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1. Introduction. The notions of isoparametric maps and submanifolds in semi-
Riemannian spaces are the generalizations of such notions in Riemannian spaces. The
generalizations are different according to the purposes. We take the definitions as in the
Riemannian case. Quadratic isoparametric maps and submanifolds are interesting
examples which can be studied in detail. In this paper we study what we call quadratic
isoparametric systems. In fact we give a classification of such systems of codimension 2.
We use three different methods to show that quadratic isoparametric submanifolds of
codimension 2 are homogeneous. The classification of quadratic isoparametric systems is
done algebraically. By this we have changed the geometric problem of classifying
quadratic submanifolds of codimension 2 into the algebraic problem of classifying
quadratic isoparametric systems of codimension 2. The classification of such systems with
arbitrary codimension is still open.

2. Preliminaries

DEFINITION 1. A smooth function/ = (/,,. . . , fm) :Up+m-+Um is called isoparametric
if

(i) (grad/,., grad/^) and Afa = di\(grad fa) are smooth functions of / for all a, /?,
\<a, fi^m;

(ii) [grad/„., grad/p] is a linear combination of grad/,,. . . ,grad/m with coefficients
being smooth functions of/for all a,fi, 1 < a, fi ^m.

DEFINITION 2. If f:Mp+m—>Um is isoparametric, c a regular value of / such that
f~\c)¥z0, and (,)|r/-'(c) is nondegenerate, then each connected component of/~'(c) is
called an isoparametric submanifold.

Let Sym(IR^+m) be the space of self-adjoint linear endomorphisms of U"+m. Up+m is
the real vector space U"+m with the inner product which has signature p >0.

By a quadratic map we mean a map / : Rp+m—> Um defined by

f{x) = {{Axx,x) +2{a\x),. . . ,{Amx,x) +2{am,x))

where AaeSym(U^+m), aaeU"p
+m, Vo-, l<a-<m and the set { / l j l < a < m } is a

linearly independent set. We have the following interesting theorem.

THEOREM 3. Let f: IR£+m—» Um be a quadratic map. Then f is isoparametric iff there
exist constants k"p = XPa such that

AaAp=JJkfAY, Aaa
li = JJXfa-', 1 < a,P,y </n.

y Y

Proof. We calculate that (grad fa)(x) = 2(Aax + aa)Va, l<ar<m, and Vx e Un
p

+m. So

(grad fa, grad fp)(x) - 2 ( 0 4 ^ + V U « , * > + 4 ( M X + Apa
a,x) + (aa, ap)),

[grad/ff, grad/„](*) ̂ A^A^ -AaAp)(x) +Apa
a-Aaa^]

and A/,, = 2 trace Aa = constant.
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Now suppose that/is isoparametric; then we have

<grad/ff, gradfp) = FaP(J) and [grad/,, grad/p] = £ (ifif) 8 r a d /y
y

So we get that

and

where "k°f, [i°f are constant for each a, )3, y.
By solving the two systems of linear equations, using the fact that Aa e Sym(Mp+m)

for each a, and that the set {Aa | 1 s a^ m) is linearly independent we deduce that

Va,/3,y, l<ar,/S,y<

Thus the conditions are necessary. By a simple calculation it is seen that the conditions
are sufficient.

REMARK 4. Note that during the above proof we showed that HyP = 0Va,f},y,
whence [grad/^grad/^] = 0. Thus we can give a sharper definition for quadratic
isoparametric maps as follows.

DEFINITION 5. A quadratic map / : Rp+m—>• Um is called isoparametric if

(i) (grad/^grad/p) and Afa = div(grad/a.) are smooth functions of /Va-,/3,
I < a g 3 < m ,

(ii) [grad/a, grad/^] = 0 Va-,j3, 1 < ar,/3 < m.

REMARK 6. If we consider the affine maps (Aa,a
ar), 1 < a s m, of the above theorem

we see that they generate an m-dimensional commutative algebra si as follows.

Definitions of addition (+) of two such maps and multiplication (.) by scalars are as
usual.

