results in the sudden removal of mature animals with
immunity replaced with juvenile, more susceptible animals, thus
increasing the probability of outbreaks [108].

Climatic variables influencing mpox transmission: a One Health
approach

The One Health approach aims to recognize the strong linkage
between the health of humans, animals, plants, and the environ-
ment, to develop integrated and sustainable solutions [109]. Given
the interconnected coexistence between humans, animals, and the
environment, mpox emergence in the context of climate change
represents a One Health challenge [110, 111]. From a One Health
perspective, we present current evidence on mathematical model-
ling connecting climate change impacts on the environment, ani-
mals, and humans, to mpox dynamics.

Climate change has altered human–environment systems
[112]. The emergence and re-emergence of many infectious dis-
eases are projected to increase due to the negative impact of climate
change [113, 114]. Interactions between the three factors embodied
in the epidemiological triangle: the virus (agent), the human (host),
and the reservoir (environment) [115], have been found to con-
tribute to mpox emergence and expansion. In addition to the
decrease in herd immunity caused by the cessation of smallpox
vaccination (discussed in detail in Sections 4.2 and 4.4), climatic
variables and human behaviour have created an ideal niche for
mpox transmission [116, 117]. In this section, we discuss the
currentmodel-based evidence formpox transmission, emphasizing
the influence of climate factors.

The impact on human health from climate change is an emer-
ging topic. There is a consensus on increased adverse climate-
related health outcomes such as food insecurity, heath-related
mortality and morbidity, mental health damage, or injuries
[112]. Impacts on health can include the impairment of the
immune system due to direct or indirect effects of climate change.

There has been significant scientific interest in mpox spread
within endemicAfrican countries with particular attention tompox
biogeographic barriers [121]. Environmental conditions can define
the spread and durability of pathogens outside their hosts. Survival
models have shown that orthopoxviruses are high-virulence high-
survival pathogens, which implies high durability outside their host
[122]. Seasonal patterns of mpox outbreaks have been observed
during the fall season and linked to deforestation and flooding
[123]. Historical evidence suggests that dense and humid lowland
tropical forests ecotones are the most favourable ecosystem for
zoonotic transmission of mpox [120, 124].

Prior to the 2022 outbreak,mathematicalmodels concluded that
continued mpox human–human population spread required con-
tinued zoonotic reservoir exposure to maintain chains of transmis-
sion [27]. Therefore, much attention has been paid to mpox
reservoirs; however, there is no clear consensus on the natural or
definitive reservoir as of the time of writing [116, 125]. It is known
that environmental conditions can affect the transmission of mpox
between animals [126]. Having an unknown primary reservoir for
mpox limits a model’s accuracy in the prediction of the impact of
climate variables on the animal–animal and animal–human
dynamics [127]. Multivariate analyses of historical data have dem-
onstrated that mpox can co-occur on several species in an unantici-
pated manner [120, 128]. Additionally, ecological niche modelling
techniques have been used to model the climate and spatial distri-
bution of mpox [118, 128, 129], where these modelling studies
emphasized the critical role of ecosystem variation on reservoir
distribution (shown in Figure 6).

Understanding mpox spatial ecology is essential to predict
future outbreaks under climate change conditions. Spatial and
probabilistic models have been used to study mpox occurrence,
particularly in Africa (see, e.g., Figure 6b,c). Including climatic
variables has been demonstrated to be critical in the spatial
analysis of mpox at a local scale and regional scale [119, 130]. Cli-
matic variables such as temperature and precipitation seasonality
are reservoir species predictors, meaning that a small change in
those variables could also change the reservoir dynamics and thus
animal–human transmission probability [118, 119]. Furthermore,
climatic and ecosystem variables can increase habitat suitability
for potential mpox reservoirs and, by extension, more frequent
wildlife–human contact [124, 128]. Other extremeweather events,
such as droughts [131], can force carrying mpox species to move
closer to human settlements [119]. Future research predicting
shifts in reservoir species should also focus on how this dynamic
is affected by environmental changes. We propose that models
should include the viral dynamic considerations of interrupting or
increasing wildlife–human interaction frequency under climate
change scenarios.

Wastewater-based epidemiology to monitor mpox levels

Wastewater-based epidemiology (WBE) is a population-level bio-
marker surveillance method to analyse wastewater for either chem-
icals or pathogens [132, 133]. WBE has been shown to be able to
estimate mpox population trends through time; however, key gaps
in our understanding of the application ofWBE tompox have been
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highlighted, namely, the current lack of a 100% inclusive WBE
methodology and limits cross-reactivity with non-targeted species
[134]. Towards applying WBE to mpox, Chen and Bibby [135]
developed a Monte Carlo approach to estimate the probability of
detecting mpox DNA in wastewater. They determine that United
Stateswastewater treatment plantsmay be able to detect 7 infections
out of 100,000 people based on previously reported daily shedding
rates.

Towards a within-host model for mpox

The goal of within-host modelling is to represent the complex
physiological processes of a disease, or therapeutic, within the body
with mathematical models [7]. Within-host mathematical models
are developed under biological principles and then fit longitudinal
serological data to estimate various aspects of physiological dynam-
ical outcomes. Modelling of in-host pathogen dynamics has proven
critical towards furthering our understanding of HIV, HCV, HBV,
HSV, influenza, and SARS-CoV-2 as well as aiding the develop-
ment of vaccine therapies [8–12,14–16,136–139]. Following the
development and fitting of a model to serological data, structural

and practical identifiability methods are then employed to assess
model reproducibility and reliability [140]. Within-host models
have been used extensively to estimate properties of disease dynam-
ics, thus contributing to our understanding of the disease progres-
sion at the within-host scale [12,75,137,141–146].

