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1. Introduction

In a distributive lattice L with 0 the set of all ideals of the form (x]* can be
made into a lattice A0(L) called the lattice of annulets of L. A0(L) is a sublattice
of the Boolean algebra of all annihilator ideals in L. While the lattice of annulets
is no more than the dual of the so-called lattice of filets (carriers) as studied in
the theory of /-groups and abstractly for distributive lattices in [1, section 4] it is
a useful notion in its own right. For example, from the basic theorem of [3] it
follows that A0(L) is a sublattice of the lattice of all ideals of L if and only if
each prime ideal in L contains a unique minimal prime ideal.

For an ideal J in L

a(J) = {(x]*:xeJ}

is a filter in A0(L) and conversely

<x*-(F) = {xeL:(x]*ef}

is an ideal in L when F is any filter in A0(L). An ideal J in L is called an oe-ideal if
a*~a(J) = J. Then by using the structure of A0(L) results can be transferred to
give information on the ideal structure of L. The most interesting result of this
type is that L is a generalized Stone lattice if and only if each prime ideal contains
a unique prime a-ideal.

2. Annulets

Throughout the rest of this note all lattices are distributive. Also the
terminology of [3] will be used freely.

An ideal J of a lattice L with 0 is called an annihilator ideal if J = J**.
This is equivalent to

J = {yeL:y As = 0 for alls eS}

where S is some non-empty subset of L. As is well-known the set of annihilator
70
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ideals A{L) can be made into a Boolean algebra with smallest element (0], largest
element L, set-theoretic intersection as the infimum and the map J -*J* as com-
plementation. Thus the supremum of J and K in A(L) is given by J y K =
(J* r\K*)*. This is no more than De Morgan's law.

Call an ideal of the form (x]*, x e L, an annulet. Each annulet is an annihilator
ideal and hence for two annulets (x]* and (y\* their supremum in ^4(L) is

(*]• V O]* = (O]** n O]**)* = ((x A j>]**)* = (x A j>]*.

Also their infimum in ^(L) is (x]* O(y]* = (x VJO*-
 W e a r e thus lead to the

following result.

PROPOSITION 2.1 Lef L be a lattice with 0. T/ien ^ e sef of annulets A0(L)
of L is a lattice (A0(L), n , y) and sublattice of the Boolean algebra

(A(L), n , y , * , (0], L)

of annihilator ideals of L. A0(L) has the same largest element L — (0]* as A(L)
while A0(L) has a smallest element if and only if L possesses an element d such
that (d]* = (0].

PROOF. All that remains to be verified is the statement concerning the smallest
element in AQ(L). If there is an element deL such that (d]* = (0] then plainly
(0] is the smallest element in A0{L). While if there is an element deL such that
(cf|* is the smallest element then for any xeL

(*]* = ( x ] * y (d ]* = ( x A<0*.

Thus x Ad = 0 implies (x]* = (0]* = L so that x = 0 and hence (d]* = (0].

We now characterize normal lattices.

PROPOSITION 2.2 A lattice Lwith 0 is normal if and only if A0(L) is a sub-
lattice of the lattice of ideals of L.

PROOF. AO(L) is a sublattice of the lattice of ideals of L if and only if, for any
x., yeL, (x]* V( j ]* = (z]* for some zeL. Since

(x]* VO]* = (z]* implies (z]** = (x]** n (>>]** = (x A v]**,

so that (z]* = (x A y]* = (x]* y O ] * in /40(L), we see that A0(L) is a sublattice
ifandonlyif(x]* V(y]* = (x A J']* for each x, >• eL. By [3, Theorem 2.4] this is
equivalent to L being normal.

As in common practice a lattice L with 0 is called disjunctive if for any a,
beL, a<b implies a A c = 0 and c < &, for some o^ce L. This was the definition
of 'disjunctive' used in [3]. However it is easy to see that a lattice L with 0 is
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disjunctive if and only if (a]* = (&]* implies a = b for any a, b in L. We thus
have the following corollary to Propositions 2.1 and 2.2.

PROPOSITION 2.3 A disjuntive normal L is dual isomorphic to its lattice of
annulets. Hence L has a largest element if and only if there is an element deL
such that (<T\* = (0].