With these two operations si is a vector space. We define a multiplication * in si as:
(Aa, a") * (Ap, ap) = {AaAp, {{Aaa

p + A^a1*)) which by the above theorem is equivalent
t o ( A a , a a ) * ( A p , a t i ) = ( A a A l s , A a a l i ) . I t is eas i ly s e e n t h a t ( s i , + , . , * ) is a n m -
dimensional commutative algebra. Thus each quadratic isoparametric map gives rise to a
commutative algebra.

Conversely, if we have any vector space s4 spanned by the set of affine maps
{(Aa,a

a):AaeSym(U"p
+m),aaeUn

p
+m, \<a<m, {Aa} is a linearly independent set}

and if (si, + , . , * ) is an m-dimensional (commutative) algebra, then each basis
{(Ba, ba): 1 < a<m) of si gives us a quadratic isoparametric map g:Up+m-*Um defined

= ((B{x,x)+2(b1,x),...,(Bmx,x)+2(bm,x)).
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REMARK 7. There exists an equivalence relation on the set of all quadratic
isoparametric maps / : U"p

+m-+ Um defined by: g~f\ig = T°f°h where T e GL(Um)
and h eOp(n + m), the linear isometry group of Up

+m. We call each equivalence class of
an isoparametric map, an isoparametric system. Certainly if we restrict the relation to the
set of all quadratic isoparametric maps obtained from an algebra s&, we get just one
equivalence class.

The following relation holds between quadratic isoparametric submanifolds and
systems.

PROPOSITION 8. / / M" c Up
+m is a full (i.e. M does not lie in any nondegenerate

hyperplane of Up
+m) quadratic isoparametric submanifold, then it determines a unique

isoparametric system si.

Proof. Let M be a component of some nondegenerate regular level f~l(c) where
f:Up

+m—*Um is a quadratic isoparametric map defined by f(x) = ((Alx,x) +
2(a\x),. . . , (Amx,x) +2(a"',x)). If g is another such map defined by g(x) =
((B{x,x) +2(b\x),. . . , {Bmx,x) +2(bm,x}) and M is a component of some
nondegenerate regular level g~l(c), then we have (grad ga)(x) =
E a«p(x)(gradfp)(x) VJC e M. Since both gradfa and grad gp are parallel normal fields, the
p
coefficients aaP(x) are constant on M. It is easily seen that the shape operator of M
along grad^ is -Ba \TM and along E aaP grad/,, is -T,aaPAp\TM, so we have
Ba\TxM = QlaapAp)\TxMVxeM. By using the relation (gradga)(x) = T.aap(x)(gradfp)(x)

we get that Bax + b"= E aaP(Apx + ap) V* eM so ba=T, aaPap\/a, \<a<m.
p P

Now we show that Ba = E aap Ap Vo-, 1 < or < /n.
p

Let W be the subspace of Up+m spanned by the set {TxM:x e A/}, i.e. each vector
v eW isa finite direct sum of elements belonging to TXM for various x eM. If W =£ Up

+m,
then W^-^iO}, so there is a vector 0¥=v eW±, i.e. v ±TxM\/x e M. This means that
(X, v) =0 for all tangent vector fields X on M, thus (x,v) = constant VxeM, hence
M lies in a hyperplane, and this contradicts the fact that M is full. Thus Ba = E aaPAp

on IR;+m So (Ba, b
a) = E aap(Ap, a").

P

3. The classification. To determine each quadratic isoparametric system of codim-
ension 2, it is enough to find a basis {(Au al)(A2, a2)} for the system; and in order to do
that we try to find the simplest forms of elements of Sym(IRp).

If A e Sym(IRp), there is some basis for Up such that, with respect to it, A can be put
in the form

B, 0

A= o * " • • < : ,
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k i

where fl, is an s, X s, matrix and C, is a 2tt x 2tt matrix, £ 5, + 2 E *,• = n, and we have

"" • -//A,

and

—bi a,
1
0
aJ

the

// =

0
1

bi
a>.