At the time of writing, there is a noticeable lack of within-host
mechanistic modelling studies of mpox, with few within-host stud-
ies for any orthopoxvirus. The work of Ogunjimi et al. [147], who
model the CD4 trajectories of human chickenpox, to the best of our
knowledge, is the only published orthopoxvirus within-host mod-
elling work. The mpox longitudinal clinical studies outlined in
Section 3 provides an overview of current knowledge of mpox
serological parameters required to fit to a typical within-host model
and should serve as a strong starting point for such a study.

Future directions and concluding thoughts

Mathematical modelling provides a cost-effective and non-invasive
methodology for gaining actionable insights into viral dynamics
and therapeutic responses at the population and within-host
levels. At the within-host level, mathematical modelling utilizes

Figure 6. (a) Two-dimensional representation (annual mean temperature and annual mean precipitation) of ecological niche models developed for two mpox reservoir species
cricetomys gambianus (white diamonds) and cricetomys emini (grey diamonds) across tropical sub-Saharan Africa. Reprinted by permission from Oxford University Press from ref.
[118]. Copyright 2006. (b) Observed and predicted humanmpox occurrence under present and future climate conditions with reservoir species as predictor variables in Central and
Western Africa. The average projected change in occurrence probability for eight climate change scenarios for 2050 (middle) and 2080 (bottom). Reprinted and modified by
permission from PLOS One from ref. [119]. Copyright 2013. (c) mpox prevalence detected in dried museum specimens of potential mpox reservoir species, with an underlying layer
representing tree cover, with darker greens corresponding to high cover percentages. Reprinted by permission from The Royal Society Publishing from ref. [120]. Copyright 2018.
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serology-based diagnostics to understand disease transmission
dynamics, including viral reproduction numbers, viral load clear-
ance, and cell recovery, to understand the timescales of disease
transmission.

However, such studies on mpox are currently limited. At the
population level, mathematical modelling leverages population
metrics, such as contact tracing data, cumulative case counts, and
wastewater surveillance, to predict outbreak characteristics such
as recovery rates, transmission, virulence, and reproduction
numbers. Although the current mpox epidemic case counts are
declining, models predict future waves to occur annually
[50]. Therefore, modelling efforts can assist in the allocation of
public health resources to mitigate the future spread of infection,
such as identifying when and whom to target in vaccine or
education campaigns.

The burden of human infectious disease remains high in many
countries, with recent outbreaks of emerging and re-emerging
pathogens referred to as the ‘new era of infectious disease’ [148]. Cli-
mate change is causing significant changes in natural ecosystems
worldwide [112]. More than half of infectious diseases affecting
human populations having been aggravated by climate hazards
through pathways such as bringing pathogens closer to people or
causing favourable changes to viral fitness traits [149]. Mathemat-
ical models of infectious diseases that consider climatic variables,
such as accomplished for diseases such as influenza virus [150],
West Nile virus [151], SARS-CoV2 [152], and Malaria [153], have
demonstrated utility for policymakers in planning public health
prevention and responses strategies [154]. This review revealed that
the practice of including climatic variables in the mathematical
modelling of mpox still needs further exploration. For example,
current modelling evidence suggests that climate variables can
significantly impactmpox transmission and pathogenesis by affect-
ing the reservoir–human contact environment [118–120]. There-
fore, it is crucial to consider climatic variables at the local, regional,
and global scales in future mpoxmathematical modelling studies to
better understand its complex dynamics with potential reservoirs
and potential impacts on human populations.

The emergence of mpox as a global threat in 2022 has resulted in
over 80,000 cases in non-endemic countries as of 17 November
2022. As mpox has gained global attention, it is becoming increas-
ingly important to conduct higher resolution studies that report
regular case counts and longitudinal serological measures, such as
IgGs, and CD4/CD8 responses, which can be utilized in mathem-
atical modelling approaches to gain deeper insight into viral
dynamics and predictive power. An interdisciplinary work between
clinicians and mathematicians can better inform timescales of
clinical data acquisition to gain the optimal information on disease
dynamics from limited data sets [15]. To date, no within-host
modelling studies of mpox have been carried out to our knowledge.

Efforts to quantify an immunological correlation of protec-
tion in humans against mpox have been reported [41]. However,
a robust correlate of protection against the 2022 strain still needs
to be discovered [30]. Mathematical approaches can leverage
serological studies to correlate humoral and cellular longitudinal
responses with case severity or vaccine efficacy, similar to what
has been done for SARS-CoV-2 [16]. It is also important to
understand differences in within-host dynamics amongst
cohorts containing various comorbidities, notably high-risk
individuals co-infected with syphilis or HIV [155]. Longitudinal
studies working to understand the risks of vaccination in these
vulnerable populations need to be included. As has become
evident throughout the SARS-CoV-2 pandemic, many long-term

consequences of SARS-CoV-2 can present as neurological or
psychiatric [156], cardiovascular [157], and various immuno-
logical dysfunctions [158]. Longitudinal studies to identify and
understand the extent of these potential long-term consequences
for moderate and severe mpox cases will become increasingly
important. Mathematical modelling can help predict the propor-
tion of individuals expected to suffer from long-term conse-
quences of mpox infection and inform public health policy
decisions.
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