Disjunctive normal lattices are important in compactification theory, see [3,
Theorems 7.3 and 7.6]. Actually disjunctive lattices are themselves important in
the study of A0(L); information can be obtained by dualizing Banaschewski's
results in [1, section 4].

It is easy to see that a lattice L with 0 is quasi-complemented (for the definition
see [3, 5.1]) if and only if for each xeL there is an x' such that (x]** = (x']* or
equivalently such that

x A x' = 0 and (x]* n (x']* = (0].

A quasi-complemented lattice has an element d such that (d]* = (0] so that A0(L)
has smallest element 0. Noting that x A x' = 0 is equivalent to

(x]* v (*']* = the largest element of A0(L)

these remarks yields

PROPOSITION 2.4 A lattice L with 0 is quasi-complemented if and only if
A0(L) is a Boolean subalgebra of A(L).

We now consider generalized Stone lattices and sectionally quasi-comple-
mented lattices. For the definitions see [3, 5.2, 5.3].

PROPOSITION 2.5 The lattice of annulets of a generalized Stone lattice is a
relatively complemented sublattices of the lattice of ideals of L.

PROOF. From [3, Proposition 5.5] a generalized Stone lattice Lis normal so
A0(L) is a sublattice of the lattice of ideals of L due to Proposition 2.2. We therefore
write v as V- As A0(L) is a distributive lattice with largest element L,A0(L) will be
relatively complemented if and only if each interval of the form [7 , L], / e A0(L),
is complemented.

Thus let J = [(x]*,L] be an interval in A0(L) and let (y]*eJ. As L is a
generalized Stone lattice (><]* VCv]** = L.(y]* O(y]** = (0] always holds hence

((*] n(y]*) V((x] n (>>]**) = (*] and ((x] n (>>]*) n((x] n(y]**) = (0].

The last two equalities follow from the distributivity of the lattice of ideals of L.
We thus have two ideals whose supremum and infimum are principal ideals and
by [5, Lemma 2, p. 83] both ideals are themselves principal. Thus (a] = (x] O (y]*
forsomeaeL. A s a ^ x , ( x ] * c ( a ] * so (a]*ej. Also (a] £ (y]* so (y]** £ (a]*,
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so (a]* VW* = L. Now

(a]*n(y]*n(x]=(a]*n(a]=(O]

so (a]* O (>>]* c (*]• but (x]* c Cv]*,(a]* so (a]* n (y]* = (*]•. Then (a]* is
the required complement of(y]* in the interval J.

We now improve Proposition 2.5 by showing that the converse is also true.
The following lemma is obvious.

LEMMA 2.6 Let I = [0,x], 0 < x , be an interval in lattice L with 0. For
ael, ( a ] + is the annihilator of a with respect to I;

(a]+ = {yel:y A a = 0} = {yel :y /\b = 0 for all bel and b ^ a}.

Then,
(1) if a, bel and (a]+ <= (fe]+ it follows that (a]* c (*,]*,
(2) j / M'eL, (w]* O 7 = (H 'AX] + .

PROPOSITION 2.7 The lattice of annulets of a lattice L with 0 is relatively
complemented if and only if L is sectionally quasi-complemented.

PROOF. Suppose A0(L) is relatively complemented. We must show that
/ = [0, x] is a quasi-complemented lattice for each 0 < x eL. Let a, bel and

suppose ( f l ] + S ( f c ] + S J = (0] + .

From the lemma, (a]* s (&]* s L. The interval [(a]*, L] is complemented in
so that there is an element weL such that

(&]* n ( w ] * = (a]* and (ft]* y (w]* = L.

Then (6]* y (w]* = (b A w]* gives b A w = 0. Then b A O A x) = 0 so

(b] + y(w Ax]* = (a] + ,

due to Lemma 2.6. It follows that A0(L) is complemented and so by Proposition
2.4 (or rather a variation on it) / is quasi-complemented.