1 0
0 ]

:orm

/

/ ,"

L

and J

bj
fly

/
m 1

.0
0"'

- 1

1

.0
o"

- 1

The matrix of the inner product is of the form

•JK

Since the algebra M is two dimensional, the minimal polynomial PA(x) of each Aesi
must satisfy PA(x) \ (ax + bx2 + ex3), a, b, c e U. So each element of M can have (at most)
three different simple real eigenvalues (if it has three different eigenvalues, one of them
must be zero), or a simple zero eigenvalue and a nonsimple nonzero real eigenvalue with
Jordan block 2 x 2 or just an eigenvalue which appears as nonsimple eigenvalue with
Jordan block 2 x 2 (and also possibly as simple one), or a nonzero simple real eigenvalue
and a zero nonsimple eigenvalue with Jordan block 2 x 2, or a simple zero eigenvalue and
a simple complex eigenvalue, (possibly with its conjugate), or just a simple complex
eigenvalue (possibly with its conjugate). Using these facts one first finds the simplest forms
of elements of Sym(Rp) which satisfy the above condition. Choosing the simplest form of
an /lieSym(IRp) (satisfying the conditions) one looks for an A2e.Sym(Rn

p) which also
satisfies the required conditions and span {A,, A2} is a 2-dimensional commutative
algebra. At the end one chooses vectors a1, a2 e Up such that {(Au a1), (A2, a

2)} is a basis
for a 2-dimensional commutative algebra. By doing this process one gets (up to linear
isomorphisms of Up) just one of the following systems.

2 ? 2 2p

l l 2 = - * ? - . . . - + x
2-

f\() ] p
f2(x) = X{-x\ - . . . - x

2

-apxp

- 2apxp

. . . +anxn);
2a,x,-) +

til Y 4- -4- V -4- 7/7 V -1- 4- Jn v 1

Of course p can be greater than or equal to i.
(b) | | * | | 2 = - ; t 2 - . . . - j c 2 + . . . + * 2 ;

f . M = ; / - r 2 . . - - r2 4- 4- xj+j) + ^x)+j+x

. . . -apxp

f2(x) = A 2 ( -x 2 , -
p

. . . +anxn);

. - apxp

. . . - x2
p + . . . + xj+J) + fi2(x2

+j+l

+ . . . + anxn) + 2[i(ai+j+lxi+j+y+ .
<2

. . . + x2
n) + 2A(-fl,

. + anxn)\ A, ,u, X - fi ¥= 0,
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There are other possibilities for p :p s i or p & j + j .

c; \\x\\ — Lxxx2 — x3 — . . . — xp+x + . . . +xn,
fx(x) = x2 + 2(^1^2 + a2xx — a3x3 — . . . — ap+xxp+x + . . . + anxn);
f2(x) = 2x2(kxx + dp+xxp+3 + . . . +dn_2xn)+ (A2x',x')' + 2(bxx2 +b2xx-
b3x3 - . . . - bp+xxp+x + . . . + bnxn)
where x'= (x3,. . . ,xn)eRn

pZ
2
u A2e Sym(Un

pZ
2
x), \\x'\\2= -x\- . . . -x2

p+x +
...+x2

n and a1 = (ax,. . . ,an), a2 = (bx,. . . , bn) satisfy the conditions in
Theorem 3.

(d) | |J : | | =2(lxxxx2 +• • • + liX2i-xx2i) — x2i+x —. . . — xp+i +. . . + xn;
r / \ 7 7 1r I v I ~~ v -X- v —̂ -i- v •J1V / — A 2 i - V 4 i . . . T « V 2 /

p j . . . + lta2i_xx2i

. . . — ap+ixp+i + . . . + a2i+jX2i+j);

f2(x) = 2X(x2
2 + x2

4 + . . . + x2
2i) + 2X\lxx,x2 + ...+ / ,VC2,_,JC2,)

. . . - x 2
p + i + . . . + xlt+l) + 2(a2x2 + . . . + a2ix2i)

hav-xXv + //fl2/*2i-i) + 2X{-a2i+lx2i+x - . . . - ap+ixp+i + . . . + a2i+jx2i+j),

where A#0, each lk is +1 or - 1 , 2 s 2 / <min{2p, n}, 2i+j<n-2.
(e) ||x||2 as in the case (d);

/ . ( * ) = (xl + x l + . . . + x2
2i) + k ( - x i + j + 1 - . . . - x2

p+i + . . . + x l ) + 2 ( / , a 1 x 2xp+i

l2a3x4 + . . . + lidv-iXv - fl2;+i*2«+i - . . . - ap+ixp+i + . . . + a n x n ) ;
f2(x) = A ( — x 2 i + j + \ — . . . — x p + i + . . . + x n ) + 2k(—a2i+j+lx2i+j+i — . . .
-ap+ixp+i + . . . +anxn);
A=£0, each lk is +1 or - 1 , 2<2J <min{2p, n - 1}, l < n - i - / £ n - 2 , 0 s j <
n-3 ,