Suppose L is sectionally quasi-complemented. To prove A0(L) is relatively
complemented it suffices to prove that each interval [(a]*, L] is complemented as
A0(L) is distributive (Proposition 2.1). Let (£>]* 6 [(a]*, L] £ /40(L) and consider
the interval / = [0, a v b ] in L. Then

so there is an element w e / such that (w]+ O ( b ] + = ( a ] + and (w]+ y (b]+ = 1
as / is quasi-complemented and so A0(I) is complemented by Proposition 2.5. Then

(w vb]+ =(w]+ n(fe]+ = (ay
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so (b]* O(w]* = (b V w]* = (a]* by Lemma 2.6. Also (w A b ] + = / so
w /\ fo = 0 hence

(6]* V (w]* = L.

As (w]* e [(«]*, L] it follows that 40(L) is relatively complemented.

From Proposition 2.7 we now obtain the improvement Proposition 2.5.
Incidentally, the proof of the following proposition supplies an alternative proof of
Proposition 2.5.

PROPOSITION 2.8 A lattice L with 0 (resp. with 0 and 1) is a generalized
Stone lattice (resp. Stone lattice) if and only if the lattice of annulets is a relatively
complemented (resp. Boolean algebra and) sublattice of the ideals of L.

PROOF. Suppose Lis a lattice with 0 but not necessarily with a largest element
1. Then L is a generalized Stone lattice by Propositions 2.2 and 2.7 together with
[3, Theorem 5.7].

When 1 e L the assertion follows from Propositions 2.2 and 2.5 together with
[3, Theorem 5.6].

3. ce-ideals

We now replace Propositions 2.7 and 2.8 by propositions concerning the prime
ideal structure of L. To do this we introduce a special class of ideals and our
first job is to elucidate this class of ideals.

The proof of the following proposition is quite routine and will be omitted.

PROPOSITION 3.1 Let L be a lattice with 0. The following holds:

(a) for an ideal J in L, oc(J) = {(x~\* :xeJ} is a filter in A0(L),
(b) for a filter F in A0(L), cc"(F) = {xeL :(x]*eF} is an ideal in L,
(c) if Ji ,J2 are ideals in L then J t c J2 implies a(Jx) c a(J2); and if F1, F2

are filter in A0(L) then Fx s F2 implies a ' X F J s a'~(F2),
(d) the map I -* a*"a(/){ = a*"(a(/))} is a closure operation on the lattice of

ideals of L, i.e.
(0 ora(cTa(/)) = a"a(7)
(ii) I £ a-a(i),
(Hi) I £ J implies oTa(I) s a"a(J),

for any ideals I, J in L.

An ideal / is an called a-ideal if a"a(I) = I.
Thus a-ideals are simply the closed elements with respect to the closure

operation of Proposition 3.1. From this propositon, the following is an immediate
consequence.

PROPOSITION 3.2 The a-ideals of a lattice L with Oform a complete distributive
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lattice isomorphic to the lattice of filters, ordered by set-inclusion, of the lattice
A0(L) of annulets of L.

The infimum of a set of a-ideals Jt is C\Jt, their set-theoretic intersection.
The supremum is a"~a( \J J) where \JJ is their supremum in the lattice of ideals
of L.

The following proposition gives equivalent conditions for an ideal to be an
a-ideal.

PROPOSITION 3.3 For an ideal I in a lattice LwithO the following are equiv-
alent:

(a) / is an cc-ideal,
(b) for x, yeL, (x]* = (y~\* and xel implies yel,
(c) / = U*e/(*]** (here \J = set-theoretic union),
(d) for x, yeL, h(x) = h(y) and xel implies yel, where h(-) is the hull

°/(") with respect to the minimal prime ideals in L.

PROOF. The equivalence of (a) and (b) is trivial.
(b) => (c). If xel and ye(x]** then (*]* <= GO* so

GO* = ( * ] • V GO* = (x A y]*

and xf\yel, so yel. That is, \JX e 7(x]** S / whence (c) follows.
(c) => (b) is trivial.
(b)o(d). Here we freely make use of results on minimal prime ideals and the

space of minimal primes (under the hull-kernel topology) implied by [7]. Suppose
h(x) = h(y). Then g(x) = g{y) where g(-) is the complement of /i(-) in the set of
minimal primes. Then

(*]* = n{P:Pe g(x)} = n{P:Pe g(y)} = (y]*

because the intersection of all the minimal primes of L is (0]. While if (x]* = (y~\*
then

n{P:Peg(x)} = n{P:Peg(y)}

so h(n{P:Peg(x)}) = h(n {P : P eg(y)}) so g(x) = g(y). Since g(x), g(y) are
closed and h(n{P:Pe g(x)}) is the closure of g(x) etc. Then h(x) = h(y). That is
h{x) = h{y) if and only i/(x]* = (y]* and (b)o(d) follows.