(f) ||JC||2 as in the case (d);
/I(JC) is as in the case (e) with i+j = n. If i = 1, then, this is the case (c).
If i > 1, we can not find the simplest form of f2(x) so we consider just the special
case n = 4. We have then two subcases as follows,

(f.l) fl(x)=x2
2 + x2

4 + 2(llax2 + l2bx4);
f2(x) = lla2(xl + xl) + 2a,(/1jc1x2 + l2x3x4) + 2{llcx2 + axaxx + l2dx4 + axbx3).

(f.2) /,(*) = xl + xl + 2(1,0X2 + l2bxA);
f2(x) = lxaxx\ + ll + l2a3xl + 2lxa2x2x4 + 2(cx2 + dx4).

In (f.l), (f.2) each /, is +1 or - 1 .

(g) \\x\\2 = x2
x-x

2
2 + x2

3-xl + ...+xl-X-x2
2i-(x

2
2i+x + ...+x2

p+i) + x2
p+i+x +

...+x2
n;

fx(x) = a{x\ -xl + ...+ xl_x - xi) + 2P(exxxx2 + . . . + e^-iX^) + 2(axxx -
a2x2 + . . . + fi2,_i*2,-i - "2,^2,);
f2(x) = (a-2 - P2)(x2 -xl + ...+ JcL-i - xl) + 2<xP(exxxx2 + . . . + e,J:2,._^2/) +
2[(aax + expa2)xx - (aa2 - exfiax)x2 + . . . + (aa^ + e^a2i)x2i-i - (aa2i -

where e; = + l or - 1 , \<j<i, fl^O, 2<2i<min{2p,n}. The systems obtained in
(a)-(g) are all geometrically different, i.e. there is no invertible linear map T:U2—*U2

and no g e Op(n) such that fp=T °f ° g. fa is the isoparametric map associated to the
system a, (i.e. fa(x) = ((Afx,x) + 2(ala,x), (A%x,x) +2(a2a,x)), a, pe{a,. . . ,g}.
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4. Homogeneity of quadratic isoparametric submanifolds of codimension 2. We
prove that the submanifold is homogeneous by using one of the three methods described
as follows.

(i) The submanifold is a product of homogeneous spaces, so it is homogeneous,
(ii) We prove that the submanifold is "extrinsically symmetric" in Up, thus it is

homogeneous,
(iii) By finding enough killing vector fields on the submanifold we show that it is

homogeneous.
Before we begin the proof we give the definitions of ambient homogeneous and
extrinsically symmetric submanifold.

DEFINITION 9. The semi-Riemannian submanifold M c Up is ambient homogeneous if
the subgroup GM a I (Up) which leaves M invariant acts transitively on M.

DEFINITION 10. The semi-Riemannian submanifold M c Wp is extrinsically symmetric
in Up if M is connected and VxeM there is a axel(Up) such that ox(M) = M and
dox\TxM =-idTxM.

In what follows f:Up—>U2 is a quadratic isoparametric map defined by f(x) =
((A\X,x) +2(a\x), (A2x,x) + 2(a2,x)) where (,) is specified in each case by giving
the matrix of the inner product /. M is a component of some nondegenerate regular level

l

Note that as it is mentioned in Proposition 8 the shape operator of M (considered in
Propositions 11-15) along (grad^X*) is -Aj\TxM.

PROPOSITION 11. The submanifold M obtained from the system (a) or (b) is a product
of some known homogeneous spaces, so it is homogeneous.

Proof. If M is obtained from the system (a), then it is isometric to (a component of)
5r ' (r , ) x 5^i;~'(r2) or S\~\r^) x Hn

pZ\Z\(r2) if p > i and it is isometric to (a component of)
Sif\rl)xSH-i-l(r2) or / / ^ ( r , ) x S""'"1^) if p<i. Note that S'"1 is the (i -1)-
dimensional sphere in RJ. Thus in any case M is homogeneous.

If M is obtained from the system (b), it is isometric to U'p x SJ~l(rx) X Sk~l(r2) when
p :£i, and is isometric to (a component of) Rj x S^L1 /̂-,) x Sk~\r2) or Rj X //£"!'_,(r,) X
5*~'(r2) when i <p < / + / and is isometric to (a component of) Rj x Sj'1^) x SpI,Ly(r2)
or (a component of) Rj x 5|~'(r,) x //*l/_y_,(r2) when p > i +j.

Now we come to the cases for which we prove the submanifold is extrinsically
symmetric in Up1.

PROPOSITION 12. / / M is obtained from the system (c) (with ai = a2 = 0), it is
extrinsically symmetric in Up.

Proof. The isometries ax as in Definition 10 are defined by ox(x) =x, dox(x) = -x,

Vx e TXM and dox(v) = v Vv e NXM. Then we obtain that ax(y) = 2 ^'AlX' A^x -y +
Ac,

( n-1 \
£ d\\Ax

Jr\A2, by an
i=i /

easy calculation we get that f{(ax(y))= (Ai(ax(y)), ox(y)) = {Atx,x) =fi(x) Vx,y eM,
i = 1,2. Thus M is extrinsically symmetric in U"p, so it is homogeneous.
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PROPOSITION 13. The semi-Riemannian submanifold M obtained from the system (e) is
isometric to (a component of) M, x 5 where M, is some (2i + j — l)-dimensional
semi-Riemannian submanifold of Up which is extrinsically symmetric in some (2i+j)-
dimensional subspace V and S is some (n — 2i — j — \)-dimensional sphere or pseudo
sphere or pseudo hyperbolic space.

Proof. By simple calculation we get that M is isometric to (a component of)
Mi x S'-2i-j-\r) if p < 21 +j or M, x SJHiJlfV) or Af, x //;i|}ljlj(r) if p > IX +j where
Mi is the quadratic isoparametric hypersurface in V = {x:x e Up, x2i+J+i = . . . = xn = 0}
obtained by the quadratic isoparametric function g(y) = (By,y) + 2(b,y) Vy e V where

0 /,
0 0

B = 0 /,
0 0

0

b = (flj, 0, a3,. . . , 021-1, 0, a2i+i,. . . , a2i+j).
By the same method used in Proposition 11 we see that A/, is extrinsically symmetric

in V. Thus M is homogeneous in Up.

For the system (d) when i = 1 the submanifold M obtained from the system is either
some (n — 2)-dimensional sphere or a component of a pseudo sphere or pseudo
hyperbolic space or a product of some ^-dimensional plane with some (n — K — 2)
dimensional (pseudo) sphere. So in any case M is homogeneous.

Now we come to the cases for which we find enough Killing vector fields on M. The
integral curves of such vector fields give us isometries in /(R|) which leave M invariant
and act transitively on M, so M is homogeneous. We should mention that in these cases
we restrict ourselves to n = 4.

PROPOSITION 14. The submanifold M obtained by the system

{ = I4, A2 =

A 1
0 A

0

0

A 1
0 A

/ —
> J

"0
1

1
0

0
1

1
0_

a1 = (a,,. . . , a4), a2 = {Xay + a2, Xa2, Aa3 + a4, Aa4) is homogeneous.

f/i = ciProof. If we put \ , y =x + a then an easy calculation shows that M = {x :x =
V2 = ^2

= di and yl + y\ = c2 — Ac, + a\ +a\ = d2). Thus
if we show that M' = {y.2(yiy2 + y3y4) = du yl + yl = d2} is homogeneous, then certainly
M is homogeneous, since it is obtained from M' just with a translation by vector a1. So
for simplicity we can assume that a1 = 0 which implies that a2 = 0. We find that
S*(x)=Xie{-x2e2, S2(x) = x3el -x2e4, S*(x) = x4ei~x2e3, S%(x)=x3e2-xle4, S%(x) =
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x4e2-Xie3, S%(x) = x3e3-x4e4 are Killing vector fields on U2, e = {eu e2, e3, e4} is
obtained by the parallel transport of a basis of IR2 such that with respect to it A2 is in the
given form and (e,, ey) = [/],-,-. xu . . . ,x4 are the coordinates of x e Up with respect to e.
We observe that X = S$, Y = S* + 55* are tangent to M at all points of M, thus X\M,
Y\M are Killing vector fields on M. If x(t) = xx(t)ex + x2(t)e2 + x3(t)e3 + x4(t)e4 is the
integral curve of X with the initial condition x(0) =xie1 + x2e2 + x3e3 + x4e4 then we have

x4t + xx, x2(t) = x2, x3(t) = -x2t + x3, x4(t) = x4.
Similarly for the integral curve of Y we have

y,(t) = i , cos t + x3 sin t, y2{t) = x2 cos t + x4 sin t,

y3(t) = x3 cos t — x, sin t, y4{t) = x4 cos t — x2 sin /.