Examples of a-ideals are provided by annihilator ideals, the ideal

O(P) = {x e L : x A y = 0 for some y$P)

where P is a prime ideal, and minimal prime ideals (because of [7, Lemma 3.1]).
The following proposition is of intrinsic interest. It is not hard to establish if

the criterion for a disjunctive lattice, as mentioned just before Proposition 2.3, is
used. The proof is omitted.
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PROPOSITION 3.4 Let L be a lattice with 0. The following are equivalent:
(a) each prime ideal is an a-ideal,
(b) each ideal is an a-ideal,
(b) L is disjunctive

Proposition 3.2 implies that there is an order isomorphism between the prime
a-ideals and the prime filters of the lattice of annulets. Also it is not hard to show
that each a-ideal is an intersection of prime a-ideals. We now come to our objectives
but first we need a standard result. It was proved for bounded lattices in [9] and
announced in general in [8]; an explicit proof is given in [6, p. 276].

LEMMA 3.5 A lattice with 0 is relatively complemented if and only if every
prime filter is an ultrafilter.

THEOREM 3.6 Let L be a lattice with 0. The following are equivalent:
(a) L is sectionally quasi-complemented,
(b) each prime a-ideal is a minimal prime ideal,
(c) each a-ideal is an intersection of minimal prime ideals.
Moreover, the above conditions are equivalent to L being quasi-comple-

mented if and only if there is an element dsL such that (d~\* = (0].

PROOF. The equivalence of (a), (b) and (c) is an immediate consequence of
Lemma 3.5 and the remarks immediately preceding it together with Proposition 2.7,

The remaining assertion follows from Proposition 2.4 and 2.7 or more simply
from [3, Proposition 5.5]

THEOREM 3.7 A lattice with 0 (resp. and 1) is a generalized Stone lattice
(resp. Stone lattice) if and only if each prime ideal contains a unique prime
a-ideal.

PROOF. Since minimal prime ideals are a-ideals the condition in the theorem
implies normality. It also implies L is sectionally quasi-complemented by Theorem
2.8. Observing this, the result follows immediately from [3, Theorems 5.6, 5.7].

Remarks 1. It is possible to prove the following result. For a lattice L with 0,
A0(L) is isomorphic to the lattice (H, n , U), where H = {h(x) : x eL} and /i(-) is
the hull with respect to the minimal primes. The isomorphism is the map
(x]* -> h(x). This is easily shown to be a lattice homomorphism, and the slightly
more troublesome fact that it is a bijection has already been established in the
proof (b)<j>(d) of Proposition 3.3.

2. In view of the preceding remark and Proposition 3.3 we see that there is
nothing very novel about either the lattice of annulets or the lattice of a-ideals.
Generally constructions of ideals like a-ideals are carried out with respect to
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maximal ideals. In fact Subramanian [10, section 4.3, p. 201] used this idea to
obtain "/i-ideals" with respect to the space of maximal /-ideals in an/-ring. Of
course our a-ideals and his fc-ideals were both suggested by the "z-ideals" of
Gillman and Jerison [4, Chapter 2] where one is, implicitly, taking hulls with
respect to the space of maximal ideals of C(X).

3. Bigard [2] has also studied a-ideals in the context of lattice-ordered groups.
His definition is in terms of (b) of Proposition 3 .3- of course for him (x]* is re-
placed by the polar {y : | y | A | x = 0}. Instead of annulets he uses the dual lattice
of carriers. He gives some interesting results, all without proof, including an
analogue of Theorem 3.7. Though we arrived at the notion of a-ideal independently
of Bigard, Theorem 3.7 was directly suggested by his assertion.
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