If i ,e, +i2^2 + ^3e3 + x4e4 = x, xxex +x2e2 + x3e3 + x4e4 = x are two points of M, we
look for a g 61(U2) such that g(x) =x and g(M) = M. Since A/ is nondegenerate x2, x4

cannot be zero simultaneously for x e M thus we can pass from x to the point
y}ex + x2e2 + y3e3 + x4e4 e M by the integral curve of Y and pass from this point to the
point x by the integral curve of X. Hence M is homogeneous.

PROPOSITION 15. The submanifold M obtained from the system

—14, A2 —

a

-b

0

b

a
0

a

-b

b

a

1

0

0

- 1
1

0

0

0

- 1

== (fl1;. . . , a4), a = (aax + ba2, —bax + aa2, aa3 + ba4, —ba3 + aa4), is homogeneous.

Proof. The same argument as in the proof of Proposition 14 shows that we can
assume a1 = a2 = 0. We see that S*(x) = x2el+xle2, S2(x) = x3ex -xxe3, S*(x) = x4ex +
xxe4, 5*(JC) = x3e2 + x2e3, S*(x) = x4e2 - x2e4, S£(x) = x4e3 + x3e4, are Killing vector fields
on U2, {eu... , e4) is obtained by parallel translation of the basis of U2 such that with
respect to it A2 is in the given form and (e,, e,-) = [7],7. We also observe that
X(x) = S^ + S^, Y(x) = S3* -54* are in TXM for each xeM, thus X\M, Y\M are Killing
vector fields on M. Since [jc,y] = 0, the general form of an element of the algebra
generated by X,Y is aX + bY, a,beU. By solving the related system of differential
equations for the integral curve of aX + bY with initial condition x(0) = (xx, x2, x3,x4) we
get the system

xx{t) = (i , cosh bt + x4 sinh bt)cos at + (x3 cosh bt - x2 sinh bt)sin a?

x2{t) = (x2 cosh bt - x3 sinh bt)cos at + (xx sinh bt + x4 cosh bt)s\n at

x3(t) = (x3 cosh bt — x2 sinh bt)cos at + (xx sinh bt + x4 cosh bt)sin at

x4(t) - (x4 cosh bt + i , sinh bt)cos at + (x3 sinh bt - x2 cosh bt)s\n at.

( * )

Let G be the isometry group generated by the integral curves of elements of the
algebra generated by X,Y. We prove that Gx is open and closed in M for some special
point x = x3e3 + x4e4 e M and x3 # 0. Since M is connected we see that M = Gx, i.e. M is
homogeneous.
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We prove that G is a closed subgroup of /(IR2) by taking a sequence {gn} in G which
converges to some g e I(UQ and showing that g e G . This is easy, but messy. As a simple
corollary we see that Gx is closed in M.

Now we prove that Gx is open in M. Let MC{M) be the Lie algebra of G and K be
the algebra of Killing vector fields generated by X,Y. Since all elements of K are
complete, by using [4, Theorem 9.32 and Proposition 9.33] for s£c(M) and K we conclude
that there is an isomorphism of sdc{M) onto K.

Since dim K = 2 we have dim s£c(M) = dim TeG = dim G = dim A" = 2.
Next we prove that there is a diffeomorphism 0 between G and Cx as it gives us

dim Gx = dim G = 2 (in fact, we can define <j> by (p(g) = gx). The relation Gx cM with
dim Gx = dim M = 2 gives that Gi is open in M. So the proof is complete.

REMARK 16. For the system

= I4, A2 =

a

-b

0

b

a
0

a

-b

b

a_
as before, we see, by the same method used in Proposition 15, that the submanifold M
is homogeneous.
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